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Abstract 
The present work focuses on the development of computer code which allow one 

investigate the flow behavior through a convergent - divergent nozzle. The flow is 

assumed as steady quasi one dimensional inviscid compressible flow. In other word, the 

flow problem is governed by compressible Euler equation. The Euler equation in steady 

form may behaves as elliptic partial differential equation or as hyperbolic type of partial 

differential equation depending on the local Mach number. If the local Mach number M < 

1, the Euler Equation behaves as elliptic equation while for M > 1, it will behave as 

hyperbolic equation. In one flow domain, with the boundary which separation between 

two flow domains are not clear, make the Euler equation becomes very difficult to be 

solved. To avoid such difficulty, one may solve the Euler equation in unsteady form. The 

present work uses unsteady Euler equation as its governing equation of fluid motion 

inside the nozzle and cell centered finite volume scheme for their numerical solution. 

This numerical scheme applied for the case of flow past through two type nozzle models. 

The first nozzle model follow the nozzle model introduced by Blazek and the second 

nozzle according to Anderson. Here use the Cell Centered Finite Volume scheme for the 

purpose of flow analysis on the nozzle. The flow analysis carried out over various flow 

condition applied to the inlet and outlet section of the nozzle. The result shows that this 

numerical approach has a limitation. One can not impose arbitrary boundary conditions in 

solving divergent - convergent nozzle numerically, especially if one use a Cell Centered 

scheme. 
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1. Introduction 

The convergent divergent nozzle represent a device for expanding flow speed starting from a low 

subsonic speed to a supersonic speed at the exit station of the nozzle. In manner how to predict 

the flow behavior along the nozzle can be done by analytical method or numerical method. In 

assumption that there are no friction effects and the flow is adiabatic flow and in chocked one 

can formulate the relationship between cross section area and the Mach number. So for a given a 

convergent divergent nozzle geometry and the flow condition at the reservoir, one can define the 

Mach number distribution along the nozzle. If the pressure at the nozzle exit station at the time 

the flow speed at that station is supersonic is equal to P,. A normal shock wave will occur at a 

point some where in divergent part of the nozzle if the setting of back pressure Pb is higher than 

P,. The position of the normal shock wave is depended on the value Pb. If Pb is equal to P,, there 

is no shock wave. If Pb is becoming a higher than P, the position of normal shock wave will 

move forward to the throat of the nozzle. The manner how to predict flow behavior along the 

convergent divergent nozzle with and without a normal shock wave analytically can be found in 

various compressible flow text books such as given in Ref. 1,2 and 3. In view of solve the flow 

problem past through a convergent divergent nozzle numerically, one has to start from the 

governing equation of fluid motion. In assumption that the flow is inviscid and the nozzle cross 

section area along the main nozzle axis is varying slowly. The governing equation of fluid motion 

of the flow past through nozzle can be presented in the form of quasi one dimensional 

compressible flow. This governing equation is known as a Compressible Euler equation and 

consist of three non linear differential equations which coupling each to other. There are various 

method had been developed for solving the compressible Euler equation. This equation allows to 

capture a discontinuity flow phenomena due to a shock wave in their solution if such flow 

phenomena appear in the flow field. There are various method had been developed for solving the 

compressible Euler equation such as MacCormack scheme , Steger Warming Scheme, Harten 
Yee TVD scheme. Such numerical scheme is developed based on finite difference approach. 

Here the numerical approach for solving the compressible Euler Equations is developed based on 

a Finite Volume method. The analysis carried out over two nozzle models. The first nozzle model 

is the nozzle provided by Anderson while the second nozzle model is defined according to 

Blazek. In view of analytical approach there are no any problems for what ever values of 
boundary condition provided. Their solution in term of Mach number, pressure, density or 

velocity distribution along the nozzle can be obtained. However in the case of solving problem 

use of numerical approach, there are some constraints. In the case of Blazek nozzle, the presence 

of the normal shock can be captured if the ratio between the exit pressure P, to Pb has to be 

greater than 0.5. While for the Anderson nozzle nozzle, such ratio quantity can only be provided 

for no more than 0.97. If the - > 0.97 , the numerical scheme diverge and no solution can be L; I 
obtained. However if the length of the Anderson nozzle is reduced, so the computation starting at 

station x = 0.75 instead of x=O, the numerical scheme able to produce their solution up the 
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pressure ratio [ reach a value of 0 . 7 1  Below that value of pressure ration the numerical 

scheme fail. However for the case of fixed value of pressure ratio applied to this nozzle with 

different defined inlet station, this numerical scheme give the same result. In other word the 

starting point of the inlet does not give influence to the solution. 

2. Governing Equation Plow Past Through Nozzle. 

The derivation of the principal equations of fluid dynamics is based on the fact that the dynamical 

behavior of a fluid is determined by the following conservation laws, namely: (1). the 

conservation of mass, (2). the conservation of momentum, and (3). the conservation of energy. 

In transforming from those three conservation statements into a mathematical model can be 

done in two manners, one can express them based on integral approach or differential approach. 

However in expressing the conservative law into mathematical model, may one introduces some 

of assumptions which can be imposed due physical flow consideration of the flow problems in 

hand. The flow passes through a streamline body at relative angle of attack can approximated as 

the flow problem with no viscous effects. The same situation can be applied as well for the case 

of the passes through convergent divergent nozzle. Under condition of slowly varying cross 

section along the main nozzle axis, the air viscosity can be ignored. The governing equation of 

fluid flow with out viscous effect is known as Euler equation. For the case of flow passes 

through a convergent divergent nozzle, the Euler equations which can be derived from the 

conservation of law are written in term of the conservative dependent can be given as: 

Continuity equation, 



Momentum equation, 

a a as 
--(pus) + z [ ( p ~ 2  +PIS] - p - =  0 
a t  dx 

Energy equation, 

a t  

Where S is the cross-sectional area assumed independent of time, i.e. , 

S = S(x) and the total internal energy e, can be defined as: 

1 
q = e + - u 2  

2 

Equations (2.1) through (2.3) are expressed in a flux vector and conservation form which in 

vector notation and compact form as : 

Where 

The vector of conserved variable 4 Q = [&I 

Source term : H = p 
ds [:I 

Above equation represents a system equation which each equation are coupling to other. 

For arbitrary nozzle geometry may the analytical solution for solving such system equations can 

not be done and so a numerical approach may be required. 
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3. Cell-centred scheme 

If the control volumes are identical with the grid cells and if the flow variables are located at the 

centroids of the grid cells as indicated in Fig. 3.2, that approach called as Cell-centered scheme . 

When evaluate the discretised flow equations (3.1 l),  must supply the convective fluxes at the 

faces of a cell (6). They can be approximated in one of the three following ways: 

1: By the average of fluxes computed fiom values at the centroids of the grid cells to the left and 

to the right of the cell face, but using the same face vector (generally applied only to the 

convective fluxes); 

2: By using an average of variables associated with the centroids of the grid cells to the left and to 

the right of the cell face; 

3: by computing the fluxes fiom flow quantities interpolated separately to the left and to the right 

side of the cell face (employed only for the convective fluxes). 

FICC td 'c<-ntr~~l \'<rlumv 

Figure (3.1) Control volume of a cell-centred scheme (in one dimension) 

Thus, taking the cell face n ~ + ~  ,Fig. 3.1 as an example, the first approach - average of fluxes - can 

be approximated as: 

Where 

The second possible approach - average of variables - can be formulated as follows 



The third methodology starts with an interpolation of flow quantities (being mostly 

velocity components, pressure, density and total enthalpy) separately to both sides of the cell 

face. The interpolated quantities - termed the left and the right state. 

For the current stage of this study, a computer code of cell-centered scheme finite volume method 

for convergent-divergent or CD nozzle has been done to get more familiarization on the computer 

code development of Euler solver ( Finite Volume method). 

3.1. The algorithm of Cell Centered Scheme Applied For the Nozzle Flow Problems 

The cell centered scheme adopted here can be said as the result of combination between time 

integration Fourth Order Runge Kutta Scheme and spatial discretization based Finite Volume 

Centered scheme. Such combination gives the algorithm for solving the flow problem passed 

through convergent divergent nozzle can be summarized as shown in the Flow chart Figure 3.2. 
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Fig 3.2 Flow chart of cell centered scheme FVM computer code. 

Following such flow chart, computer code is written by use of standard computer programming 

language FORTRAN-77. The developed computer code designed to consist of main program and 

accompanied with several subroutine and sub functions in order to simplify process of computer 

code development. the code starts with setting the numerical computation and define the 

geometry of the nozzle. Figure 3.3 shows the sketch for the grid in the i-direction while Figure 

3.5 illiterates the geometry of the nozzle. The shape of nozzle defined according to shape of 

Nozzle from Blazek . 

Figure 3.3 : sketch for the grid in the,i-direction 

A,  

Q * I = m = = - = = = t t 4 = * : : a  
1 2  ib2 imax 

Figure (3.4) Grid and control volume for the 1-D Euler solver; points i = 1 and i = imax 

are dummy points 

Here along the nozzle divided into N number of segments. The control point Xi is located at the 

mid element. With the nozzle cross section area denoted by A, volume of the element i with 

respect to the nozzle cross section area is approximated by : 

Where : 
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Air properties in view of universal gas constant denoted as R, and the heat coefficient ratio as 

y. The flow condition at the nozzle are depended on the setting up of the flow condition at the 
entry station and at the exit flow condition. At the entry condition, the flow condition can be 

described to follow the flow setting condition at the reservoir. So the stagnation pressure Pol and 

stagnation temperature Tot are represent the known flow condition, while at the exit station, the 

known flow condition may be through the setting of the back pressure P2 . Using those three 

flow quantities ( Pol , Tol and Pb ) and accompanied by knowing air properties y and bas, one 
+ 

can define the initial condition along the nozzle. Here the conserved variable CV is defined : 

The required initial condition basically can be set up arbitrary. For a given the reservoir flow 

condition Pol, Tot, and the back pressure P2, the conserved variable of density p, temperature T 

and the total internal energy can be initialized as follow: 

To carry out step by step calculation in time, the time incremental AT, defined in accordance to: 

AT = I</S, 

Where 

Where c is the speed of sound , u is the local velocity .and Ai is the cross section area at station 

XI. 

In the loop of the Runge Kutta scheme involves determination of the artificial dissipation Ap , 
flux averaging Dij , and the total residual time step RHSi,j. These three quantities can be defined 

respectively as : 



The artificial dissipation Ap 

The flux averaging Dij defined as: 

Dr,1 = 8 2  * @ar+l,l - - E4 * CPr+5,1 - 3 * CPt,l  - C~.'- ls l  

Dt,= = EZ * CuE+1,2 - - €4 * c p r + n , ~  - 3 * C , , Z  - Cur-l,2 

Df,3= EZ + CL11.11,3 -Cb'i,3 - E4*Ca..tt2,3 - 3' C P ~ , ~ - ' P [ - L ~  

Where 

While the total residual time step as: 

Where 

3.2. Result and Discussion. 

The investigation on the capability of the Cell Centered Finite Volume Scheme applied to the two 

nozzle models. The first nozzle model is the nozzle with the nozzle geometry as given by Blazek 

while the second one is the Nozzle from Anderson . The Blazek nozzle is having a 

distribution of cross section area along the main nozzle axis A defined as: 

A(x) = 1 + (A, - 1) (1 + cos (=)I 
0.3 5 

f o r  O 5 x 5  0.35 

r(x-0.353 
~ ( x ) = l + i ( ~ , - l ) ( l - c o s (  &,, )) for 01-35 I X  I 1 (3.9b) 

202 



Prosiding Seminar Kebangsaan Aplikasi Sains dan Matematik 20 13 (SKASM2013) 

Batu Pahat, Johor, 29 - 30 Oktober 2013 

In above equation, the constant A, is set equal to 1.5 and A2 = 2.5. 

The air flow assumed behave as a perfect gas, with heat coefficient ratio y = 1.4 and the 

universal gas constant is equal R = 1716 ft Ibf J S ~ I ~ S ~ F !  The flow at the entry station is 

supersonic with the flow condition in term of Mach number, static pressure and temperature at 

that station are given as: 

The result for different value of back pressure Pb had been carried out. Different value of back 

pressure will give different position of the normal shock wave location will occurred. Figure (3.5) 

shows the result of distribution Mach number along the Nozzle for a given pressure back Pb = 0.9 

10' N/m2 0.7 lo5 ~ / m '  and 0.5 10' N/m2. The problem with this nozzle is the Cell Centered 

Finite Volume does not able to produce the result if the back pressure is set below than 0.5 lo5 

N/m2. Decreasing value of back pressure meant that solution would produce the location shock 

will goes to near the exit station. This unsuccessful solution may due to the nozzle geometry can 

be able the flow over the whole flow domain in isentropic flow condition. 

~ i ~ u r e l 3 . 5  Mach Number Distribution over ~ l a z e k ~ o z z l e  For Different back pressure ratio. 



The second nozzle geometry according to Anderson is given by the distribution of the cross 

section area A according to : 

Here the nozzle has a 3 units length with the geometry from side view as depicted in Figure 

(3.61, 

I : : i : ;  / ; ; : I  
0 0.3 0.6 0.9 1.2 1.6 0.8 2.1 2 4  2.7 3.0 

Figure. 3.6: The Anderson Nozzle Geometry. 

The entrance condition had been applied as it had been applied to the Blazek 

nozzle. If the Blazek nozzle the flow analysis can be done up the back pressure 

reach the value of 0.5 lo5 ~ l m ~ .  However for this case, the back pressure 
cannot be set up less than 0.97 lo5 N/mZ. Below this value, the cell centered 

scheme fail to produce their results. Figure (3.7) shows the distribution of Mach 

number along the Nozzle for the back pressure at 0.99 lo5 ~ l m ' ,  0.98 lo5 ~ / m ~ ,  

and 0.97 lo5 N/m2. 
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Figure 3.7 Mach Number Distribution over Anderson Nozzle For Different back Pressure ratio. 

The previous calculation is carried out over the whole length of the nozzle starting from x = 0 to x 

= 3. For a given entrance flow condition as used in Blazek nozzle, it had been found that the Cell 

Centered Scheme is only be able solve this nozzle problem if the back pressure is greater than 

0.97 lo5 ~ / m ~ .  

However it the nozzle is shortened so the nozzle problem under investigated only for the flow 

domain in between x = 0.75 to x = 3, with the flow condition at entry station x = 0.75 and the 

Mach number M = 0.25, the flow analysis can be done up to back pressure PI, is equal to 0.73 

lo5. The result for different back pressure greater than to 0.73 10' in term of Mach number 

distribution along the nozzle as shown in the Figure 3.8. 



Figure 3.8 Mach Number Distribution if the Back pressure Pb kept a fixed value at 0.94 lo5 

while the length of the Anderson nozzle is varied. 

Figure 3.8 shows the result if the Back pressure P b  kept a fixed value at 0.94 lo5 while the 

length of the Anderson nozzle is varied. The investigation found that the cell centered work well 

if the starting point for defining the entry station should start fi-om x = 0.2. Starting point for the 

entry station less than that position will make the cell centered scheme fail to produce their 

solution. 
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Figure 3.8 Effect on the length of the nozzle. 

Conclusion 

Considering the result as presented in the discussion and result, it can be concluded that one can 

not choose a nozzle geometry and their boundary condition arbitrary. In view of analytical 

approach one. will able to carry out a convergent divergent nozzle flow analysis for any 

prescribed boundary condition and get their result. Such approach may cannot be done if one try 

to solve that problem by use of numerical approach such as use of Cell Centered Finite Volume 

Scheme as it had been done in the present work. 
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