
C
E

R
N

-T
H

E
S

IS
-2

0
1

5
-1

0
5

0
4

/
0

9
/

2
0

1
5

École Polytechnique Fédérale de Lausanne

Master Thesis

Automatic Metadata Extraction
The High Energy Physics Use Case

Author:

Joseph Boyd

Supervisors:

Dr. Martin Rajman

Dr. Gilles Louppe

A thesis submitted in fulfilment of the requirements

for the degree of Master of Computer Science

July 2015

Declaration of Authorship

I, Joseph Boyd, declare that this thesis titled, ‘Automatic Metadata Extraction

The High Energy Physics Use Case’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a master’s degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

EPFL

Abstract

Master of Computer Science

Automatic Metadata Extraction

The High Energy Physics Use Case

by Joseph Boyd

Automatic metadata extraction (AME) of scientific papers has been described as one

of the hardest problems in document engineering. Heterogeneous content, varying style,

and unpredictable placement of article components render the problem inherently in-

deterministic. Conditional random fields (CRF), a machine learning technique, can be

used to classify document metadata amidst this uncertainty, annotating document con-

tents with semantic labels. High energy physics (HEP) papers, such as those written at

CERN, have unique content and structural characteristics, with scientific collaborations

of thousands of authors altering article layouts dramatically. The distinctive qualities of

these papers necessitate the creation of specialised datasets and model features. In this

work we build an unprecedented training set of HEP papers and propose and evaluate a

set of innovative features for CRF models. We build upon state-of-the-art AME software,

GROBID, a tool coordinating a hierarchy of CRF models in a full document cascade.

Through our extensions and our own robust experimentation pipeline, we cross-validate

66 experiment variations to find new improvements in feature engineering. We succeed

in enhancing the two most crucial CRF models within the cascade, reducing error by up

to 25% for key classifications.

Acknowledgements

I would firstly like to thank my two supervisors, Dr. Gilles Louppe at CERN and Dr.

Martin Rajman at EPFL, for their advice and guidance. I would also like to thank my

colleagues and friends at CERN for their inspiration and support. A further thanks to

Gilles for proofreading this thesis.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 2
1.3 Main Results . 2
1.4 Outline . 2

2 Supervised Sequence Learning 4
2.1 Hidden Markov Models . 4
2.2 Viterbi Algorithm . 6
2.3 Forward-backward Algorithm . 7
2.4 Maximum Entropy Classifiers . 8
2.5 L-BFGS . 9
2.6 Regularisation . 10
2.7 Conditional Random Fields . 10
2.8 Feature Functions . 13
2.9 Wapiti . 13

2.9.1 Feature Templates . 14
2.9.2 Extracted Features . 14
2.9.3 Models . 15
2.9.4 Training . 15

3 Automatic Metadata Extraction 17
3.1 Metadata Extraction . 17
3.2 Solution Methods . 18
3.3 GROBID . 19

3.3.1 Text Encoding Initiative . 20
3.3.2 Training . 22

v

Contents vi

3.3.3 Evaluation . 22
3.3.4 Prediction . 23
3.3.5 Other Functionality . 23

4 Data, Methods, and Implementation 25
4.1 Assessments . 25
4.2 Data Acquisition . 26

4.2.1 CORA dataset . 28
4.2.2 HEP dataset . 28

4.3 Methods . 29
4.3.1 Baseline . 29
4.3.2 Block Size . 29
4.3.3 Character Classes . 30
4.3.4 Dictionaries . 32
4.3.5 Levenshtein Distance . 33
4.3.6 Regularisation . 34
4.3.7 Token Extensions . 34

4.4 Implementation . 34
4.4.1 Extensions to GROBID . 34
4.4.2 Experiment Pipeline . 35

5 Results and Analysis 37
5.1 Evaluation Method . 37

5.1.1 Evaluation Metrics . 37
5.1.2 Evaluation in GROBID . 39

5.2 Experiment Setup . 39
5.3 Comparison with refextract . 41
5.4 Results . 43

5.4.1 Baseline . 43
5.4.2 Block Size . 45
5.4.3 Character Classes . 46
5.4.4 Dictionaries . 47
5.4.5 Levenshtein Distance . 48
5.4.6 Regularisation . 49
5.4.7 Token Extensions . 50

5.5 Key Results . 51
5.5.1 Header Model . 51
5.5.2 Segmentation Model . 52

6 Conclusions 55
6.1 Summary . 55
6.2 Future Work . 56

A Algorithms 58

B Figures 59

C Statistical Tests 62
C.1 Stop Word Frequency . 62

Contents vii

Bibliography 64

List of Figures

2.1 An illustration of the graphical structure of a Hidden Markov Model
(HMM). The arrows indicate the dependencies running from dependee
to dependent. 5

2.2 Excerpt of capitalisation features templates or macros. 14
2.3 Features for a single date instance of three tokens: ‘4 August 1989’. 15
2.4 Expanded feature functions deriving from capitalisation macros. 15
2.5 Output from training date model . 16

3.1 An illustration of the way a header section might be segmented and clas-
sified. The classes modelled are colour-coded (title in yellow, authors in
green, and so on). Article excerpt from (McCallum et al. [2000a]). 19

3.2 Sample tagged citation for GROBID training input. 22
3.3 An illustration of the interactions between GROBID and Wapiti for the

two main functions of training and tagging. The dashed arrows indicate
training operations; the solid arrows, tagging. 24

3.4 The models of GROBID are organised into a cascade, where each part of
a document is classified in increasingly greater detail. 24

4.1 Figure (A) shows a collaboration field in a header section. Figure (B)
shows discontinuous front matter that sits on the first page, but apart from
the main header section and within the introductory section. Figures (C)
and (D) give the authors list and affiliations for a large HEP collaboration;
the author list begins on page 8 and continues to page 33. Figure (B) from
(Maguire et al. [2012]), other excerpts from (Aaij et al. [2015]). 27

4.2 Character class breakdown of sample lines from different sections of a
CERN LHCb collaboration paper. The paper in question is the current
world record holder for number of authors, and lists over 5000 authors and
their affiliations. The radar plots give a different impression for each of
the samples. 31

4.3 Misclassification of <header> to <body> proportion and count (given
in parentheses) for five papers in an evaluation fold, an output of the
confusion matrix utility. 35

4.4 Example of a successfully classified collaboration. The choice of XML tags
is ours and was selected to be consistent with the TEI standard. 35

4.5 An illustration of the experimentation pipeline. 36

5.1 The different cross-validation configurations used in our experiments. Fig-
ures (A) and (B) show cross-validation on HEP and CORA sets indepen-
dently. Figures (C) and (D) show cross-validation on the HEP and CORA
datasets respectively, appending the other at training time. 40

ix

List of Figures x

5.2 Confusion matrix for segmentation model with baseline features, trained
on the pure HEP dataset. Counts are given, as well as a heatmap to
indicate the most frequent classifications. 45

5.3 Distribution of model parameters with l2 regularisation. 49
5.4 Comparison of baseline, dictionary, and stop word features for overall

header model performance. 51
5.5 Comparison of baseline, Levenshtein distance and character class features

for overall segmentation model performance. 52
5.6 Comparison of baseline, Levenshtein distance and character class features

for the header extraction. 53
5.7 Comparison of baseline, Levenshtein distance and character class features

for the reference extraction. 53
5.8 Confusion matrix for segmentation model with character class features,

trained on the pure HEP dataset. Counts are given, as well as a heatmap
to indicate the most frequent classifications. 54

B.1 The header section of a scientific paper. Excerpt from Peng and McCallum
[2004] . 59

B.2 The header section of a HEP paper. Excerpt from Zubair [2015] 59
B.3 Comparison of different character class feature discretisation strategies. . . 60
B.4 Comparison of different levenshtein distance feature thresholding strategies. 60
B.5 Comparison of different data configurations subsampling the CORA dataset. 61
B.6 Confusion matrix for header model, baseline features, trained on HEP data.. 61

C.1 Box plots of stop word frequency according to header section. 62
C.2 ANOVA showed the average stop word frequency of header sections varies

significantly. 63
C.3 Pairwise t-tests showed significance for each comparison. 63

List of Tables

3.1 A summary of the models coordinated by GROBID. We have here ex-
cluded the Patent, Entities, and E-book models as these are experimental
models not currently used by GROBID. 21

4.1 Number of training instances for each model from each dataset. 28
4.2 Character classes used as features, along with the regular expressions used

to count them. 32

5.1 A summary of our experiments, organised by category, models trained for,
and data configurations used. 41

5.2 Token-level evaluation results for reference segmentation. 42
5.3 Token-level evaluation results of citation extraction for GROBID and

refextract. 43
5.4 Mean and standard deviation for baseline data configurations. 44
5.5 Mean and standard deviation for subsampling CORA dataset. 44
5.6 Mean and standard deviation for block size variations. 46
5.7 Mean and standard deviation for character class discretisation strategies. . 47
5.8 Mean and standard deviation for dictionary features. 48
5.9 Mean and standard deviation for dictionary features combined with stop

word features. 48
5.10 Mean and standard deviation for Levenshtein distance thresholding vari-

ations. 49
5.11 Mean and standard deviation for tuning the variance of the l2 variance

parameter. 50
5.12 Mean and standard deviation for token extension variations. 50

xi

Chapter 1

Introduction

1.1 Motivation

CERN (Centre Européen de la Recherche Nucléaire) is the foremost European particle

physics research laboratory, located on the border of France and Switzerland to the west

of Geneva. The organisation, employing as many as 15,000 staff, fellows, and students

at a time, is the global leader in high energy physics research, centered around massive

particle collision experiments in the Franco-Swiss subterrain. INSPIRE-HEP (inspire-

hep.net) is an online open access digital library for high energy physics (HEP) papers

built by an international collaboration of particle physics laboratories. INSPIRE-HEP

derives from the older SPIRES project (Gentil-Beccot et al. [2009]), and mounted upon

the Invenio digital library software package. The digital library comprises of over one

million HEP articles, theses and books, each painstakingly curated by professional li-

brarians. As in most domains, such manual work may be enhanced with the assistance

of automated processes, such as software systems based on state-of-the-art computer

science techniques. Of particular interest is the annotation of scientific articles, that

is, extracting a document’s metadata from its content such that it may be represented

as an identifiable entity of the digital library. We refer to this as the problem of auto-

matic metadata extraction (AME). Though such technology is mainstream, at present

INSPIRE-HEP has only limited solutions to this problem, relying heavily on tedious cu-

ration to complete the work. AME (Chapter 3) has been described as one of the hardest

problems in document engineering (Souza et al. [2014]), and a range of solution methods

exist. This thesis presents a state-of-the-art open-source software for metadata extrac-

tion, GROBID, a system based on machine learning approaches, and shows how HEP

papers have particular characteristics that require specialised extensions and feature en-

gineering to improve the accuracy of extraction. Of particular note is the way a HEP

paper may contain collaborations of thousands of authors (refer to Chapter 4). This

1

Chapter 1. Introduction 2

alters the document layout drastically, creating structures unseen by baseline models.

The requirements are therefore twofold:

1. to train models on a custom HEP training set, and;

2. to engineer specialised features conducive to better generalisation on HEP papers.

1.2 Aims

Above all, we hypothesise the HEP use case: a qualitative difference in both the content

and layout of a HEP article compared with other scientific articles, moreover implying

the value of specialised model training and feature engineering. These differences are in

fact directly observable in any representative HEP corpus, as we see in Chapter 4. The

availability of a baseline dataset, in addition to our own custom HEP dataset, allow us

to further experiment with hybrid datasets. In short, our aims are:

1. to demonstrate the qualitative difference between HEP and general papers;

2. to propose improvements to model features, with suitable justifications;

3. to run experiments to confirm or reject our improvements, and;

4. to draw conclusions about what characterises good feature engineering.

1.3 Main Results

The results of our 66 cross-validated experiments are presented in Chapter 5. These

results confirm our initial hypothesis about HEP papers, as well as many of our intu-

itions. Concretely, we found improvements for each of the two GROBID models that we

addressed, namely the header model for processing article front matter, as well as the

segmentation model, the most important model in the cascade. In each case we found

two feature variations to make substantial improvements over the baseline evaluations,

making error reductions as great as 20%− 25% for the most important classes.

1.4 Outline

In Chapter 2 we provide a discussion of the relevant machine learning techniques, along

with their solution algorithms, up to and including the state-of-the-art conditional ran-

dom fields (CRF). In Chapter 3 we present the problem of automatic metadata extrac-

tion, and the leading open-source software for the task, GROBID. Then, in Chapter 4,

Chapter 1. Introduction 3

we showcase our propositions for improvements and extensions to the baseline models.

In Chapter 5 we present the results of our work and finally in Chapter 6 we conceive of

ways our research may be continued and extended.

Chapter 2

Supervised Sequence Learning

This chapter presents the state-of-the-art technique for metadata extraction, conditional

random fields (CRF). For completeness, it includes a background history of related ma-

chine learning techniques and their associated optimisation algorithms. It begins with a

presentation of hidden Markov models (HMM) and their inference algorithms. Following

this, multinomial logistic regression is presented. Combining ideas from these former

topics produces Maximum Entropy Markov Models (MEMM) and CRFs. Notably, the

discussion pinpoints the part of the mathematical model relevant to feature engineering.

The chapter concludes with a description of Wapiti, a general-purpose software engine

for training and tagging with CRF models.

2.1 Hidden Markov Models

Hidden Markov models (HMMs) (Rabiner [1989]) are a staple of natural language pro-

cessing (NLP) and other engineering fields. A HMM models a probability distribution

over an unknown, hidden sequence of states of length T , y = (y1, y2, ..., yT), whose ele-

ments take on values in a finite set of states, S, and follow a Markov process. For each

element in this hidden sequence, there is a corresponding observation element, forming

a sequence of observations, x = (x1, x2, ..., xT), similarly taking values in a finite set, O.

The graphical structure of a HMM (Figure 2.1) shows the dependencies between consecu-

tive hidden states (these are modelled with transition probabilities), and states and their

observations (modelled with emission probabilities). The first dependency is referred to

as the Markov condition, which postulates the dependency of each hidden state, yt, on

its k precursors in the hidden sequence, namely, yt−k:t−1
1. In the discussion that fol-

lows, we assume the Markov condition to be of first degree, that is, k = 1. Incidentally,

1In the following we use the notation xa:b to refer to the elements of vector x from index a through
b inclusive.

5

Chapter 2. Supervised Sequence Learning 6

Figure 2.1: An illustration of the graphical structure of a Hidden Markov Model
(HMM). The arrows indicate the dependencies running from dependee to dependent.

higher-order HMMs may always be reconstructed to this simplest form. For example, for

k = 2 it suffices to define S′ = S × S and O′ = O×O, that is, compound transition and

emission probabilities. Thus, we have a first-order HMM with variables Y ′
t = (Yt−1, Yt).

The second dependency assumption may be referred to as limited lexical conditioning,

referring to the dependency of an observation only on its hidden state. Properties of the

model may then be deduced through statistical inference, for example, a prediction of

the most likely hidden sequence can be computed with the Viterbi algorithm (Section

2.2).

HMMs have been shown to be successful in statistical modelling problems. In Part

of Speech (PoS) tagging, a classic NLP problem for disambiguating natural language

sentences, the parts of speech (nouns, verbs, and so on) of a word sequence (sentence)

are modelled as hidden states, and the words themselves are the observations. The PoS

sequence may be modelled and predicted for as a HMM (Charniak et al. [1993]). Even

a simple HMM can achieve an accuracy of well over 90%. The problem of metadata

extraction is clearly similar in form to PoS tagging, as we further show in Chapter

3.

We may build a HMM by first forming the joint probability distribution of the hidden

state sequence and the observation sequence,

p(x,y) = p(x|y)p(y). (2.1)

Applying the chain rule and the two dependency assumptions, we acquire,

p(x|y) = p(x1|y)p(x2|x1,y)...p(xT |x1:T−1y)

= p(x1|y1)p(x2|y2)...p(xT |yT),
(2.2)

Chapter 2. Supervised Sequence Learning 7

and,

p(y) = p(y1)p(y2|y1)...p(yT |y1:T−1)

= p(y1)p(y2|y1)...p(yT |yT−1),
(2.3)

where p(y1|y0) = p(y1). Combining 2.2 and 2.3, we may rewrite the factorisation of the

HMM as,

p(x,y) =
T
∏

t=1

p(yt|yt−1)p(xt|yt). (2.4)

The probabilities p(yt|yt−1) are known as transition probabilities, and p(xt|yt) as emis-

sion probabilities. These probabilities constitute the model parameters, θ = (A,B, I),

where A is the |S|×|S| matrix of probabilities of transitioning from one state to another,

B is the |S| × |O| matrix of probabilities of emitting an observation given an underlying

hidden state, and I is the vector of probabilities of initial states. The model parameters

must be precomputed2. Now, given a sequence of observations, x, we may predict the

hidden state sequence, y∗, by maximising the conditional distribution, p(y|x). That

is,

y∗ = argmax
y

{

T
∏

t=1

p(yt|yt−1)p(xt|yt)
}

. (2.5)

The hidden state sequence prediction is chosen to be the one maximising the likelihood

over all possible hidden sequences. This seemingly intractable problem may be solved in

polynomial time using dynamic programming (see Section 2.2).

2.2 Viterbi Algorithm

The Viterbi algorithm (Viterbi [1967]) is used to efficiently compute the most likely

sequence, y, given an observation sequence, x. The algorithm can do this efficiently

by working along the sequence from state to state, and choosing the transitions that

maximise the likelihood of the sequence fragment. To show this we define, vt(s) =

maxy1:t−1
p(y1:t−1, yt = s|x), that is, the most likely sequence from the first t− 1 states,

with the choice of state s at time t. Thus, we may write,

2For example, the model parameters can be estimated through application of the Baum-Welch algo-
rithm (Baum and Petrie [1966]) on an unsupervised training set.

Chapter 2. Supervised Sequence Learning 8

vt(s) = max
y1:t−1

p(y1:t−1|x)p(yt−1, yt = s)p(xt|yt = s)

= max
y1:t−1

vt−1(yt−1)p(yt−1, yt = s)p(xt|yt = s),
(2.6)

and we may see the recursion. Once all states have been computed at time t, the

maximum may be chosen and the algorithm proceeds to time t+ 1. Pseudocode for the

Viterbi algorithm is given in Algorithm 1 in Appendix A. The algorithm must test all

|S| transitions from the previous state to each of the |S| current states, and it does that

for each of the |T | steps in the sequence. Hence, the complexity of the algorithm is a

workable O(T |S|2).

2.3 Forward-backward Algorithm

Another key inference algorithm to sequence learning is the forward-backward algorithm

(Binder et al. [1997]), so called for its computation of variables in both directions along

the sequence. It is another example of a dynamic programming algorithm and is used to

compute the so-called forward-backward variables, which are the conditional probabili-

ties of the individual hidden states at each time step (that is, not the whole sequence),

given the observation sequence and model parameters, namely, p(yt = s|x, θ). These

conditional probabilities have many useful applications, for example in the Baum-Welch

algorithm for estimating model parameters, but also in the training of conditional ran-

dom fields, as we discuss in Section 2.7. We may write the forward-backward variables

as,

γt(s) = p(yt = s|x, θ) = αt(s)βt(s)
∑

s′∈S αt(s′)βt(s′)
, (2.7)

where the forward variables, αt(s) = p(xt+1:n|yt = s,x1:t) = p(xt+1:n|yt = s), and the

backward variables, βt(s) = p(yt = s,x1:t). To derive the forward-backward algorithm

we write, by the law of total probability,

αt(s) =
∑

yt−1

p(yt−1, yt = s,x1:t)

=
∑

yt−1

p(yt = s|yt−1)p(xt|yt)p(yt−1,x1:t−1)

=
∑

yt−1

A(yt−1, s)B(xt, yt)αt−1(yt−1)).

(2.8)

Chapter 2. Supervised Sequence Learning 9

Thus, we may see the recursion, as well as the way the forward variables will be computed,

traversing the sequence in the forward direction with each forward variable of a given

time a weighted product of those from the previous time. Likewise, for the backward

variables, we may write,

βt(s) =
∑

yt+1

p(yt = s, yt+1,xt+1:n)

=
∑

yt+1

p(xt+2:n|yt+1, xt+1)p(xt+1, yt+1|yt = s)

=
∑

yt+1

βt+1(yt+1)A(s, yt+1)B(xt+1, yt+1)).

(2.9)

From Equations 2.8 and 2.9 comes Algorithm 2 (Appendix A), which combines the results

to compute the forward-backward variables, γt(s). The complexity of the algorithm

comes from noting that at each of the T steps in the sequence (in either direction), we

compute |S| variables, involving a summation of |S| products. Hence, like the Viterbi

algorithm, the complexity of the forward-backward algorithm is O(T |S|2).

2.4 Maximum Entropy Classifiers

Maximum entropy classifiers, also known as multinomial logistic regression, are a family

of classification techniques. A prediction consists of a discrete (categorical), scalar class,

rather than a class sequence as it is for HMMs. To build a model, we require a training set

consisting of a N×D matrix, X, of N training samples of dimension D3, as well as the N

corresponding classifications in the form of a vector, y. A convex cost function known as

a maximum log-likelihood function is constructed and subsequently optimised over the

choice of model parameters, denoted β. Thus, building a model is equivalent to solving

a convex optimisation problem. A classification (prediction), y∗, for an unseen data

sample, x, is made by employing these optimal model parameters in a linear function.

The result is then passed through a non-linear logistic function, denoted σ = 1
1+e−x , to

obtain a probability. Formally,

y∗ = σ(βTx). (2.10)

The simplest form of maximum entropy classifier is binary logistic regression, where the

number of classes to predict from is two, denoted C1 and C2. In this case, p(yn =

C1|xn;β) = σ(βTxn), and p(yn = C2|xn;β) = 1 − σ(βTxn), where C1 and C2 are

3The dimensions of a model is synonymous with the model fields or features.

Chapter 2. Supervised Sequence Learning 10

encoded as 0 and 1 respectively. Notice the probabilities sum to 1. Now, the log-

likelihood can be expressed as,

log p(y|X,β) = log
N
∏

n=1

p(yn,xn) = log

(

∏

n:yn=C1

σ(βTxn)
∏

n:yn=C2

1− σ(βTxn)

)

= log
N
∏

n=1

σ(βTxn)
yi(1− σ(βTxn))

1−yi

(2.11)

where yi ∈ {0, 1} and i.i.d. We may then generalise to,

log p(y|X,β) = log

N
∏

n=1

C
∏

c=1

µync
nc , (2.12)

where ync = ✶{yn=c} and yn is a bit vector indicating the class of the nth sample. In this

general, multinomial case, the probabilities are written, µnc = exp(βT
c xn)∑C

c′=1
exp(βT

c′
xn)

, which

are normalised to ensure they sum to 1, and βc is part of a set of C parameter vectors

notated as D × C matrix, B. From this we obtain log-likelihood function,

L(B) = log p(y|X,B) =

N
∑

n=1

(

C
∑

c=1

yncβ
T
c x

(n)

)

− log

(

C
∑

c′=1

exp(βT
c′x

(n))

)

. (2.13)

Now we require an optimisation algorithm to solve for B.

2.5 L-BFGS

Convex optimisation problems may be solved numerically using variants of the method

of greatest descent4. These methods find the optimal model parameters by iteratively

approaching a global minimum by taking steps opposite the gradient along the cost func-

tion hypersurface. The classic first-order gradient descent algorithm defines its iteration

step to be,

βk+1 = βk − α∇L(βk), (2.14)

4Or, equivalently, greatest ascent for maximising a concave function.

Chapter 2. Supervised Sequence Learning 11

where β is the vector of model parameters, α is the step size, and L is the cost function.

Newton’s method (also known as Iterated Reweighted Least Squares (IRLS)) takes a step

in the direction minimising a second-order approximation of the cost function,

βk+1 = βk − αk[HkL(βk)]−1∇L(βk), (2.15)

where H is the (D ×D) Hessian matrix of partial second derivatives. For smaller prob-

lems, these algorithms are adequate, however for models with millions of features, such as

those that may be encountered in metadata extraction, smarter approaches are required.

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm saves on the expensive com-

putation of the Hessian by building up an approximation iteratively. The limited memory

BFGS (L-BFGS) algorithm makes further savings on the Hessian’s storage, and has come

to be the standard learning algorithm for such problems. The L-BFGS algorithm is the

tool of choice for many problems (Murphy [2012]) and is the algorithm we use in our

analysis. The complexity of each iteration is linear in the dimensionality of the model as

well as the number of training samples.

2.6 Regularisation

To avoid overfitting, we add a penalty to the cost function. This imposes a cost pro-

portional to the size of the parameters for each dimension. This is equivalent to adding

constraints to the optimisation problem. The two most common regularisation types are

known as l1 ad l2 regularisation. The former imposes a Laplace prior distribution on

the parameters, and the latter a Gaussian5. Large parameters are therefore discouraged

and this helps prevent the creation of complex models during training that do not fit

test data well. According to a probabilistic interpretation, this makes large parameters

less likely and moderates their choices, and this is expressed in the cost function as the

penalty. In our work, l2 is the only type of regularisation compatible with gradient-based

L-BFGS (Section 2.5), as an l1 penalty is not differentiable.

2.7 Conditional Random Fields

Conditional Random Fields (CRFs) are a machine learning technique for making struc-

tured predictions. They are an improvement to the similar, Maximum Entropy Markov

models (MEMM) (McCallum et al. [2000a]), which combine aspects of maximum entropy

5A prior distribution in the Bayesian sense is the initial distribution of a variable taken independently.

In l2, the penalty is 1

2
λβTβ = log e

λ

2
βT β = logN (β|0, 1/λ) = log p(β).

Chapter 2. Supervised Sequence Learning 12

classifiers and hidden Markov models (Lafferty et al. [2001]). They are a member of a

class of structured sequence models called random fields, which are part of a broader

family known as graphical models, including within it Bayesian networks.

Classification over relational data can benefit greatly from rich features, that is, describ-

ing observed attributes of an observation beyond merely its identity (as with HMMs).

Take for example the context of text processing, where we might consider describing a

string token (observation) by non-lexical features such as by its capitalisation or punctu-

ation. Furthermore, we may wish to model context-aware features that contrast a string

token with its surroundings. However, the complexity of the interdependencies of such

features will likely make their explicit modelling infeasible. With CRFs, we circumvent

this problem by instead modelling the conditional distribution, p(y|x), of the underlying

graph structure, giving us free choice over features and, in so doing, implicitly defining a

distribution over x without having to model this distribution directly (Sutton and Mc-

Callum [2006]). Such a conditional model is called a discriminative model, in contrast

to a generative model, whereby the joint probability distribution is modelled explicitly.

If we wish to model the interdependencies in a generative model, we must either extend

the model which may both be difficult and entail intractable solution algorithms, or we

must simplify the model and thereby compromise model performance. Notice that mod-

elling the conditional distribution is sufficient for classification, where the observation

sequence is known. This freedom for rich feature engineering is what makes CRFs the

current state-of-the-art in metadata extraction, where arbitrarily defined features often

make for good indicators. One may be tempted to use a logistic regression and classify

each part of a sequence separately, but this would fail to take into account the contextual

relations between the entities. For example, in the metadata extraction of a bibliographic

reference, it is more likely for a publication title to follow an author list, and for a journal

name to follow a publication title. This is what we mean by structured sequence learning,

where the data to predict exhibits interdependencies and are correlated.

When the graph structure of a CRF model is the same as for a HMM (Figure 2.1), we

have what is called a linear-chain CRF. HMMs and linear-chain CRFs thereby form what

is called a generative-discriminative pair. In the general case, where the graph structure

is more complex, we have what is called skip-chain CRFs. In this case the problem

becomes far more complex, and we will not discuss these models here. A HMM may

alternatively be expressed by the joint probability,

p(x,y) = exp

{

∑

i,j∈S

λijFi,j(yt, yt−1, xt) +
∑

i∈S

∑

o∈O

µioFi,o(yt, yt−1, xt)

}

, (2.16)

Chapter 2. Supervised Sequence Learning 13

where the parameters λij are the transition probabilities and µij are the emission proba-

bilities. Fi,j(yt, yt−1, xt) =
∑T

t ✶{yt=i}✶{yt−1=j} is a feature function used to activate the

transition probabilities, and Fi,o(yt, yt−1, xt) =
∑T

t ✶{yt=i}✶{xi=o} for the emissions. The

indicator functions activate the probabilities in accordance with the identity of the states

and observations. Regardless, this formulation is equivalent to Equation 2.4. With some

notational abuse we can define the more compact expression,

p(x,y) = exp

{

∑

k

λkFk(yt, yt−1, xt)

}

, (2.17)

where Fk is a general feature function and λk a general feature weight. Now we may define

the discriminative counterpart to this joint distribution, the linear-chain CRF,

p(y|x) = p(x,y)
∑

y′ p(x,y
′)

=
1

Z(x)
exp

{

∑

k

λkFk(yt, yt−1, xt)

}

, (2.18)

where Z(x) =
∑

y′ exp
{

∑

k λijFk(y
′
t, y

′
t−1, xt)

}

is known as the partition function, en-

suring probabilities sum to 1. Whereas HMMs model only the occurrence of a word,

with conditional random fields we may choose Fk to define arbitrarily complex features,

describing rich information about a word, its attributes, and its context. Finally, we may

define a cost function in the following way,

l(θ) =
N
∑

n=1

T
∑

t=1

K
∑

k=1

λkFk(yt, yt−1, xt)−
N
∑

n=1

logZ(x(n))−
K
∑

k=1

λ2
k

2σ2
, (2.19)

where θ = {λk}Kk=1. This is called penalised maximum log likelihood. The penalty

term,
∑K

k=1
λ2
k

2σ2 , imposes an l2 regularisation on the solution parameters, θ. However,

according to (McCallum et al. [2000a]), varying the tuning parameter, σ2 (the variance),

even by orders of magnitude has little effect on the outcome, a claim we corroborate

in Chapter 5. This cost function represents a strictly convex function, solvable using

numerical methods such as L-BFGS (see Section 2.5). Forward-backward processing

(Section 2.3) is performed at each iteration to compute the partition function, as well

as the conditional probabilities resulting from deriving the partial derivatives required

for gradient descent. Hence, the complexity of training is O(INT |S|2), where I is the

number of iterations required and N is the number of training samples. Finally, the

Viterbi algorithm (Section 2.2) is used to make a prediction with the trained model, that

is, the best state sequence is found given the optimal parameter set found in training. A

detailed exposition of this is given in (McCallum et al. [2000a]).

Chapter 2. Supervised Sequence Learning 14

2.8 Feature Functions

In the simple HMM case (Equation 2.16), there is a single feature function for each

(i, j) and (i, o) pair. Furthermore, they are merely indicator functions that facilitate the

activation of the transition and emission probabilities. In CRFs, however, we may define

arbitrarily many and varied feature functions of the form Fk(x, y) =
∑T

t fk(x, y), where

fk is a (typically boolean) function describing one of several features about a token.

Notice that while such a function is centered on a given token, that is, a specific element

of x, the function has access to the full vector x, enabling the creation of context-aware

features, combining information about a token with its neighbours. Further notice that

the summation over the sequence is what enables instances (token sequences) of varying

lengths to remain compatible with the model.

The form of the functions themselves, f(·), are known in Wapiti (Section 2.9) as tem-

plates. It is in choosing these explicitly that we perform feature engineering. The literal

feature functions, {fk}Kk=1, are formed by resolving the templates over the vocabulary

of features encountered in the extraction process prior to model training. In this way,

we may see how model complexity depends on the diversity of the training set, and

consequently, for larger training sets, a model will have more feature functions.

2.9 Wapiti

There are several open source software packages for the general purpose training and

application of conditional random fields and related models. Wapiti (Lavergne et al.

[2010]), written in C, is the tool of choice for this project, given its compatibility with

metadata extraction tool GROBID (Section 3.3), its speed advantage over alternatives,

and the recency of its development. It is developed by Thomas Lavergne at LIMSI, a

computer science laboratory in Orsay affiliated with Paris-Sud University. It is capable,

given sufficient memory, of training models with thousands of classes and billions of

features. It implements several optimisation algorithms including L-BFGS (Section 2.5)

and stochastic gradient descent (SGD) and training is fully parallelisable. Wapiti has few

drawbacks, but one is surely its lack of support for numeric features, as this curtails the

scope for our feature engineering; any numeric-based idea must be discretised. Wapiti’s

main functions are training models and tagging. Training requires two inputs:

1. a feature template file, and;

2. a file of extracted features.

The output of training is a model file. Tagging requires three inputs:

Chapter 2. Supervised Sequence Learning 15

Capitalization

U50:%x[0,11]

U51:%x[1,11]

U52:%x[-1,11]

U53:%x[0,11]/%x[1,11]

U54:%x[-1,11]/%x[0,11]

Figure 2.2: Excerpt of capitalisation features templates or macros.

1. a feature template file;

2. a file of extracted features, and;

3. a trained model.

The output of tagging is the file of extracted features appended with the classifications of

each token. In the following we present samples of each of these files as they may look for a

simple date model for classifying dates into their day, month, and year components.

2.9.1 Feature Templates

Feature templates are the main access point for modelling with Wapiti. These files

use a special syntax introduced by an older CRF engine, CRF++ (also supported by

GROBID), allowing the operator to specify the form of the feature functions to be

implemented in the model (see Section 2.8). The features are listed in a manner such as

seen in Figure 2.2. The five features shown in Figure 2.2 follow a similar format. The

prefixes ‘U50’, ‘U51’ etc. are the unique identifiers of the macros. The ‘%x’ figures are

wildcards for literal tokens. These macros are ultimately expanded to feature functions

when they are combined with the extracted features shown in Figure 2.3. The indices

given in square brackets indicate the row and column offset of the features considered.

For example, ‘[0, 11]’ in macro ‘U50’ indicates a row offset of 0, that is, pertaining to the

current token, and a column offset of 11, pertaining to the 11th feature extracted in the

feature extraction file (Section 2.9.2). Finally, macros ‘U53’ and ‘U54’, combine features

from past and future tokens with the current one to make bigram features.

2.9.2 Extracted Features

The extracted features file give the raw features for individual tokens. Note that feature

templates may combine the raw features to make other, more complex features. Each

line corresponds to a single token within each instance, and instances are grouped and

separated by a line space. Figure 2.3 shows the features for a single instance of a date

sequence, the string ‘4 August 1989’. The features for each token range from the original

Chapter 2. Supervised Sequence Learning 16

4 4 4 4 4 4 LINESTART NOCAPS ALLDIGIT 1 0 0 NOPUNCT I-<day>

August august A Au Aug Augu LINEIN INITCAP NODIGIT 0 0 1 NOPUNCT I-<month>

1989 1989 1 19 198 1989 LINEEND NOCAPS ALLDIGIT 0 1 0 NOPUNCT I-<year>

Figure 2.3: Features for a single date instance of three tokens: ‘4 August 1989’.

10:u50:NOCAPS,

11:u51:INITCAP,

11:u52:INITCAP,

18:u53:NOCAPS/INITCAP,

18:u54:INITCAP/NOCAPS,

Figure 2.4: Expanded feature functions deriving from capitalisation macros.

token (corresponding to a simple token indicator feature function such as in Equation

2.16), to token prefixes6, to information about capitalisation and punctuation, and so

on. Finally, we see the classifications of those tokens as ‘I-<day>’, ‘I-<month>’, and

‘I-<day>’.

2.9.3 Models

In Wapiti, a model consists of a large text file adhering to the following structure:

1. A list of the macros used (taken from the feature template file);

2. A list of classes modelled;

3. A list of expanded feature functions, and;

4. A list of corresponding (non-zero) weights, that is, the model parameters, repre-

sented in hexadecimal notation7.

Of most interest are the expanded feature functions8, such as shown in Figure 2.4. For

example, feature function ‘u50’ is a binary indicator for the capitalisation of the token.

If the corresponding feature for this token is ‘NOCAPS’, the result will be ‘1’, otherwise,

‘0’. These functions are derivations of the macros defined in Figure 2.2.

2.9.4 Training

Training a model with Wapiti begins once all the input files have been prepared. The

output given in Figure 2.5 shows the first six iterations of L-BFGS optimisation for

training a date model. In this case the number of instances (‘nb train’), N = 493. The

6Prefixes are best seen for the ‘August token (‘A’, ‘Au’, etc.); for the token ‘4’, prefixes are identical
to the original token.

7This presumably to avoid numeric underflow.
8Note the initial values of each line are simply the line lengths as a convenience to input processing.

Chapter 2. Supervised Sequence Learning 17

* Initialize the model

* Summary

nb train: 493

nb labels: 7

nb blocks: 5816

nb features: 40754

* Train the model with l-bfgs

[1] obj=1688,58 act=16482 err=25,80%/50,91% time=0,08s/0,08s

[2] obj=1221,30 act=15580 err=19,11%/35,50% time=0,05s/0,12s

[3] obj=922,15 act=13869 err=17,20%/33,67% time=0,04s/0,17s

[4] obj=638,04 act=10845 err= 6,53%/15,21% time=0,04s/0,20s

[5] obj=478,72 act=10582 err= 5,68%/13,59% time=0,04s/0,24s

[6] obj=416,15 act=9926 err= 3,77%/ 9,53% time=0,04s/0,28s

Figure 2.5: Output from training date model

figure ‘nb blocks’ refers to the number of feature functions per class that have come from

combining feature templates (Section 2.9.1) and extracted features (Section 2.9.2). The

total number of feature functions (‘nb features’) is therefore this number multiplied by the

number of classes, plus the number of transition functions, hence, 5816×7+7×6 = 40754

features in total. Training a model to be sufficiently accurate generally takes hundreds

or even thousands of iterations of L-BFGS.

Chapter 3

Automatic Metadata Extraction

This chapter presents the problem of automatic metadata extraction, giving illustrations

of the problem, its complexities, and a discussion of the methods by which the problem

may be solved. Moreover, this chapter introduces GROBID, the metadata extraction tool

around which our work is based, and describes the cascade of CRF models it uses to

classify a full document.

3.1 Metadata Extraction

In our work we are concerned with automatic metadata extraction (AME) for scientific

articles that are usually (though not necessarily) in the form of a PDF document, as these

predominate in the INSPIRE-HEP digital library. Nevertheless, the same techniques

will be effective for books, theses, or may even have novel applications1. At CERN,

the problem has been partially solved, albeit in a rudimentary way, and entails a lot of

manual curation to complete the work. See Section 5.3 for a comparison between this

existing solution and GROBID, the leading tool for metadata extraction.

Metadata refers to various information explicitly or implicitly contained in a scientific

article. Perhaps the most important metadata for an article is that contained in the

header, that is, the text at the front of a document, typically containing the title of

the article as well as the names, affiliations and often the contact details of the authors,

concluding finally with the article abstract. As a general rule, this is tantamount to

the text of the document falling before the first section of the body (usually called

‘Introduction’), though as we find in Chapter 4, sometimes significant amounts of front

1Such as for segmenting cooking recipes, as reported in The New York Times
(http://open.blogs.nytimes.com/2015/04/09/extracting-structured-data-from-recipes-using-
conditional-random-fields/?_r=0).

19

Chapter 3. Automatic Metadata Extraction 20

matter is held in unexpected places. Other important types of metadata may be the

references of the article, typically classified into fields such as publication title, authors,

date of publication, and so on. Another potential metadata type is that of the document

structure, its chapters and sections. All of these types are modelled by GROBID.

Extraction could refer to either of two distinct concepts. First, it may be the parsing

of a PDF document and extraction of plaintext and images. This in itself is a complex

problem, and may involve machine learning techniques for OCR analysis, depending on

the rendering of the document. Or, it may be the classification of document content

into predefined categories. It is on the second idea that we are focused within this work.

Indeed, GROBID addresses both of these points, but the first is merely a precondition

for the analysis with which it is primarily concerned, and it houses a third-party PDF-

to-XML conversion tool, pdftoxml (Déjean and Meunier [2006]), developed at Xerox

Research Centre Europe (XRCE), to handle this.

To appreciate the difficulty of automating such a task, contrast Figures B.1 and B.2 in

Appendix B, contrasting the header sections of two articles from our dataset. Though the

same sorts of information are present in both headers–title, author names, affiliations,

and document abstract–the arrangement and presentation of these fields are different, for

example the sizing and placement of the document title, the juxtapositioning of authors

(which are variable in number) and author details, and the labelling of the abstract

block. Furthermore, the second header is more complete, in that it contains information

not present in the other, for example copyright and publication details. The contents of

a document header do not follow a predictable ordering, making the problem hard, but

are not entirely random, a condition that would render the problem impossible to solve.

There is structure to a document, but it is likely infeasible to model deterministically.

Therefore, we must look to probabilistic approaches, and accept that these will be error-

prone. Also, if we are to process an entire document, it is unlikely we can create a

one-size-fits-all model, rather, the problem must be decomposed.

3.2 Solution Methods

A 2013 study of metadata extraction techniques (Lipinski et al. [2013]) identified three

fundamental methods for AME:

1. stylistic analysis;

2. knowledge base, and;

3. machine learning approaches.

Chapter 3. Automatic Metadata Extraction 21

Maximum Entropy Markov Models

for Information Extraction and Segmentation

Andrew McCallum MCCALLUM@JUSTRESEARCH.COM

Dayne Freitag DAYNE@JUSTRESEARCH.COM

Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

Fernando Pereira PEREIRA@RESEARCH.ATT.COM

AT&T Labs - Research, 180 Park Ave, Florham Park, NJ 07932 USA

Abstract

Hidden Markov models (HMMs) are a powerful

probabilistic tool for modeling sequential data,

and have been applied with success to many

text-related tasks, such as part-of-speech tagging,

text segmentation and information extraction. In

these cases, the observations are usually mod-

eled as multinomial distributions over a discrete

vocabulary, and the HMM parameters are set

to maximize the likelihood of the observations.

This paper presents a new Markovian sequence

model, closely related to HMMs, that allows ob-

servations to be represented as arbitrary overlap-

ping features (such as word, capitalization, for-

matting, part-of-speech), and defines the condi-

tional probability of state sequences given ob-

servation sequences. It does this by using the

maximum entropy framework to fit a set of expo-

nential models that represent the probability of a

state given an observation and the previous state.

We present positive experimental results on the

segmentation of FAQ’s.

for state-transition probabilities and state-specific observa-

tion probabilities. Greatly contributing to their popularity

is the availability of straightforward procedures for train-

ing by maximum likelihood (Baum-Welch) and for using

the trained models to find the most likely hidden state se-

quence corresponding to an observation sequence (Viterbi).

In text-related tasks, the observation probabilities are typ-

ically represented as a multinomial distribution over a dis-

crete, finite vocabulary of words, and Baum-Welch training

is used to learn parameters that maximize the probability of

the observation sequences in the training data.

There are two problems with this traditional approach.

First, many tasks would benefit from a richer representa-

tion of observations—in particular a representation that de-

scribes observations in terms of many overlapping features,

such as capitalization, word endings, part-of-speech, for-

matting, position on the page, and node memberships in

WordNet, in addition to the traditional word identity. For

example, when trying to extract previously unseen com-

pany names from a newswire article, the identity of a word

alone is not very predictive; however, knowing that the

word is capitalized, that is a noun, that it is used in an

appositive, and that it appears near the top of the article

Figure 3.1: An illustration of the way a header section might be segmented and
classified. The classes modelled are colour-coded (title in yellow, authors in green, and

so on). Article excerpt from (McCallum et al. [2000a]).

Stylistic analysis refers to heuristic approaches to analysing physical characteristics of

text font and layout. Knowledge base methods rely on online repositories to cross-

reference extracted information. Machine learning refers here either to conditional ran-

dom fields, or to other approaches, hidden Markov models or support vector machines.

The study includes a comparison of the leading AME tools based on an ad hoc scoring

system over a header test set. GROBID performed best by a considerable margin.

3.3 GROBID

GROBID (GeneRatiOn of BIbliographic Data) (Lopez [2009]) is an open-source (Apache

license) Java-based tool for automatic metadata extraction of scientific articles. It has

been in development by Patrice Lopez at the French Institute for Research in Computer

Chapter 3. Automatic Metadata Extraction 22

Science and Automation (INRIA) since 2008. GROBID manages the training, evaluation

and application of a hierarchy of Wapiti-trained CRF models, each addressing a part of

the information extraction of scientific articles. Figure 3.4 shows the cascade of models

used to progressively refine classifications of article content. Through GROBID, higher-

tier models such as the header and reference models may be applied individually to

PDFs, while the other, more specific models, such as the date model, operate only on

plaintext inputs. Moreover, some models, such as segmentation, are not intended to be

used independently, but rather contribute to the cascade, supplying lower levels with

their inputs. For example, reference extraction begins with the segmentation model,

which classifies each line of a document, resulting in homogeneous blocks of lines, for

example, header, paragraph, figure, and references. This information is then distributed

to the other models, for example the reference-segmenter model, which further breaks

down the reference list into individual references. The citation model then classifies the

parts of each reference into classes, for example, date, affiliation, and author. Finally,

the atomic subcomponents of these are classified by their respective models. Note that

the citation branch of the cascade has the option of further cross-checking extracted

references with the third-party CrossRef web service2. Thus, the overall accuracy of the

system is dependent on the combined accuracy of models in the cascade. Conversely,

any errors are propagated down the hierarchy. Though they have much in common, the

models vary in the classifications they assign, the features they exploit, and, due to the

varying size of the vocabulary (compare say, the number of possible month names to

the number of possible author names), the size (dimensionality) of the models. Table

3.1 summarises each of GROBID’s models. Calling GROBID function processFullText

runs all available models on a batch of PDF documents, classifying each entirely.

3.3.1 Text Encoding Initiative

One of GROBID’s functions is to transform Wapiti outputs into an output conforming

to the Text Encoding Initiative (TEI) standard, therefore we briefly describe it here.

TEI is a text encoding standard maintained by the TEI consortium. It specifies an XML

representation of a document’s contents from the front matter, to the document body,

to the document rear. It gives semantic meaning to document components, and can

facilitate highly detailed representations. It is therefore apt as a format for annotating a

document’s metadata. GROBID uses TEI to format its outputs, as well as its training

data. In Figure 3.2, we show a sample of a TEI document used to represent a date. The

2CrossRef is an online DOI agency with a REST API.

Chapter 3. Automatic Metadata Extraction 23

Model Description Labels

Header Classifies front matter <title>, <author>, <affiliation>,
<reference>, <submission>, <ab-
stract>, <address>, <keyword>,
<degree>, <pubnum>, <email>,
<date>, <copyright>, <intro>,
<web>, <note>, <phone>, <ded-
ication>, <entitle>, <grant>,
<date-submission>

Affiliation
address

Classifies the components of
author affiliations and affilia-
tion addresses. Subordinate to
the header model.

<institution>, <other>, <settle-
ment>, <department>, <post-
code>, <country>, <marker>,
<region>, <addrLine>, <labo-
ratory>, <postbox>, <other>,
<null>

Name/
Header

Classifies an author’s full name
(as identified by the header
model) into first and last name
etc.

<forename>, <surname>,
<marker>, <middlename>,
<other>, <suffix>, <title>

Name/ Cita-
tion

Classifies an author’s full name
(as identified by the citation
model) into first and last name
etc.

<surname>, <forename>,
<other>, <middlename>

Citation Classifies a reference into its
subcomponents.

<journal>, <volume>, <other>,
<issue>, <pages>, <date>, <au-
thor>, <title>, <booktitle>, <lo-
cation>, <pubnum>, <note>,
<publisher>, <editor>, <institu-
tion>, <tech>, <web>, <issue>

Date Classifies the components of
a date string identified by
higher-tier models.

<other>, <day>, <month>,
<year>

Segmentation The highest-level model in the
architecture–primarily supplies
the three models beneath it
(header, fulltext and reference-
segmenter) with inputs.

<headnote>, <header>, <body>,
<page>, <references>, <foot-
note>, <cover>, <acknowledge-
ment>, <annex>

Reference-
Segmenter

Segments a full reference list
into individual citations.

<label>, <reference>, <other>

Fulltext Classifies elements of article
body.

<section>, <paragraph>, <ci-
tation_marker>, <other>, <ta-
ble_marker>, <figure_marker>,
<figure_head>, <trash>,
<figDesc>, <equation>, <item>

Table 3.1: A summary of the models coordinated by GROBID. We have here excluded
the Patent, Entities, and E-book models as these are experimental models not currently

used by GROBID.

Chapter 3. Automatic Metadata Extraction 24

<bibl>

<author>V. Gundelach and D. Eisenburger</author>, "

<title level="a">Principle of a direction sensitive borehole

antenna with advanced technology and data examples</title>, &

quot; in

<title level="m">Proceedings of the 4th International Workshop

on Advanced Ground Penetrating Radar (IWAGPR '07)</title>,

pp.

<biblScope type="pp">28-31</biblScope>,

<date>June 2007</date>.

</bibl>

Figure 3.2: Sample tagged citation for GROBID training input.

XML format can be used to give semantic information about the information enclosed.

Thus, a natural mapping exists between the model classes and the XML schema.

3.3.2 Training

In GROBID, models are trained in isolation. The models produced by Wapiti (Section

2.9) are stored in the GROBID project directory. Each model has its own training data,

and feature function templates. For certain models, such as the header and segmentation

models, training data consists of pairs of associated files including:

1. a TEI file, and;

2. a raw feature file containing extracted features.

Other, simpler models, require only the former. Together, the files form an abstraction

over the CRF engine inputs. The reason for including the feature files is because the

original PDF files are assumed not to be available at training time, and therefore any

features derived from text styling or positioning must be extracted in advance. The TEI

files simply provide the classifications of the plaintext required to build a ground truth.

The feature extraction itself is done by a module of GROBID. Since feature files and

feature template files, which are configured manually by the developer, must agree, there

is a strong coupling between this module and the templates.

3.3.3 Evaluation

Both training and evaluation are performed on sets of TEI documents (see Section 3.3.1

and Figure 3.2). This somewhat paradoxically, when prediction is based on PDF files.

However, with closer inspection, an equivalence can be seen between:

Chapter 3. Automatic Metadata Extraction 25

1. applying the pdftoxml tool, tokenising the output and transforming to CRF input

data, and;

2. extracting tokens from TEI documents (and possibly feature files also–see Section

3.3.2), and transforming to CRF input data.

Both approaches yield the same input data for the CRF engine, and so the evaluation

inputs are, in effect, the same as for prediction, despite the initial differences. Training

may be done with a split defined by the developer, which GROBID uses to set aside

a proportion of the training data for evaluation. The evaluation of a model produced

by training follows identical procedures, preparing the same input data. The output,

however, is not a model but the tagged data. GROBID compares these predictions with

the ground truth and reports accuracy, precision, recall, and F1 scores as performance

indicators, at the token, field, and instance levels. A token usually refers to a single

contiguous string of characters (without spaces), but in the case of the segmentation and

fulltext, a token is a line. A field is a block of contiguous tokens sharing a class, and an

instance is the whole data sample. The accuracy of an instance is therefore judged by

the correctness of all tagging for the whole sample (which may be a whole document), a

difficult thing to achieve without any mistakes.

3.3.4 Prediction

Figure 3.3 shows the flow of information from input to output, as well as the relationship

between training and prediction. When it comes to labelling (prediction), the starting

point is a PDF document. With a third-party tool, pdftoxml, this is transformed into

an XML file containing rich text information (font, style, orientation) for every string

token in the document. These tokens are arranged into blocks and features are extracted

as they were for training and evaluation. The model created in the training phase is

first loaded, and then GROBID calls Wapiti to label the inputs. Unlike for training, the

feature template file is not required, as this has already been absorbed into the model file.

After processing, Wapiti returns the same file with classifications inserted. GROBID then

further processes this information to transform it into the final TEI output format.

3.3.5 Other Functionality

GROBID provides a means of producing training sets semi-automatically. This consists

of applying the existing models on a PDF batch to produce the XML inputs. Each field

must be checked manually against a ground truth and errors corrected before it is used as

a training set. We use this feature to generate HEP training data (see Chapter 4).

Chapter 3. Automatic Metadata Extraction 26

Figure 3.3: An illustration of the interactions between GROBID and Wapiti for
the two main functions of training and tagging. The dashed arrows indicate training

operations; the solid arrows, tagging.

Figure 3.4: The models of GROBID are organised into a cascade, where each part of
a document is classified in increasingly greater detail.

Chapter 4

Data, Methods, and

Implementation

This chapter presents the different strands of our work. The work is divided into three

components: first, the procurement of HEP training data on which to perform experi-

ments; the implementations of extensions to GROBID to facilitate the feature engineering

and evaluations, as well as the pipeline assembled for automating the experimentation;

and finally, the different categories of feature engineering, and our reasons for choosing

them, supplying, where relevant, statistical analyses to support our intuitions.

4.1 Assessments

As articulated in Chapter 3, GROBID manages a hierarchy of models that propagates

classified information from top to bottom in a cascade. Our objectives are therefore to

enhance some models within the cascade for HEP papers. It does not, on the other hand,

make sense to attempt to improve all models. After all, we may assume a HEP date is no

different from dates printed in other scientific papers. The same goes for author names,

and with little exception1, reference lists and their contents. Undoubtedly, the models

with the most promising scope for improvement are the header and segmentation models.

It is these models that address the parts of an article most distinct in scientific papers.

Specifically, physics journals have recurring styles and layouts for headers sections that

are distinct from others publishers. In addition, the vocabulary of a HEP paper header

will be distinct from that of papers from other branches of science. These should be

both trained for and engineered for, for example through the use of dictionary-based

1It is in fact true that HEP collaborations feature in isolated references in HEP papers (see Section
6.2).

27

Chapter 4. Data, Methods, and Implementation 28

features (see Section 4.3.4). Exceptionally, the header model is not, by default, part of

the cascade, rather, the header section is extracted separately using heuristics based on

locating the start of the body (usually identified by the heading, ‘Introduction’). The

reason for this approach is that, on average, it is more accurate than relying on the

segmentation model for finding front matter, given the limited amount of segmentation

training data. However, this precludes the modelling of discontinuous front matter, which

may occur at the base of a first page, at the very end of an article, or just about anywhere

else (see Figure 4.1). Reconnecting the header model with with the segmentation model

is therefore an implementation objective. Thus, the header model may be improved for

a number of reasons, including:

1. physics publishers present a format unique to HEP papers;

2. scientific collaborations as seen in HEP papers are not modelled as a header class

by vanilla GROBID, and;

3. discontinuous header data (see Figure 4.1), which may contain substantial front

matter is by default neither trained nor modelled for.

The segmentation model may also be improved for a number of reasons:

1. discontinuous header data (see Figure 4.1), which may contain substantial front

matter is neither trained nor modelled for;

2. HEP collaborations entail long author lists and affiliation lists, often disjoint from

the main header section, which are neither trained nor modelled for, and;

3. the dataset is small (we more than double it in Section 4.2).

Note that the segmentation model is the parent model of the entire cascade, and therefore

any improvement to it will benefit all other models at prediction time. Aside from being

the root of the cascade, the segmentation model is special in that it models a full line

at the token level, rather than a single character string such as for the header model.

We are mindful of this distinction as we go about our feature engineering. Our focus is

therefore on the two models, header and segmentation. Hence, we require two separate

training sets of HEP papers. Both models require that for each paper we produce a TEI

representation and a feature file of extracted features, as introduced in Section 3.3.

4.2 Data Acquisition

The starting point for generating training data is to apply the existing, shipped models

of GROBID on our new dataset of PDF papers. This creates a pair of TEI and feature

Chapter 4. Data, Methods, and Implementation 29

file for each document, in a first attempt at a ground truth, and a structure on which

to work. Though this is greatly preferable to starting from scratch, the researcher must

then manually correct the inevitable myriad errors to achieve a gold standard of training

data. In the case of segmentation, this involves the validation of a full document, which

may contain many recurring misclassifications, rendering the task stupendously time-

consuming and a barrier to actual research. In the case of the header model, this is

often simpler, as it involves validating a single section. However, wherever discontinuous

front matter exists, changes must be made to both the TEI and feature files. This first

involves a modification to GROBID such that it extracts features for all tokens rather

than just those contained in the header. Then, the unseen front matter must be manually

formatted and appended to the TEI file, and the corresponding features copied to the

feature file. This is error-prone, as there must be a one-to-one correspondence between

Identification of beauty and charm

quark jets at LHCb

The LHCb collaboration†

Abstract

Identification of jets originating from beauty and charm quarks is important for
measuring Standard Model processes and for searching for new physics. The per-
formance of algorithms developed to select b- and c-quark jets is measured using
data recorded by LHCb from proton-proton collisions at

√
s = 7TeV in 2011 and at√

s = 8TeV in 2012. The efficiency for identifying a b(c) jet is about 65%(25%) with
a probability for misidentifying a light-parton jet of 0.3% for jets with transverse
momentum pT > 20GeV and pseudorapidity 2.2 < η < 4.2. The dependence of the
performance on the pT and η of the jet is also measured.

Submitted to JINST

c© CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

(a) Collaboration field in header sec-
tion.

encode different attribute dimensions of an input data space. A good
glyph design can enable users to conduct visual search more efficiently
during interactive visualization, and facilitate effective learning, mem-
orizing and using the visual encoding scheme. A less effective visual
design may suffer from various shortcomings such as being percep-
tually confusing, semantically ambiguous, difficult to learn and re-
member, or unable to accommodate low-resolution display devices.

• Eamonn Maguire is with Oxford e-Research Centre and Department of

Computer Science, University of Oxford, UK. E-mail:

eamonn.maguire@st-annes.ox.ac.uk.

• Philippe Rocca-Serra, Susanna-Assunta Sansone and Min Chen are with

Oxford e-Research Centre, University of Oxford, UK. E-mail: {philippe.

rocca-serra,susanna-assunta.sansone,min.chen}@oerc.ox.ac.uk.

• Jim Davies is with Department of Computer Science, University of Oxford,

UK. E-mail: jim.davies@cs.ox.ac.uk.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online

14 October 2012; mailed on 5 October 2012.

For information on obtaining reprints of this article, please send

e-mail to: tvcg@computer.org.

(b) Discontinuous header data.

LHCb collaboration

R. Aaij38, B. Adeva37, M. Adinolfi46, A. Affolder52, Z. Ajaltouni5, S. Akar6, J. Albrecht9,
F. Alessio38, M. Alexander51, S. Ali41, G. Alkhazov30, P. Alvarez Cartelle53, A.A. Alves Jr57,
S. Amato2, S. Amerio22, Y. Amhis7, L. An3, L. Anderlini17,g, J. Anderson40, M. Andreotti16,f ,
J.E. Andrews58, R.B. Appleby54, O. Aquines Gutierrez10, F. Archilli38, P. d’Argent11,
A. Artamonov35, M. Artuso59, E. Aslanides6, G. Auriemma25,n, M. Baalouch5, S. Bachmann11,
J.J. Back48, A. Badalov36, C. Baesso60, W. Baldini16,38, R.J. Barlow54, C. Barschel38,
S. Barsuk7, W. Barter38, V. Batozskaya28, V. Battista39, A. Bay39, L. Beaucourt4, J. Beddow51,
F. Bedeschi23, I. Bediaga1, L.J. Bel41, I. Belyaev31, E. Ben-Haim8, G. Bencivenni18, S. Benson38,
J. Benton46, A. Berezhnoy32, R. Bernet40, A. Bertolin22, M.-O. Bettler38, M. van Beuzekom41,
A. Bien11, S. Bifani45, T. Bird54, A. Birnkraut9, A. Bizzeti17,i, T. Blake48, F. Blanc39,
J. Blouw10, S. Blusk59, V. Bocci25, A. Bondar34, N. Bondar30,38, W. Bonivento15, S. Borghi54,
M. Borsato7, T.J.V. Bowcock52, E. Bowen40, C. Bozzi16, S. Braun11, D. Brett54, M. Britsch10,
T. Britton59, J. Brodzicka54, N.H. Brook46, A. Bursche40, J. Buytaert38, S. Cadeddu15,
R. Calabrese16,f , M. Calvi20,k, M. Calvo Gomez36,p, P. Campana18, D. Campora Perez38,
L. Capriotti54, A. Carbone14,d, G. Carboni24,l, R. Cardinale19,j , A. Cardini15, P. Carniti20,
L. Carson50, K. Carvalho Akiba2,38, R. Casanova Mohr36, G. Casse52, L. Cassina20,k,
L. Castillo Garcia38, M. Cattaneo38, Ch. Cauet9, G. Cavallero19, R. Cenci23,t, M. Charles8,
Ph. Charpentier38, M. Chefdeville4, S. Chen54, S.-F. Cheung55, N. Chiapolini40, M. Chrzaszcz40,
X. Cid Vidal38, G. Ciezarek41, P.E.L. Clarke50, M. Clemencic38, H.V. Cliff47, J. Closier38,
V. Coco38, J. Cogan6, E. Cogneras5, V. Cogoni15,e, L. Cojocariu29, G. Collazuol22, P. Collins38,
A. Comerma-Montells11, A. Contu15,38, A. Cook46, M. Coombes46, S. Coquereau8, G. Corti38,
M. Corvo16,f , I. Counts56, B. Couturier38, G.A. Cowan50, D.C. Craik48, A. Crocombe48,
M. Cruz Torres60, S. Cunliffe53, R. Currie53, C. D’Ambrosio38, J. Dalseno46, P.N.Y. David41,
A. Davis57, K. De Bruyn41, S. De Capua54, M. De Cian11, J.M. De Miranda1, L. De Paula2,

(c) Collaboration author list.

18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Milano, Milano, Italy
22Sezione INFN di Padova, Padova, Italy
23Sezione INFN di Pisa, Pisa, Italy
24Sezione INFN di Roma Tor Vergata, Roma, Italy
25Sezione INFN di Roma La Sapienza, Roma, Italy
26Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
27AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,
Kraków, Poland
28National Center for Nuclear Research (NCBJ), Warsaw, Poland
29Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35Institute for High Energy Physics (IHEP), Protvino, Russia
36Universitat de Barcelona, Barcelona, Spain
37Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38European Organization for Nuclear Research (CERN), Geneva, Switzerland
39Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40Physik-Institut, Universität Zürich, Zürich, Switzerland
41Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The
Netherlands
43NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
44Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

(d) Collaboration affiliation list.

Figure 4.1: Figure (A) shows a collaboration field in a header section. Figure (B)
shows discontinuous front matter that sits on the first page, but apart from the main
header section and within the introductory section. Figures (C) and (D) give the
authors list and affiliations for a large HEP collaboration; the author list begins on page
8 and continues to page 33. Figure (B) from (Maguire et al. [2012]), other excerpts

from (Aaij et al. [2015]).

Chapter 4. Data, Methods, and Implementation 30

a token in the TEI file and its features in the feature file. Hence, any copyist mistake

will invoke errors at training time. In Sections 4.2.1, 4.2.2, we detail the mixture of

training data that we have assembled. Table 4.1 gives a breakdown of the data for each

model.

Model HEP CORA

Header 157 papers 2506 papers

Segmentation 169 papers 125 papers

Table 4.1: Number of training instances for each model from each dataset.

4.2.1 CORA dataset

The CORA dataset (McCallum et al. [2000b]) is a substantial dataset of annotated

documents. It is popular in metadata extraction studies, and has come to be a sort

of standard due to the difficulty of creating custom data (Peng and McCallum [2004]).

We use it in combination with our own HEP dataset. For the segmentation model, the

baseline dataset is not part of CORA, but rather part of the GROBID project, but for

brevity we refer to this also as CORA.

4.2.2 HEP dataset

At the recommendation of an INSPIRE-HEP digital library curator, we selected a set of

articles deemed to be a representative sample of the database. It contains the following

varieties of papers:

1. conference papers (with DOI);

2. conference papers (without DOI);

3. miscellaneous papers (including non-English language);

4. collaboration papers, and;

5. general papers.

This totalled 191 papers2, however we additionally removed documents found to be

unsuitable for training, such as book-length article compendiums. To start creating HEP

header model training data, we execute GROBID command, createTrainingHeader.

Modifications were made to GROBID to produce header features for an entire document,

rather than just the first two pages as per the default. This was essential in order to obtain

features for any discontinuous front matter in other parts of a document. Wherever such

2Originally this numbered in excess of 200, but certain papers could not be parsed by pdf2xml.

Chapter 4. Data, Methods, and Implementation 31

matter was found, it was necessary first to manually append this material to the TEI

file, following the TEI XML standard, then to copy the discontinuous segments of the

extracted features into the master copy feature file. Whenever a copyist mistake was

made, this entailed runtime errors, and lengthy corrections. For segmentation training

data, we run command createTrainingSegmentation. The starting point for building

a segmentation training set is invariably worse than for header, due to the lower accuracy

of this model. Typically each instance contains many recurrent misclassifications which

sometimes may be corrected efficiently using regular expressions.

4.3 Methods

Here we list the ideas for feature functions that we have implemented and cross-validate

for in Chapter 5. The features were extracted either with changes made to GROBID

directly, or by modifying baseline features with an external script from our pipeline

(Section 4.4.2). In the following we use a notation consistent with that introduced in

Chapter 2, that is, x represents a token, x an instance, and y and y the corresponding

label and label vectors.

4.3.1 Baseline

To set a benchmark by which to compare our results, we ran a series of experiments

including the default features for GROBID, training on different combinations of CORA

and HEP data (see Section 5.2). In addition, we examined the effects of ramping up

the size of the CORA set appended during training. Baseline features depend on the

model, but generally include token identities, prefixes, suffixes, indicators of capitali-

sation, punctuation, and numeric characters, font information, dictionary membership,

and physical positioning. Our new features were combined with the baseline features

unless otherwise noted.

4.3.2 Block Size

A block is a collection of lines physically grouped together. The block to which each

token belongs is specified in the pdftoxml outputs. One characteristic that is distinct

about article layout are the varied dimensions of blocks. This is most striking in the

header section, where different blocks manifest in distinct sizes. For example, an article

title is usually wider than any other element, an abstract is the tallest element, and so

on. It seems reasonable that the dimensions of a block to which a token belongs may

Chapter 4. Data, Methods, and Implementation 32

provide information on the class of the token. We therefore devise features based on the

pixel lengths and widths of header text blocks, information that comes from pdftoxml.

We try four variations on this idea: block width, block height, block width and height

together, and block area, each normalised by the largest block dimensions. For example,

for area, the feature function is,

f̂size(xt) =

∑

b∈B ✶{xt∈b} · height(b) · width(b)

maxb′∈Bheight(b′) · maxb′′∈Bwidth(b′′)
, (4.1)

where xt is a token (hence a word for the header model) and B is the set of blocks in

the header instance. We then define,

fsize(xt) =
⌊

C · f̂size(xt)
⌋

, (4.2)

where C is a discretisation factor. In our experiments C = 10, giving a categorical

variable of 10 values.

4.3.3 Character Classes

A visual scan of any scientific paper allows one to see that lines from different sections

are most easily distinguished by their composition of characters. It therefore stands to

reason that we can build informative features for the segmentation model on this basis.

Indeed, it may be that a line is more effectively characterised at the character level than

the word level. For an illustration of this effect, see Figure 4.2. Note that the baseline

feature function set does include some basic capitalisation and punctuation indicators,

but we advocate our approach for several reasons:

1. it is more complete in that it models more character classes;

2. it does this systematically in a feature framework that is easily modified or ex-

tended, and;

3. it performs better (see Chapter 5).

In Table 4.2, we give a list of the character classes used to model features. The regu-

lar expressions (regexes) were used to count the number of characters in a token (line)

belonging to each class. This was then normalised over the line length. Because such

a result is numeric, we have necessarily to discretise it. We tried four different discreti-

sation strategies: binary (according to some ad hoc threshold), decimal (round down),

Chapter 4. Data, Methods, and Implementation 33

Space

a-z

A-Z

Numeric

Punct.

Special

5
10

15
20

(a) Body (formula)

Space

a-z

A-Z

Numeric

Punct.

Special

10
20

30
40

50
60

70

(b) Body (normal)

Space

a-z

A-Z

Numeric

Punct.

Special

5 10 15 20 25 30 35 40

(c) Headnote

Space

a-z

A-Z

Numeric

Punct.

Special

0.2
0.4

0.6
0.8

1.0

(d) Page number

Space

a-z

A-Z

Numeric

Punct.

Special

10
20

30
40

50
60

70

(e) Affiliation list

Space

a-z

A-Z

Numeric

Punct.

Special

5
10

15
20

25
30

35

(f) Author list

Figure 4.2: Character class breakdown of sample lines from different sections of a
CERN LHCb collaboration paper. The paper in question is the current world record
holder for number of authors, and lists over 5000 authors and their affiliations. The

radar plots give a different impression for each of the samples.

Chapter 4. Data, Methods, and Implementation 34

decimal (round to nearest), and 20-point discretisation3. For the decimal case (rounding

down),

f̂classi
(xt) =

1

|xt|

|xt|
∑

n=1

✶{xti∈classi}, (4.3)

for each character class, classi, where xt is a token (hence a line for the segmentation

model), and xti is the ith character in the line. For the decimal (round down) case, we

then define,

fclassi
(xt) =

⌊

C · f̂classi
(xt)

⌋

, (4.4)

where C is the discretisation factor and C = 10. The other discretisation strategies may

be defined similarly.

Class Regex

Spacing r‘[\s]’
Lower case r‘[a-z]’
Upper case r‘[A-Z]’
Numeric r‘[\d]’

Punctuation r‘[.,?:;]’
Special character r‘[ˆ\sa-zA-Z d.,?:;]’

Table 4.2: Character classes used as features, along with the regular expressions used
to count them.

4.3.4 Dictionaries

As mentioned previously, the vocabulary of a HEP paper header is distinct from other

branches of science, containing jargon and terminology particular to high energy physics.

Aside from token indicators, we can support this characteristic with features based on

dictionary membership. To achieve this, we exported the full set of author names,

affiliations, journal names, article titles, and collaborations from the INSPIRE-HEP

database. These dictionaries were then tokenised to give a set of words rather than

phrases. Each dictionary required extensive cleaning prior to being fit for purpose. In

addition, we used the Natural Language Toolkit (nltk) for Python to create a dictionary

of stop words, the expectation being that different classes contain stop words in varying

amounts. For example, prosaic text, such as an abstract, will contain stop words (the,

a, an, it, etc.) in greater number than summary information such as a keyword term,

3In this final discretisation case we categorised results by each 5th percentage point, capping at 50%,
such that we model 10 categories in total.

Chapter 4. Data, Methods, and Implementation 35

or an author details block. We confirmed this hypothesis with statistical ANOVA and

pairwise t-tests in R, showing significant differences of stop word frequency according to

header section (see Appendix C.1). The dictionary feature functions may therefore be

written formally as,

fdicti
(xt) = ✶{xt∈dicti}, (4.5)

for each dictionary, dicti. These features did not require modifications to GROBID

directly, and were instead created by editing baseline feature files with pipeline script,

feature_modifier.py.

4.3.5 Levenshtein Distance

The Levenshtein or edit distance can be used to quantify the edit distance between two

strings, a and b, by counting the number of changes, insertions, or deletions required

for transforming a into b. Beginning with leva,b(|a|, |b|), the recursive step is defined to

be,

leva,b(i, j) =



































max(i, j) if min(i, j) = 0

min



















leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1ai 6=bj

otherwise
(4.6)

With some exploratory data analysis we may see that the average edit distance varies

between different sections, in particular at the transition points between these sections.

It therefore stands to reason that the Levenshtein distance may be used as a feature

of line tokens in the segmentation model. Therefore, we define a similarity measure

based on the Levenshtein distance, first normalising the distance between a line and its

precursor, by dividing by the length of the longer of the two, before subtracting this

result from 1, to give a measure of similarity,

similarity(a, b) = 1− leva,b(|a|, |b|)
max(|a|, |b|) . (4.7)

Due to the constraints on numeric features (see Section 2.9), we must discretise the

result. Thus, for a given line, xt, we define the feature function,

Chapter 4. Data, Methods, and Implementation 36

flev(xt) =



































0 if 0 ≤ similarity(xt, xt−1) ≤ T1

1 if T1 ≤ similarity(xt, xt−1) ≤ T2

...
...

N-1 if TN−1 ≤ similarity(xt, xt−1) ≤ 1

(4.8)

where T1, T2, ..., TN−1 are thresholds selected to create the N categories. We try several

thresholding strategies in our experimentation (see Section 5.2).

4.3.6 Regularisation

We additionally cross-validated the tuning parameter for the model, the variance for l2

regularisation, σ2, for values on a logarithmic scale: σ2 = 0, σ2 = 10−6, σ2 = 10−54,

σ2 = 10−4, and σ2 = 10−3.

4.3.7 Token Extensions

In the baseline segmentation model, only the first two words from each line are modelled

as features. The model might therefore benefit from modelling more of the line. However,

unlike character class features (Section 4.3.3), modelling the words does not reduce the

dimensionality of the token. The signal from these token extensions may therefore be

too diffuse to make useful indicators. We nevertheless try four variations on this idea,

extending the feature set to model the first 5, 10, 15, and 20 words of each line.

4.4 Implementation

4.4.1 Extensions to GROBID

The effects of our extensions are seen in Sections 4.4.2, 4.3 and finally in Chapter 5, and

wherever appropriate we indicate them. Extensions were made as a branch of GROBID

in the following ways:

1. reconnecting the segmentation and header models;

2. modelling HEP specific header field, collaboration;

3. producing new features;

4Wapiti default value.

Chapter 4. Data, Methods, and Implementation 37

(<header>, <body>)

1343657.training.segmentation.tei.xml - 0.7292 (35)

1342206.training.segmentation.tei.xml - 0.3571 (5)

1345915.training.segmentation.tei.xml - 0.3333 (7)

1344707.training.segmentation.tei.xml - 0.1765 (3)

1347299.training.segmentation.tei.xml - 0.1667 (8)

Figure 4.3: Misclassification of <header> to <body> proportion and count (given
in parentheses) for five papers in an evaluation fold, an output of the confusion matrix

utility.

<author>

<orgName>ALICE Collaboration</orgName>

</author>

Figure 4.4: Example of a successfully classified collaboration. The choice of XML
tags is ours and was selected to be consistent with the TEI standard.

4. logging results automatically, and;

5. extending the evaluation utilities for our analysis and reporting aims.

The most significant extension made was with the class, ConfusionMatrix.java, used

within GROBID’s EvaluationUtilities.java framework to create confusion matrix

outputs, ultimately visualised by the pipeline (see Chapter 5). These allowed us to see

which misclassifications were made most frequently. In addition, ConfusionMatrix.java

tracks the documents on which the the model committed the most errors for each mis-

classification. A sample output is given in Figure 4.3. Modelling collaborations as a

class of the header model involved extending GROBID’s training and tagging modules

alike. An XML structure conforming to the TEI standard (Section 3.3.1) was selected.

An example of a successful prediction of a collaboration is given in Figure 4.4.

4.4.2 Experiment Pipeline

To automate the experimentation process, we developed a pipeline of scripts in Python,

the language chosen for its ubiquity in INSPIRE-HEP. The repository is open source and

hosted on GitHub5. The pipeline begins with using GROBID (including all necessary ex-

tensions) to generate raw feature files for all TEI files in the ground truth dataset. These

are then manually assembled into a stripped-down copy of GROBID (containing all nec-

essary Java executables and additional data) and placed in directory, batches/, with

other scenarios. The assemblage of training data depends on the data scenario desired.

If we wish to cross-validate over all data, we simply ensure that both the training/

and evaluation/ directories within the GROBID project contain all the feature files,

5https://github.com/jcboyd/pykelet/src

Chapter 4. Data, Methods, and Implementation 38

and that all TEI files are in training/. The cross validation (CV) process will move

a fold from the training directory to the evaluation directory, and return it when the

iteration is complete. If, however, we wish to append data for training, yet exclude it

from CV and evaluation, we place the features files only under training/. The process

will then cross-validate only on those files present in evaluation/. GROBID requires

both TEI and feature files to be present or else they are ignored. This trick allows us

to run such complex experiments without modifying GROBID or its directory structure.

Each iteration of CV produces a log file of results exported from GROBID’s evalua-

tion utilities. Another script then aggregates the file contents (token- and field-level

performance metrics and confusion matrices) and visualises them automatically. The

pipeline process is depicted in Figure 4.5. The pipeline consists of a Python wrapper

for GROBID, grobid.py, written using pyjnius, a Python library for the manipulation

of Java executables through the Java Native Interface (JNI)6. For an iteration of CV,

(k_fold_cross_validation.py), our wrapper may be used in the following way:

grobid_trainer = GrobidTrainer(classpath=classpath_trainer,

grobid_home=grobid_home)

grobid_trainer.train(model)

grobid_trainer.evaluate(model)

Listing 4.1: Excerpt from our Python wrapper for GROBID

The process uses Python scientific computing library, numpy, to randomly shuffle training

data (according to a fixed seed), and then Python machine learning library scikit-learn

to create CV folds. The folds are withheld during training and are evaluated upon in

the conventional way. The output of CV is a set of log files containing results. These

results are processed by further scripts to produce visualisations of confusion matrices

and performance metric comparisons.

Figure 4.5: An illustration of the experimentation pipeline.

6Certain limitations on this led us to write a simpler Python subprocess-based wrapper also.

Chapter 5

Results and Analysis

This chapter presents the results of our implementation work, which comprises of 66

cross-validated feature engineering experiments including a baseline evaluation. It notably

begins with a comparison between GROBID and refextract, the existing partial solution

for metadata extraction within INSPIRE-HEP. Following this, the evaluation method

and approach to running experiments are detailed. Finally, the experimental results are

presented and we provide our analysis and interpretations. The results are first shown

by category, in accordance with the methods described in Chapter 4, then inter-category

results are shown to highlight the most significant improvements.

5.1 Evaluation Method

Cross-validation (see Section 5.2) is use to give an estimation of model generalisation

error. When it comes to reporting results, we focus on the cross-validated performance

metric, micro average (see Section 5.1.1). This is more informative than a macro average

due to the skew in class representation. For example, the <abstract> class contains on

average far more tokens than any other class in the header model; likewise, <body>

for segmentation. The micro average effectively gives a weighted average that says more

about general token accuracy. Where necessary, we further look at model performance

in individual fields. For the segmentation model, the key fields are <header> and <ref-

erences>. For the header model, they are <title>, <authors>, and <abstract>.

5.1.1 Evaluation Metrics

The findings of this chapter refer to various standard measures of classification perfor-

mance. We define these presently. Accuracy is defined to be,

39

Chapter 5. Results and Analysis 40

Accuracy =
TP + TN

TP + FN + FP + TN
, (5.1)

that is, the proportion of correct classifications to total classifications, where TP is the

number of true positives, the number of times a class is correctly predicted to have

occurred; TN is the number of true negatives, the number of times a given class is

correctly predicted not to have occurred; FN is the number of false negatives, the number

of times a class is incorrectly predicted to have occurred; and FN is the number of false

negatives, the number of times a class is incorrectly predicted not to have occurred.

Accuracy can be a misleading statistic when we have uneven representations of classes in

the dataset. In the event that we have a sufficiently high bias, we can achieve excellent

accuracy simply by always predicting the dominant class. For this reason, we consider

other statistics too. Precision is the number of times a class is correctly predicted

proportional to the overall number of predictions for that class, that is,

Precision =
TP

TP + FP
. (5.2)

This, however, does not inform us as to whether we have missed any occurrences of the

class, which would be shown in the number of false negatives, FN. We could therefore

have a very high precision with limited accuracy. Recall is the number of times a class is

correctly predicted proportional to the number of occurrences of that class (equivalently,

the accuracy with respect to the class), that is,

Recall =
TP

TP + FN
. (5.3)

However, a simple strategy of always predicting one class will give perfect recall for that

class, because then misclassifications are only captured by FP . The F1 statistic is a

common measure used to assess classifiers that combines precision and recall, and is

defined as,

F1 =
2× precision × recall

precision + recall
, (5.4)

that is, the harmonic mean of precision and recall (the “1” in F1 indicates the two are

evenly weighted). The F1 statistic is a neat way of summarising both metrics at once.

Furthermore, a large imbalance in precision and recall results in a lower F1 score. It is

necessary to be good in both precision and recall to have a good F1 score; the harmonic

mean of any data is always upper-bounded by its arithmetic mean. Thus, the F1 score

Chapter 5. Results and Analysis 41

addresses their shortcomings simultaneously. To summarise each of these statistics over

a set of classes, we may adopt two approaches: macro and micro averages. A macro

average is the aggregation of statistics a posteriori. For example, for accuracy,

Accuracymacro =
1

N

N
∑

n=1

Accuracyn, (5.5)

where Accuracyn is the accuracy for the nth of N classes. By contrast, a micro average

is an aggregation of statistics that is in effect weighted by the proportion of each class.

For example, again for accuracy,

Accuracymicro =

∑N
n=1 TPn + TNn

∑N
n=1 TPn + FPn + FNn + TNn

, (5.6)

5.1.2 Evaluation in GROBID

GROBID calculates the aforementioned statistics for each of the classes in each model.

In our results (Section 5.4), we concentrate on the F1 score micro average and scores for

key classes (depending on the model we consider) at the token level. We supplement

the GROBID evaluation output with our own confusion matrices, an example of which

is shown in Figure 5.2. Whereas the metrics allow us to compare one model to another,

a confusion matrix can be used to see exactly which misclassifications are being made,

which can in turn inform our feature engineering.

5.2 Experiment Setup

Our computing resources for experimentation consisted of two powerful virtual machines

on the CERN LXPLUS cluster, each possessing 16 CPUs and 32 GB of RAM. The

experiments were configured and uploaded to these machines in batches, and were pro-

cessed by our experimentation pipeline (see Section 4.4.2). The high dimensionality of

the models (up to tens of millions of features) led to long runtimes. To control the run-

time of training, we enforced a maximum number of 500 iterations for Wapiti’s L-BFGS

algorithm. This number was chosen from observing the diminishing improvements of

models trained to this extent1. With Wapiti parallelised to 8 cores, we were able to run

two processes on each virtual machine when required. Even with this parallelised setup,

our experiment batches took several days to process each time, and the sum total of

our experiments amounts to perhaps months of CPU time. Recall that model training

1There is also the argument that training to convergence may cause overfitting.

Chapter 5. Results and Analysis 42

time is dependent on both the number of training samples and the model dimensionality,

which is itself dependent on the number of samples (see Section 2.5).

In conjunction with our feature engineering variations, we tried different configurations

of data. Figure 5.1 illustrates our four approaches to cross-validation with different

combinations of HEP and CORA training data. Where we append data, we include it in

training, but exclude it from evaluation. Thus, HEP app. CORA denotes the training

of a model on HEP and CORA combined, but cross-validation and evaluation only on

HEP. Of most interest, naturally, were those configurations evaluating purely on HEP

papers, that is, those we denote HEP and HEP app. CORA, and these were the only

configurations run beyond the baseline. In Section 5.4, we refer to these configurations

as we present the results. All experiments were run with 5−fold cross validation2. The

dataset was randomly shuffled prior to cross-validation, but with a fixed seed, such that

models trained on the same data configuration could be compared equitably.

(a) CV HEP (b) CV CORA

(c) CV HEP append CORA (d) CV CORA append HEP

Figure 5.1: The different cross-validation configurations used in our experiments.
Figures (A) and (B) show cross-validation on HEP and CORA sets independently.
Figures (C) and (D) show cross-validation on the HEP and CORA datasets respectively,

appending the other at training time.

The variety of 66 experiments that we cross-validated are presented in Table 5.1, or-

ganised into 8 categories. We also distinguish by model, running some experiments for

both models, and some for one alone. Generally speaking, we chose feature engineering

ideas with a particular model in mind, that is, either header or segmentation. Finally, we

distinguish by data configuration. For dictionary-based features, which may be derived

from a baseline feature file alone, we may try all data configurations. However, as we do

not have access to the original PDF papers for the CORA dataset, we can only extract

our other feature ideas on the HEP dataset.

2Note that by a happy coincidence this allows us to read individual CV iteration results from our
boxplots as they correspond directly with Q1, Q2, Q3, and the two outliers (see Section 5.4)

Chapter 5. Results and Analysis 43

Feature Category Variations Models Data

Baseline -
Segmentation,
header

CORA, CORA app. HEP,
CORA + HEP, HEP, HEP
app. CORA

Header HEP app. 1/3 CORA,
HEP app. 2/3 CORA

Dictionaries 1st order, 2nd order,
3rd order

Segmentation,
header

HEP, HEP app. CORA

Dicts. + Stops 1st order, 2nd order,
3rd order, stops only

Segmentation,
header

HEP, HEP app. CORA

Regularisation σ2 = 0, σ2 = 10−6,
σ2 = 10−5, σ2 =
10−4, σ2 = 10−3,

Header HEP

Token Extension First 5 words, first 10,
first 15, first 20

Segmentation HEP

Block Size Height, width, height
& width, area

Header HEP

Levenshtein Dis-
tance

T1 = 0.05, T1 =
0.1, T1 = 0.2, T1 =
0.4, T1 = 0.8, (T1 =
0.1, T2 = 0.4), All

Segmentation HEP

Character
Classes

Binary, decimal
(round down), deci-
mal (round), decimal
(20 point)

Segmentation HEP

Table 5.1: A summary of our experiments, organised by category, models trained for,
and data configurations used.

5.3 Comparison with refextract

As a first result for GROBID, we compare its reference list classification performance

with that of refextract, the existing solution for automatic reference extraction at CERN.

refextract is an example of a stylistic analysis tool (see Section 3.2), as it employs regular

expressions in a heuristic framework for metadata extraction. As previously mentioned,

refextract is incomplete and greatly lacking in both breadth and depth of detail. It is

capable only of retrieving an article’s references3, and the classification itself is quite

simplistic. Since the modelling of reference classes differs between the two, a comparison

is difficult to make. Our results will however be at least indicative and we are able to

make reasonable comparisons across the most important classes. The dataset for the

comparison consists of 60 articles retrieved from the SCOAP3 online repository4.

3A comparatively easy task; GROBID’s citation model usually performs at a significantly higher
accuracy than, say, its header model.

4SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) is an open access
digital library hosted at CERN, backed by an international partnership of research institutions.

Chapter 5. Results and Analysis 44

Unlike refextract, GROBID requires two separate models to classify the citations of a

given article: the reference-segmenter and citation models5. The reference-segmenter

model is the simplest model in GROBID’s arsenal, and is responsible for segmenting a

reference list block into individual references. It does this by modelling two classes, <la-

bel>, the delimiting tokens between individual references, and <reference>. Therefore,

the accuracy of the citation model is ultimately subject to the accuracy of the reference

block inputs supplied it by the reference-segmenter above. The results for training and

evaluating the reference-segmenter on 60 SCOAP3 papers with an 80–20 split are given

in Table 5.2. The results show the reference-segmenter to be extremely accurate. In fact,

only 5 token misclassifications out of 622 were made for the <label> class, and from a

grand total of 12,981.

label accuracy precision recall f1

<label> 99.96 100 99.2 99.6
<reference> 99.96 99.96 100 99.98

(micro average) 99.96 99.96 99.96 99.96
(macro average) 99.96 99.98 99.6 99.79

Table 5.2: Token-level evaluation results for reference segmentation.

The most significant difference between the tools is the set of classes modelled. refextract

attempts only to classify to the minimum detail required for identifying the originat-

ing document within INSPIRE-HEP. Therefore, there are no equivalents to GROBID’s

classes, <volume>, <pages>, and so on. Rather, these parts of references are absorbed

into other, higher-level classes, and are indicated by a dash (-) in the results table, Table

5.3. Comparisons can be made, however, on fields, <title>, <author>, <journal>, and

<date>. There we see the superiority of GROBID over refextract. Note that here the

citation model was not trained on the evaluation set, and in particular this may explain

its dismal performance in precision for the <date> class, and recall for <pubnum>. The

dataset instances contained a recurring publication number that was almost uniformly

misclassified by GROBID as a date. Notice that this is an example of a domain speci-

ficity of HEP papers. Had we trained on these papers, we could expect an improvement.

That refextract has reported perfect recall is the result of a flaw in our simplistic eval-

uation, where missing expected classifications were simply assigned to a <null> class,

and so false positives (FP) were not counted; only false negatives (FN). Therefore, the

true performance of refextract is upper-bounded by the figures in Table 5.3. The table

contents are one of the outputs of GROBID’s evaluation utilities. For an explanation of

the performance metrics, see Section 5.1.1.

5Strictly speaking, there is another model, (full) segmentation, above the reference-segmenter, and so
citation accuracy depends on this also. But because one focus of our work is to improve this model, we
permit this omission.

Chapter 5. Results and Analysis 45

system GROBID refextract

label accuracy precision recall f1 acc. prec. rec. f1

<author> 99.85 99.68 99.75 99.72 98.33 100 92.22 95.95
<title> 99.59 98.87 99.25 99.06 94.89 100 71.75 83.55

<journal> 98.84 88.87 93.98 91.35 97.12 100 46.78 63.74
<volume> 99.95 99.07 98.15 98.6 - - - -
<issue> 99.93 100 94.63 97.24 - - - -
<pages> 99.75 93.51 99.45 96.39 - - - -
<date> 98.39 57.39 98.31 72.47 98.88 100 37.55 54.6

<pubnum> 98.71 100 12.96 22.95 - - - -
<note> 99.4 43.75 35 38.89 - - - -

<publisher> 99.81 63.46 94.29 75.86 - - - -
<location> 99.81 86.32 91.11 88.65 - - - -

<institution> 99.78 25 25 25 - - - -
<booktitle> 98.7 55.56 41.67 47.62 - - - -

<web> 99.64 51.85 100 68.29 - - - -
<editor> 99.93 100 46.67 63.64 - - - -
<tech> 99.95 83.33 50 62.5 - - - -

(micro average) 99.5 93.63 94.77 94.19 - - - -
(macro average) 99.5 77.92 73.76 71.76 - - - -

Table 5.3: Token-level evaluation results for citations for GROBID and refextract.

5.4 Results

As specified earlier, we use the micro average of F1 scores of all model classes to compare

model performance, only looking to specific fields when more nuanced comparisons are

required. We hereafter state F1 micro averages unless otherwise specified. Note that

Section 5.5 presents the key results and comparisons from this section.

5.4.1 Baseline

Given the datasets available (see Section 4.2), we are able to experiment with combina-

tions of HEP and CORA papers, as well as with subsampling the CORA dataset to find

the ideal mixture. After all, in spite of the common wisdom that increasing the amount

of training data will improve generalisation and model performance, it is not clear what

effects combining different ground truths will have. One may imagine that generalising

over a hybrid dataset might learn a model that is misleading when it comes to evaluate

on a pure HEP dataset, especially when the CORA header set dwarfs our HEP one. The

baseline results are given in Table 5.4 and these show the micro average of F1 scores (see

Section 5.1.1) for each of the data configurations. Of most importance are the scenarios

involving the HEP training set taken alone, and the HEP training set appending the

CORA set, as these evaluate on HEP papers only, and are the configurations used in the

Chapter 5. Results and Analysis 46

Model Variation Data Mean Std.

Header -

HEP 90.19 2.63
HEP app. CORA 89.54 3.76

CORA 82.22 2.03
CORA app. HEP 81.8 2.76

Segmentation -

HEP 92.98 0.79
HEP app. CORA 93.58 1.65

CORA 94.02 2.96
CORA app. HEP 94.39 2.72

Table 5.4: Mean and standard deviation for baseline data configurations.

Model Variation Data Mean Std.

Header -

HEP 90.19 2.63
HEP app. 1/3 CORA 89.15 5.75

HEP app. 2/3 CORA 92.1 2.43
HEP app. CORA 89.54 3.76

Table 5.5: Mean and standard deviation for subsampling CORA dataset.

other experiments. Surprisingly, for the header model, there is a degradation of perfor-

mance when the CORA set is appended. We pursue this curiosity in Table 5.5, where

we see mixed results for subsampling CORA data, appending an extra, randomly chosen

third of the 2506 training instances each time. The pure HEP set with no appending of

CORA data (µ = 90.19, σ = 2.63) yields a model second only to the case where we ap-

pend 2/3 of the CORA dataset (µ = 92.1, σ = 2.43). The case of appending 1/3 CORA

experienced a major outlier in the third iteration of cross-validation, where it scored an

F1 micro average of as little as 78.15, performing badly across all classes. This result

notwithstanding, it seems there is some value in using a hybrid dataset, yet increasing

the proportion of CORA papers ultimately degrades performance. This strongly sup-

ports our hypothesis that there a qualitative difference between HEP papers and general

papers, but that training a successful model demands an expansion of the HEP dataset.

In further sections, we see the same effect when we train on the HEP dataset and HEP

appending CORA. For a visualisation of the subsampling results, see Figure B.5 in Ap-

pendix B. The successful predictions of our newly introduced collaboration class for the

header model (see Section 4.4.1) should be noted also.

In contrast, the segmentation model generally benefited from combining datasets, with

HEP appending CORA (µ = 93.58, σ = 1.65) and CORA appending HEP (µ = 94.39, σ =

2.72) respectively improving over HEP alone (µ = 92.98, σ = 0.79) and CORA alone

(µ = 94.02, σ = 2.96). This seems reasonable, as the HEP set in this case is larger than

the CORA one, and appending the CORA dataset can assist model performance without

overwhelming the HEP characteristics as it does for the header model. Figure 5.2 gives a

confusion matrix for the segmentation model evaluated with the baseline features on the

Chapter 5. Results and Analysis 47

HEP training set. The main diagonal (in dark blue) shows the majority correctness of

the model. Notably, the <body> class (the lines belonging to the main article sections)

shows a high true positive (TP) rate (observe the contrast in the <body> row), but

also a high number of false positives (observe the confusion in the <body> column),

equivalently, the false negatives of other classes. Thus, lower precision and higher recall.

This is to be expected, as <body> is the dominant class for the segmentation model, and

training error is most easily minimised with a bias to the dominant class (a similar result

may be seen in Figure B.6 in Appendix B for the <abstract> class in the header model).

The confusion matrix also reveals large amounts of header matter lost to the <body>

class. This is of greatest concern, as the extracted data ought to supply the header model

with its inputs at prediction time. One of our extensions to GROBID (Section 4.4.1)

allows us to see which documents these misclassifications are most attributed to.

ac
kn

ow
le

dg
em

en
t

an
ne

x

bo
dy

co
ve

r

fo
ot

no
te

he
ad

er

he
ad

no
te

pa
ge

re
fe

re
nc

es

references

page

headnote

header

footnote

cover

body

annex

acknowledgement

115 392 11 124 18 5 10871

2 10 136 18 12 17 2257 12

18 372 56 76 1380 52 35

3 906 43 32 12211 11 6 36

6 8 495 1171 47 42 31 18

259 5 26 1

142 2601 185466 162 303 45 41 590

13 1805 9078 67 1 3 46

544 5 258 10 1

Confusion matrix - Segmentation (Baseline, HEP)

Figure 5.2: Confusion matrix for segmentation model with baseline features, trained
on the pure HEP dataset. Counts are given, as well as a heatmap to indicate the most

frequent classifications.

5.4.2 Block Size

The results for our block size features (Table 5.6) were not significant, with only the most

marginal differences with respect to the baseline (µ = 90.19, σ = 2.63). The category

using both height and width features performed worst (µ = 88.47, σ = 3.1), showing

Chapter 5. Results and Analysis 48

Model Variation Data Mean Std.

Header

Baseline HEP 90.19 2.63
Height HEP 90.5 2.55
Width HEP 90.46 2.75

Height & width HEP 88.47 3.1
Area HEP 90.42 2.55

Table 5.6: Mean and standard deviation for block size variations.

that combining features does not necessarily improve, and may even degrade, model

performance, a finding we see elsewhere also6. The results are otherwise quite uniform.

We may speculate as to the underwhelming performance of these features by noticing

that block size is calculated for every token according to its membership in a contiguous

group of tokens. As a result, contiguous tokens share identical information on block

sizes, and these features do nothing to characterise the tokens individually in the way

successful features such as character classes (Section 5.4.3) and dictionaries (Section

5.4.4) do.

5.4.3 Character Classes

Almost every character class strategy made an improvement over the baseline (with the

exception of the simple binary variation). A visualisation of the results may be seen

in Figure B.3 in Appendix B. Thus, the results support our intuitions about features

based on character classes. The variations binary only and decimal only refer to the

removal of the basic baseline features addressing punctuation and related line token

characteristics. Interestingly, removing these baseline features improved performance,

even for the baseline feature set alone. The best micro average result was for the 20-

point variation (µ = 93.75, σ = 2.56) compared with the baseline, (µ = 92.98, σ = 0.79),

corresponding to an 11% reduction in error on the micro average level, as well as a 20%

reduction in error (F1) for <header>, and a 13% reduction in error for <references>,

the two most important classes. The 20-point variation used a finer discretisation than

the others. Future work might therefore try further refining the discretisation strategies.

However, the runner-up, decimal only (µ = 93.69, σ = 1.99), gave a 24% reduction for

the <header> class, and 21% for <references>. We therefore favour this variation, and

short-list it for our further comparisons (see Section 5.5).

6Notably the combination of our best features for segmentation. Future work might examine the
correlation of independent features to see if a methodology for combining features may be derived.

Chapter 5. Results and Analysis 49

Model Variation Data Mean Std.

Segmentation

Baseline HEP 92.98 0.79
Binary HEP 92.82 1.26

Binary only HEP 93.5 2.17
Decimal (round down) HEP 93.57 2.2

Decimal only HEP 93.61 1.99
Decimal (round nearest) HEP 93.37 2.27
Decimal (20 point) HEP 93.75 2.56

Table 5.7: Mean and standard deviation for character class discretisation strategies.

5.4.4 Dictionaries

Dictionary-based features, as described in Section 4.3.4, make use of domain knowledge

to establish a vocabulary for header model tokens and give a binary indicator, modelling a

token’s memberships in a set of five dictionaries (titles, authors, journals, collaborations,

and keywords), extracted from INSPIRE-HEP. We varied the degree of context-awareness

provided to a token, creating features indicating the dictionary membership of a token’s

immediate neighbours, that is, the tokens either side of it in the text, in addition to its

own membership, as well as second and third degree neighbours. The results for these

variations are given in Table 5.8. Though these features were designed with the header

model in mind, the same experimental variations were run for segmentation. The features

were expected to be more meaningful for the header model, as they give a dimensionality

reduction for a full token, mapping it to some combination of dictionaries. In the segmen-

tation model, this is done only for the leading word per line, and it is hard to imagine

this characterising a line effectively. Predictably, the header model benefited signifi-

cantly more from dictionary-based features, with clear improvements over the baseline:

(µ = 90.19, σ = 2.63) for the header model trained on HEP, and (µ = 92.98, σ = 0.79)

for the segmentation model. The most successful variation was the 1st degree for both

header (µ = 90.75, σ = 2.5) and segmentation (µ = 93.91, σ = 2.07) models. When stop

words were included (Table 5.9) the benefits were even greater for the header model.

This reflects the significant varying of stop word frequency between classes discovered

in Section C.1 in Appendix C. The most successful variation in this case was the 3rd

degree for both header (µ = 91.35, σ = 3.1) and segmentation (µ = 93.58, σ = 2.66)

models. The results for the header models are selected for closer examination in Section

5.5. Of further note was the near uniform superiority of the pure HEP data configuration

versus that of appending CORA data, reinforcing our findings about subsampling from

the baseline results (Section 5.4.1. It is after this experiment batch that we choose to be

more focused in the scenarios chosen, concentrating on the pure HEP dataset and the

models expected to most benefit from the respective feature experiments.

Chapter 5. Results and Analysis 50

Model Variation Data Mean Std.

Header

Baseline HEP 90.19 2.63

1st order
HEP 90.75 2.5

HEP app. CORA 87.65 6.49

2nd order
HEP 90.75 3.01

HEP app. CORA 88.78 7.46

3rd order
HEP 87.67 7.55

HEP app. CORA 89.78 5.99

Segmentation

Baseline HEP 92.98 0.79

1st order
HEP 93.56 1.79

HEP app. CORA 93.91 2.07

2nd order
HEP 92.16 1.61

HEP app. CORA 93.37 1.75

3rd order
HEP 93.11 2.6

HEP app. CORA 93.58 1.89

Table 5.8: Mean and standard deviation for dictionary features.

Model Variation Data Mean Std.

Header

Baseline HEP 90.19 2.63

1st order
HEP 91.21 2.03

HEP app. CORA 88.43 5.92

2nd order
HEP 88.9 7.25

HEP app. CORA 89.87 5.03

3rd order
HEP 91.35 3.1

HEP app. CORA 89.76 5.99

Segmentation

Baseline HEP 92.98 0.79

1st order
HEP 93.21 1.13

HEP app. CORA 93.48 2.04

2nd order
HEP 93.03 1.78

HEP app. CORA 93.24 3.49

3rd order
HEP 93.25 2.77

HEP app. CORA 93.58 2.66

Table 5.9: Mean and standard deviation for dictionary features combined with stop
word features.

5.4.5 Levenshtein Distance

All Levenshtein distance feature thresholding strategies performed better than the base-

line, and the scenarios combining multiple thresholds, (T1 = 0.1, T2 = 0.4) and All, show

a clear superiority over the others. A visualisation of the results can be seen in Figure

B.4 in Appendix B. The strategy, All, which used all of the listed thresholds to make a

5− point categorical variable based on Levenshtein distance gave the best performance,

(µ = 94.06, σ = 1.81), compared with the baseline, (µ = 92.98, σ = 0.79), corresponding

to a 15% reduction in error on the micro average level, as well as a 20% reduction in

error for <references>, and a 19% reduction in error for the <header>. These results

therefore support our intuitions of the effectiveness of this feature category. Such as it

Chapter 5. Results and Analysis 51

is, from the laborious data acquisition process (Section 4.2), we observed the frequency

of the misclassification of delimiting token classes, <page> and <headnote>, as part

of the <body> or <reference> sections, raising the false positive (FP) rate for these

classes, thus lowering their precision and F1 scores alike. It is therefore likely that the

Levenshtein distance features aided these transitional corner cases in the document seg-

mentation. The most successful Levenshtein distance variety is compared in more detail

in Section 5.5.

Model Variation Data Mean Std.

Segmentation

Baseline HEP 92.98 0.79
T1 = 0.1 HEP 93.51 1.37
T1 = 0.2 HEP 92.95 1.19
T1 = 0.4 HEP 93.44 1.28
T1 = 0.8 HEP 93.07 1.07

T1 = 0.1, T2 = 0.4 HEP 93.78 1.83
All HEP 94.06 1.81

Table 5.10: Mean and standard deviation for Levenshtein distance thresholding vari-
ations.

5.4.6 Regularisation

6 4 2 0 2 4 6 8
β

0

20

40

60

80

100

120

De
ns

ity

Histogram of Regularised Model Parameter Values

Figure 5.3: Distribution of model parameters with l2 regularisation.

Chapter 5. Results and Analysis 52

Our experiments in tuning the variance of the l2 regularisation confirmed the earlier

findings of (Peng and McCallum [2004]). There is little observable difference in the

performance of different choices of variance parameter, which we give in Table 5.11.

Performance is marginally worse at the extremities, namely where no penalty is imposed,

and for the greatest penalty, σ2 = 10−3. Naturally, as a penalty is increased toward

infinity, the model parameters go to 0, and performance degrades maximally. Figure 5.3

shows an empirical Normal distribution for a normalised model. That regularisation has

little effect implies that it is difficult to overfit the model, and that the high dimensionality

of the model perhaps provides in-built regularisation. Training with another algorithm

supporting a different regularisation technique (such as l1) could form the basis of future

work.

Model Variation Data Mean Std.

Header

Baseline HEP 90.19 2.63
σ2 = 0 HEP 90.4 2.58

σ2 = 10−6 HEP 90.68 3.78
σ2 = 10−5 HEP 90.64 3.78
σ2 = 10−4 HEP 90.66 3.69
σ2 = 10−3 HEP 90.44 2.77

Table 5.11: Mean and standard deviation for tuning the variance of the l2 variance
parameter.

5.4.7 Token Extensions

The results for token extensions (Table 5.12) are quite modest. No variation significantly

exceeds the baseline result with the same data configuration (µ = 92.98, σ = 0.79). Of

note is the low variance across the variations compared with other feature categories.

The result supports our earlier intuitions that though it may be helpful to establish a

vocabulary that can differentiate between sections, the result of modelling each word in

a line token individually is a feature space that is too diffuse to learn useful indicators,

given that encountering the same combination of words occurs only rarely. Line tokens

are therefore better characterised, for example, at the character- rather than word-level,

such as by character class features (Section 5.4.3).

Model Variation Data Mean Std.

Segmentation

Baseline HEP 92.98 0.79
First 5 HEP 93.38 1.6
First 10 HEP 92.8 1.08
First 15 HEP 93.12 1.5
First 20 HEP 93.29 1.75

Table 5.12: Mean and standard deviation for token extension variations.

Chapter 5. Results and Analysis 53

5.5 Key Results

In this section we visualise and discuss the most interesting and significant comparisons

drawn from the results in Section 5.4. We consider each model in turn, beginning with

the header model.

5.5.1 Header Model

The complexity of the header model, modelling 17 classes (including our new <collabo-

ration> class), made finding improvements difficult. Nevertheless, the model benefited

from the five binary dictionary-based features, and further benefited from the additional

stop word feature, functioning as a 6th dictionary. A comparison with the baseline

on the HEP dataset is visualised in Figure 5.4, showing the micro average F1 scores

for each model. Dictionaries alone (µ = 90.75, σ = 2.5) reduced error over baseline

(µ = 90.19, σ = 2.63) by 6%, and dictionaries with stop words ±3 (that is, third de-

gree contextual awareness), by 12%. The latter, our best result for the header model,

corresponds with a 16% error reduction for <address>, 19% for <author>, 54% for

<collaboration>, 14% for <date>, and 25% for <keywords>, unchanged performance

for <abstract>, <affiliation>, and <title>, and a slight degradation of 8% for <pub-

num>.

Baseline Dicts. Dicts., Stops ± 3
Scenario

86

88

90

92

94

96

F1

µ: 90.19
σ: 2.63

µ: 90.75
σ: 2.5

µ: 91.35
σ: 3.1

Header Best Features - Micro (F1)

Figure 5.4: Comparison of baseline, dictionary, and stop word features for overall
header model performance.

Chapter 5. Results and Analysis 54

5.5.2 Segmentation Model

Baseline Character classes (decimal only) Levenshtein distance (all)
Scenario

90

92

94

96

98

F1

µ: 92.98
σ: 0.79

µ: 93.61
σ: 1.99

µ: 94.06
σ: 1.81

Segmentation Best Features - Micro (F1)

Figure 5.5: Comparison of baseline, Levenshtein distance and character class features
for overall segmentation model performance.

For the segmentation model, two feature categories offered significant improvements over

the baseline. These categories were those of character classes (CC) and Levenshtein

distance (LD), and their best variations were respectively the decimal discretisation

with related baseline features removed (decimal only), and the Levenshtein distance

feature using all thresholds to create a quinternary categorical variable. Figure 5.5 shows

a boxplot comparing the micro average of F1 scores of these two variations with the

baseline, evaluated on the pure HEP dataset. The CC variation gives an overall error

reduction of 9%, and the LD, 15%. However, when we look at the most important

fields, <header> (Figure 5.6) and <references> (Figure 5.7), we see that though again

both models outperform the baseline, now CC leads with a 24% error reduction for the

<header> class, with 19% for LD, and a 21% error reduction for <references> versus

20% for LD. The character class model is therefore excelling in the cases it was explicitly

designed to improve.

The confusion matrix for character classes (decimal only) on HEP papers in Figure 5.8

shows a dramatic improvement over the baseline (Figure B.6). Of particular interest is

the increase across the main diagonal, that is true positives (TP) in every class but one,

<annex>, where it decreases from 1805 to 1573. Also of interest is the huge reduction

(906 to 312) of false negatives for the <header> class to the <body>, explaining where

the improvements are being made. Note that this was accompanied by a smaller increase

Chapter 5. Results and Analysis 55

Baseline Levenshtein distance (all) Character classes (decimal only)
Scenario

90

92

94

96

98

100

F1

µ: 93.33
σ: 2.06

µ: 94.57
σ: 2.84

µ: 94.95
σ: 2.1

Segmentation Best Features - Header (F1)

Figure 5.6: Comparison of baseline, Levenshtein distance and character class features
for the header extraction.

of false positives from <body> to <header> (303 to 530). Another remarkable improve-

ment is the reduction (from 115 to 0) of false positives for the <acknowledgement> class

for an expected <references> class. In general, classifications of the <acknowledgement>

class improved considerably. Also, <header> lines previously lost to the <cover> page

were reduced from 43 to 1. We may conclude, finally, that though the overall performance

Baseline Levenshtein distance (all) Character classes (decimal only)
Scenario

90

92

94

96

98

100

F1

µ: 94.03
σ: 2.62

µ: 95.24
σ: 1.88

µ: 95.26
σ: 2.02

Segmentation Best Features - References (F1)

Figure 5.7: Comparison of baseline, Levenshtein distance and character class features
for the reference extraction.

Chapter 5. Results and Analysis 56

of CC was slightly lower than the LD, we should prefer the CC feature variation due to its

outstanding performance in key classes, <header> and <references>. In combination,

the two features did not yield any additional gains.

ac
kn

ow
le

dg
em

en
t

an
ne

x

bo
dy

co
ve

r

fo
ot

no
te

he
ad

er

he
ad

no
te

pa
ge

re
fe

re
nc

es

references

page

headnote

header

footnote

cover

body

annex

acknowledgement

433 14 96 21 6 10966

5 116 5 10 22 2297 9

6 354 55 59 1428 57 30

311 1 41 12863 8 3 21

19 472 1205 39 58 8 17

259 5 24 3

51 2555 185735 87 530 52 28 312

16 1573 9293 3 3 1 124

616 185 17

Confusion matrix - Segmentation (Character Classes, HEP)

Figure 5.8: Confusion matrix for segmentation model with character class features,
trained on the pure HEP dataset. Counts are given, as well as a heatmap to indicate

the most frequent classifications.

Chapter 6

Conclusions

6.1 Summary

Our overarching hypothesis is that HEP papers are a special case and have qualitative

differences to conventional scientific papers. This thesis demonstrated this in a num-

ber of ways, first through a qualitative inspection of HEP papers in Chapter 4, then

quantitatively, through our experimentation in Chapter 5, such as through subsampling,

which defied the conventional wisdom of expanding training data, indicating a problem

in generalising over both HEP and CORA papers. Subsequent to this, our approach

was:

1. to train models on a custom HEP training set, and;

2. to engineer specialised features conducive to better generalisation on HEP papers.

Compiling a custom training set required much tedious manual work, and furthermore

had to be done for both header and segmentation models. One positive outcome of the

data acquisition, however, was that we more than doubled the existing training set for

the segmentation model. There may also be value in the 60 SCOAP3 papers that we

configured for training in our successful comparison of GROBID with refextract (Section

5.3). This also increases the reference-segmenter model training set substantially. This

new data may be reused and incorporated into the open source GROBID project.

Our feature engineering ideas were based on domain-specific features, such as INSPIRE-

HEP-derived dictionary features for the header model, or by addressing the unique struc-

tural characteristics of HEP papers in the segmentation model. Of particular success were

the features based on the character class composition for line tokens in the segmenta-

tion model. This gave our best overall results, proving to be highly effective indicators

for differentiating between token classes. Levenshtein distance between lines, realised

57

Chapter 6. Conclusions 58

as a single categorical variable, also proved to be effective. These latter features further

demonstrated the value in more elaborate and systematic approaches to feature engineer-

ing, whereas the baseline feature set is rather simplistic and heuristic. Our results suggest

that the best features are those giving a dimensionality reduction to tokens, that is, those

features offering a mapping to a lower-dimensional variable. Block shape features were

unsuccessful because they did not characterise the individual token well, rather address-

ing rich information of token groups (blocks). In contrast, for the header model our best

results were dictionary-based features, which map word tokens to a lower-dimensional

group. This was best realised in our novel stop word dictionary, which achieved an error

reduction in F1 of 12%, as well as large error reductions for several key classes. We

may note additionally that applying conditional random fields to line tokens, as in the

segmentation model, offers far greater scope for creativity and novelty than the header

model. Our most significant overall improvement were our character class features, which

achieved error reductions to key classes, <header> and <references>, of 24% and 21%

respectively. Our Levenshtein distance features are exceptional in that they model dif-

ferences between successive lines of text. This appears to have resolved many of the

transitional misclassifications observed in our data acquisition (Section 4.2).

We may note finally that GROBID, including our extensions and custom data, will

shortly be in use within INSPIRE-HEP.

6.2 Future Work

We hereby state some ideas for extending the work that we have completed so far:

1. An obvious starting point for improving upon our work is to continue expanding

the HEP training sets for each of the models. A major finding of our work is that

long-term improvement of the models will require the manual creation of HEP

training data, and cannot be fully compensated by appending general CORA data.

2. Another extension to GROBID would be to model collaborations in the citation

model, as we achieved for the header model (Section 4.4.1).

3. Not much came of our regularisation experiments other than to reinforce the find-

ings in the literature. It would be interesting to try other forms of regularisation,

such as l1. This requires an optimisation algorithm that is not gradient-based, but

Wapiti does offer such alternatives to L-BFGS.

4. It would be interesting to combine some of our feature ideas. With the excep-

tion of combining dictionaries with stop word features, we did not find any useful

feature pairs. Our strongest pair of features for the segmentation model did not

Chapter 6. Conclusions 59

yield additional gains in combination. Investigations could therefore be made into

the interaction of feature categories, and a methodology derived for how best to

combine them.

5. Our approach could be made easier with further enhancements to GROBID’s eval-

uation utilities. For example, it would be useful to see exactly which tokens are

being misclassified when misclassifications occur. We went some way towards this

in 4.4.1 where we tracked the k documents most contributing to classification error.

Appendix A

Algorithms

Data: Observation sequence, x, and model parameters, θ = (A,B, I)
Result: Most likely sequence, y*
Initialise y∗ as a zero-length sequence for s ∈ S do

v1(s) = I(s)×B(x1, s)
end
for t = 2 to T do

for s ∈ S do
vt(s) = maxs′(A(s′, s)× vt−1(s

′))×B(xt, s)
Append s to y∗

end

end
Return y∗
Algorithm 1: The Viterbi algorithm (O(T |S|2)) for computing the most likely hidden
sequence for a given observation sequence of an HMM.

Data: Observation sequence, x, and model parameters, θ = (A,B, I)
Result: Set of forward variables, {αt(s)}s∈S,t∈T , and backward variables,

{βt(s)}s∈S,t∈T
for s ∈ S do

α1(s) = B(x1, s)× I(s)
for t = 2 to T do

αt(s) =
∑

s′ A(s, s′)×B(xt, s)× αt−1(s
′)

end

end
for s ∈ S do

βT (s) = 1
for t = T-1 to 1 do

βt(s) =
∑

s′ βt+1(s
′)×A(s, s′)×B(xt, s)

end

end
Return the sets of backward and forward variables

Algorithm 2: The forward-backward algorithm - O(T |S|2)

61

Appendix B

Figures

Accurate Information Extraction from Research Papers
using Conditional Random Fields

Fuchun Peng

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

fuchun@cs.umass.edu

Andrew McCallum

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

mccallum@cs.umass.edu

Abstract

With the increasing use of research paper

search engines, such as CiteSeer, for both lit-

erature search and hiring decisions, the accu-

racy of such systems is of paramount impor-

tance. This paper employs Conditional Ran-

dom Fields (CRFs) for the task of extracting

various common fields from the headers and

citation of research papers. The basic the-

ory of CRFs is becoming well-understood, but

best-practices for applying them to real-world

data requires additional exploration. This paper

makes an empirical exploration of several fac-

tors, including variations on Gaussian, expo-

nential and hyperbolic- priors for improved

regularization, and several classes of features

and Markov order. On a standard benchmark

data set, we achieve new state-of-the-art perfor-

mance, reducing error in average F1 by 36%,

Previous work in information extraction from research

papers has been based on two major machine learn-

ing techniques. The first is hidden Markov models

(HMM) (Seymore et al., 1999; Takasu, 2003). An

HMM learns a generative model over input sequence

and labeled sequence pairs. While enjoying wide his-

torical success, standard HMM models have difficulty

modeling multiple non-independent features of the ob-

servation sequence. The second technique is based

on discriminatively-trained SVM classifiers (Han et al.,

2003). These SVM classifiers can handle many non-

independent features. However, for this sequence label-

ing problem, Han et al. (2003) work in a two stages pro-

cess: first classifying each line independently to assign it

label, then adjusting these labels based on an additional

classifier that examines larger windows of labels. Solving

the information extraction problem in two steps looses

the tight interaction between state transitions and obser-

vations.

Figure B.1: The header section of a scientific paper. Excerpt from Peng and McCal-
lum [2004]

Research Article

Quintessence and Holographic Dark Energy in !(") Gravity

M. Zubair

Department of Mathematics, COMSATS Institute of Information Technology, Lahore 54000, Pakistan

Correspondence should be addressed to M. Zubair; mzubairkk@gmail.com

Received 22 September 2014; Revised 21 December 2014; Accepted 2 January 2015

Academic Editor: Filipe R. Joaquim

Copyright © 2015 M. Zubair. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The
publication of this article was funded by SCOAP3.

We regard !(") theory as an efficient tool to explain the current cosmic acceleration and associate its evolution with the known
dark energy models.The numerical scheme is applied to reconstruct !(") theory from dark energy model with constant equation
of state parameter and holographic dark energy model. We set the model parameters #! and $ as describing the different evolution
eras and show the distinctive behavior of each case realized in !(") theory. We also present the future evolution of reconstructed
!(") and find that it is consistent with the recent observations.

!(&,)

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2015, Article ID 292767, 10 pages
http://dx.doi.org/10.1155/2015/292767

Figure B.2: The header section of a HEP paper. Excerpt from Zubair [2015]

63

Appendix B. Figures 64

Bin. Dec. (round nearest) Bin. only Dec. (round down) Dec. only Dec. (20 point)
Scenario

90

92

94

96

98

F1

µ: 92.82
σ: 1.26

µ: 93.37
σ: 2.27

µ: 93.5
σ: 2.17

µ: 93.57
σ: 2.2

µ: 93.61
σ: 1.99

µ: 93.75
σ: 2.56

Character Classes - Micro (F1)

Figure B.3: Comparison of different character class feature discretisation strategies.

Lev. (0.2) Lev. (0.8) Lev. (0.05) Lev. (0.4) Lev. (0.1) Lev. (0.1, 0.4) Lev. (all)
Scenario

91

92

93

94

95

96

97

98

F1

µ: 92.95
σ: 1.19

µ: 93.07
σ: 1.07

µ: 93.13
σ: 1.18

µ: 93.44
σ: 1.28

µ: 93.51
σ: 1.37

µ: 93.78
σ: 1.83

µ: 94.06
σ: 1.81

Levenshtein - Micro (F1)

Figure B.4: Comparison of different levenshtein distance feature thresholding strate-
gies.

Appendix B. Figures 65

Baseline Base. HEP app. 1/3CORA Base. HEP app. 2/3CORA Base. HEP app. CORA
Scenario

80

85

90

95
F1

µ: 90.19
σ: 2.63

µ: 89.15
σ: 5.75

µ: 92.1
σ: 2.43

µ: 89.54
σ: 3.76

Subsampling - Micro (F1)

Figure B.5: Comparison of different data configurations subsampling the CORA
dataset.

ab
st

ra
ct

ad
dr

es
s

af
fil

ia
tio

n

au
th

or

co
lla

bo
ra

tio
n

co
py

rig
ht

da
te

em
ai

l

gr
an

t

ke
yw

or
d

no
te

ph
on

e

pu
bn

um

re
fe

re
nc

e

su
bm

is
si

on tit
le

w
eb

web
title

submission
reference

pubnum
phone

note
keyword

grant
email
date

copyright
collaboration

author
affiliation

address
abstract

9 36 23 34

37 8 16 105 57 1790

25 23 25 35 9 15 31 669 6

111 67 6 75 3 7 56 92 15 1101 24

11 25 792 3 19

10 13 33

178 16 44 14 51 8 204 16 62 563 3 151 30 93

78 6 20 1205 65 80 126

8 20 303 23 10 12

85 24 52 1840 23 52 9

3 5 6 154 14 11 41

169 6 17 213 50 58 12 3

4 6 20 1 2 5

32 40 74 3744 18 17 11 29 18 42 5 20

58 141 3411 99 2 4 7 35 138 16

10 2606 165 138 1 12 10 15 10 192 27

23078 50 82 11 14 3 17 55 98 23 19 16 24 19
Confusion matrix - Header (Baseline, HEP)

Figure B.6: Confusion matrix for header model, baseline features, trained on HEP
data..

Appendix C

Statistical Tests

C.1 Stop Word Frequency

To substantiate our claim that stop word frequency varies according to header section,

we computed the frequency of stops words in abstract, author list, and title sections

for 20 HEP papers (anova_data.py). Plotting these frequencies (Figure C.1) showed a

drastic difference.

●

Abstract Authors Title

0
.0

0
.1

0
.2

0
.3

0
.4

Stop Word Frequency

Section

F
re

q
u
e
n
c
y

Figure C.1: Box plots of stop word frequency according to header section.

To confirm the significance of this result, we first performed an ANOVA in R (Figure C.2)

on the frequency data. The test reported a p-value of (< 0.01), permitting us to reject the

null hypothesis that the means are equal (H0 : µ1 = µ2 = · · · = µk), thereby confirming

67

Appendix C. Statistical Tests 68

Df Sum Sq Mean Sq F value Pr(>F)

Section 2 1.0685 0.5342 57.28 2.3e-14 ***

Residuals 57 0.5317 0.0093

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure C.2: ANOVA showed the average stop word frequency of header sections varies
significantly.

Pairwise comparisons using t tests with pooled SD

data: stops and sections

Abstract Authors

Authors 1.5e-08 -

Title 1.6e-14 0.0016

P value adjustment method: bonferroni

Figure C.3: Pairwise t-tests showed significance for each comparison.

the statistical significance of the varying means. We further performed pairwise t tests

(Figure C.3) to show the significance of the result for each class, with each p-value of

(< 0.01).

Bibliography

Andrew McCallum, Dayne Freitag, and Fernando CN Pereira. Maximum Entropy

Markov Models for Information Extraction and Segmentation. In ICML, volume 17,

pages 591–598, 2000a.

Eamonn Maguire, Philippe Rocca-Serra, Susanna-Assunta Sansone, Jim Davies, and Min

Chen. Taxonomy-based glyph design–with a case study on visualizing workflows of

biological experiments. Visualization and Computer Graphics, IEEE Transactions on,

18(12):2603–2612, 2012.

Roel Aaij, B Adeva, M Adinolfi, A Affolder, Z Ajaltouni, S Akar, J Albrecht, F Alessio,

M Alexander, S Ali, et al. Identification of beauty and charm quark jets at LHCb.

arXiv preprint arXiv:1504.07670, 2015.

Fuchun Peng and Andrew McCallum. Accurate information extraction from research

papers using conditional random fields. In HLT-NAACL04, pages 329–336, 2004.

M Zubair. Quintessence and Holographic Dark Energy in Gravity. Advances in High

Energy Physics, 2015, 2015.

Anne Gentil-Beccot, Annette Holtkamp, Salvatore Mele, Heath B O’Connell, and

Travis C Brooks. Information resources in High-Energy Physics: Surveying the present

landscape and charting the future course. Journal of the American Society for Infor-

mation Science and Technology, 60(1):150–160, 2009.

Alan Souza, Viviane Moreira, and Carlos Heuser. ARCTIC: metadata extraction from

scientific papers in pdf using two-layer CRF. In Proceedings of the 2014 ACM sympo-

sium on Document engineering, pages 121–130. ACM, 2014.

Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Eugene Charniak, Curtis Hendrickson, Neil Jacobson, and Mike Perkowitz. Equations

for part-of-speech tagging. In AAAI, pages 784–789, 1993.

69

Bibliography 70

Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite

state Markov chains. The annals of mathematical statistics, pages 1554–1563, 1966.

Andrew J Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269, 1967.

John Binder, Kevin Murphy, and Stuart Russell. Space-efficient inference in dynamic

probabilistic networks. Bclr, 1:t1, 1997.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. 2001.

Charles Sutton and Andrew McCallum. An introduction to conditional random fields for

relational learning. Introduction to statistical relational learning, pages 93–128, 2006.

Thomas Lavergne, Olivier Cappé, and François Yvon. Practical Very Large Scale CRFs.

In Proceedings the 48th Annual Meeting of the Association for Computational Lin-

guistics (ACL), pages 504–513. Association for Computational Linguistics, July 2010.

URL http://www.aclweb.org/anthology/P10-1052.

Hervé Déjean and Jean-Luc Meunier. A system for converting PDF documents into

structured XML format. In Document Analysis Systems VII, pages 129–140. Springer,

2006.

Mario Lipinski, Kevin Yao, Corinna Breitinger, Joeran Beel, and Bela Gipp. Evaluation

of header metadata extraction approaches and tools for scientific pdf documents. In

Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries, pages

385–386. ACM, 2013.

Patrice Lopez. GROBID: Combining automatic bibliographic data recognition and term

extraction for scholarship publications. In Research and Advanced Technology for Dig-

ital Libraries, pages 473–474. Springer, 2009.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Au-

tomating the construction of internet portals with machine learning. Information

Retrieval, 3(2):127–163, 2000b.

