
© 2005-2011 Linden H. McClure, Ph.D. – 1 – Embedded System Design 3/13/2011 11:02 AM

ECEN 4613/5613 Embedded System Design Week #10

Spring 2011 Lab #4 3/13/2011

Lab Overview

In this lab assignment, you will do the following:

• Add an LCD and a serial EEPROM to the hardware developed in Labs #1, #2 & #3.

• Write device drivers for the LCD and EEPROM. Use C pointers to access a peripheral.

• Write assembly and C programs to implement a user interface and perform user tasks.

• Write simple assembly and C programs to test EEPROM accesses.

• Continue learning how to use SDCC and Eclipse.

The signature due date for this lab assignment is Friday, April 1, 2011 (Required Elements) and

Tuesday, April 5, 2011 (Supplemental Elements).

The submission due date for this lab is 5:25pm Wednesday, April 6, 2011.

The cutoff date for this lab is Wednesday, April 27, 2011.

This lab is weighted as ~20% of your course grade.

Required elements are necessary in order to meet the requirements for the lab. Supplemental/challenge

elements of the lab assignment may be completed by the student to qualify for a higher grade, but they do

not have to be completed to successfully meet the requirements for the lab. The highest possible grade

an ECEN 5613 student can earn on this assignment without completing any of the supplemental

elements is a 'C+'. The highest possible grade an ECEN 4613 student can earn on this assignment

without completing any of the supplemental elements is a 'B+'. ECEN 4613 students may qualify

for full credit for this lab assignment by completing the required elements and the first two

supplemental elements (clock and custom characters). If you are up for an engineering challenge and

want to learn more, then attempt the optional challenge(s). You do not need to complete optional elements

in order to get a signature; however, completing optional elements with good results will help your work

stand out. Students should prioritize work on required elements and supplemental elements over

challenge elements.

All items on the signoff sheet must be completed to get a signature, but partial credit is given for

incomplete labs. Note that receiving a signature on the signoff sheet does not mean that your work is

eligible for any particular grade; it merely indicates that you have completed the work at an acceptable

level.

NOTE: The quality of your user interfaces and demo will impact your score on the lab. Your goal

should be to ensure that the user has a successful and positive experience with your software. Your code

should handle error conditions gracefully (e.g. user input values outside the allowed range). Top scores

are reserved for those students who submit outstanding implementations, including coding style.

© 2005-2011 Linden H. McClure, Ph.D. – 2 – Embedded System Design 3/13/2011 11:02 AM

Lab Details

1. Review the data sheets for the Optrex DMC 20434 LCD and the SED1278F (or Hitachi HD44780U)

LCD controller. Review the document "SED1278F Technical Manual Errata".

2. Refer to the LCD Guide ("Adding an LCD (with an HD44780 LCD controller) to your board")

available on the course web site for further ideas and information on interfacing to the LCD module.

It contains some very important notes, including one regarding errors in the LCD data sheet.

3. [Required Element
1
] Devise a way to securely mount the LCD and properly connect all of the

data lines to your board. It may take you a little time to devise a good physical interface, so don’t wait

too long before getting started. Wire can be used to easily attach the LCD to your board without

requiring any drilling (remember the previous warnings against drilling holes in the PCB).

Data Lines: Most LCDs will have only 14 pins. LCDs with a backlight will have 16 pins, with two for

the backlight. One option for connecting data lines is to use a 14-pin strip header or SIPP wire wrap

socket. You may also attach the LCD through a ribbon cable to a 14- or 16-pin DIP socket on your board.

A sturdy data line connection using a strip header can make it easy to mount the LCD.

4. [Required Element
1
] Design and implement your LCD circuit. Your LCD must be memory

mapped in the address space reserved for peripherals (this is an example of memory mapped I/O), and

will be accessible using the MOVX instruction (and via a pointer variable in C). The LCD contrast

(VEE) can sometimes be grounded, but you probably need to use a potentiometer or resistor divider to

control the contrast so that you can see characters on the screen. The LCD in the parts kit has

14 pins/lines which must be connected.

The eight data signals on the LCD must be connected to the data lines on Port 0 of the 8051.

Ensure that the E signal on the LCD is high only when reading from or writing to the LCD.

© 2005-2011 Linden H. McClure, Ph.D. – 3 – Embedded System Design 3/13/2011 11:02 AM

5. [Required Element
1
] Implement an LCD device driver with the following C functions:

• // Name: lcdinit()
 // Description: Initializes the LCD (see Figure 25 on page 212
 // of the HD44780U data sheet).
 void lcdinit()

• // Name: lcdbusywait()
 // Description: Polls the LCD busy flag. Function does not return
 // until the LCD controller is ready to accept another command.
 void lcdbusywait()

• // Name: lcdgotoaddr()
 // Description: Sets the cursor to the specified LCD DDRAM address.
 // Should call lcdbusywait().
 void lcdgotoaddr(unsigned char addr)

• // Name: lcdgotoxy()
 // Description: Sets the cursor to the LCD DDRAM address corresponding
 // to the specified row and column. Location (0,0) is the top left
 // corner of the LCD screen. Must call lcdgotoaddr().
 void lcdgotoxy(unsigned char row, unsigned char column)

• // Name: lcdputch()
 // Description: Writes the specified character to the current
 // LCD cursor position. Should call lcdbusywait().
 void lcdputch(char cc)

• // Name: lcdputstr()
 // Description: Writes the specified null-terminated string to the LCD
 // starting at the current LCD cursor position. Automatically wraps
 // long strings to the next LCD line after the right edge of the
 // display screen has been reached. Must call lcdputch().
 void lcdputstr(char *ss)

NOTE: I prefer you to write your own code for these routines. However, a variety of LCD routines and

libraries suitable for SDCC are available on the web. You may use these libraries as long as your code

contains clear documentation of how you obtained, utilized and/or modified them. Each of your code files

must have a file header which identifies all authors of the code. (You already know this is the standing

expectation in this class with regard to borrowed code.) You must have a complete understanding of

how all the code works.

6. [Required Element
1
] Write a simple program that uses your LCD driver to prove that the six

required functions are implemented correctly. Choose the sequence carefully so that it is easy for the

TA to see that each function did its job correctly during the demonstration. This program is just test

code and does not need to be completely robust, as long as it adequately demonstrates the

functionality of each of the LCD functions above.

7. [Required Element
1
] Using a logic analyzer, prove that your LCD control signal timing is correct.

Show the timing between the E, RS, R/W*, and data signals as measured at your LCD interface.

• A logic analyzer screen capture or a simple hand sketch of these timing relationships and values

must be turned in with your lab, along with your timing analysis. You may be able to use the floppy

diskette from the tool kit for the bench top logic analyzer screen capture, if you have a PC with a

floppy drive. You won’t need a floppy disk if you use the LogicPort logic analyzers.

You should also be able to prove that the LCD E control signal goes high only when the LCD is being

accessed. You can verify this by running code which does not access the LCD and by triggering the logic

analyzer on E going high. If E goes high during this test, then your implementation is incorrect. You may

also be able to test this by using Paulmon2.

© 2005-2011 Linden H. McClure, Ph.D. – 4 – Embedded System Design 3/13/2011 11:02 AM

8. Read the EEPROM Guide "Adding an NM24C04 (or NM24C16) EEPROM to your board", available

on the course web site. It has ideas and information on interfacing to the I
2
C EEPROM.

9. Read the data sheet for the serial EEPROM included in your parts kit (e.g. Microchip 24LC16 or

Fairchild-National Semiconductor NM24C16). You may also want to read Fairchild Application Note

AN-794.

10. [Optional, but recommended] Review Microchip app notes AN536, AN572, AN614 and AN709.

11. [Required Element
1
] Design and implement your EEPROM circuit. Your EEPROM should be

connected to two unused port pins on Port 1 or Port 3. Note that since you are connecting to the

EEPROM using port pins, the EEPROM does not consume any 8051 address space.

NOTE: In the next step, your EEPROM driver code may require use of specific port pins

12. [Required Element
1
] Implement an EEPROM I

2
C device driver with the ability to write and read a

byte at any EEPROM I
2
C address using function calls from C. The underlying drivers may be in

assembly if you wish, but the functions must be accessible from C. It does not matter what you name

the functions. For example, you might implement the following two functions.

 int eebytew(addr, data) // write byte, returns status
 int eebyter(addr) // read byte, returns data or status

NOTE: A variety of I
2
C routines and libraries suitable for SDCC are available on the web, including

those in Microchip AN614. You may use these libraries as long as your code contains clear

documentation of how you obtained, utilized and/or modified them. (You already know this is the

standing expectation in this class with regard to borrowed code.)

13. [Required Element
1
] Verify that you can write data to and read data from the EEPROM using your

I
2
C device driver and verify the stored data is correct after cycling power.

14. [Required Element
1
] Use a logic analyzer to prove that your byte write function sends the correct

signals and has the correct I
2
C timing.

• A simple hand sketch or a logic analyzer screen capture of these timing relationships and values

must be turned in with your lab, along with your timing analysis. You may be able to use the floppy

diskette from the tool kit for the benchtop logic analyzer screen capture, if you have a PC with a

floppy drive. You won’t need a floppy disk if you use the LogicPort logic analyzers.

15. [Optional] Use the I
2
C triggering program on the Agilent 54622D oscilloscope to trigger on a write or

read frame on the bus. Display SCL and SDA on the oscilloscope screen and verify that the

transaction is for the address you intended. Verify that your rise and fall times fall within the limits

given in the I
2
C specification. Alternatively, use a logic analyzer to trigger on a bus transaction.

© 2005-2011 Linden H. McClure, Ph.D. – 5 – Embedded System Design 3/13/2011 11:02 AM

16. [Required Element1]

Provide a well-designed menu on the PC terminal emulator screen which allows the user to:

• Write Byte: Enter an EEPROM address and a byte data value in hex. If the address and data are

valid, store the data into the EEPROM. The program must allow any hex value from 0x00 to 0xFF to

be programmed into any location in the EEPROM. Do not make the user type in "0x" before the

address or data hex value.

• Read Byte: Enter an EEPROM address in hex. If the EEPROM address is valid, display on the PC

screen in hex the contents of the EEPROM address, using the format "AAAA: DD". Do not make the

user type in "0x" before the address hex value.

• LCD Display: Enter an EEPROM address in hex. If the EEPROM address is valid, display on the

LCD display in hex the EEPROM address and the contents of the EEPROM address, using the format

"AAAA: DD", positioned on the LCD at (row,column) = (Y,0). 'Y' is the row number and cycles

through the values {0,1,2,3,0,1,2,3,0…} Each time this function is called, the EEPROM cell content

is printed, and then 'Y' is incremented according to the sequence shown above. Data from up to four

EEPROM addresses can be seen on the LCD screen at any one time, depending on how many times

the user has selected LCD Display. Do not make the user type in "0x" before the address hex value.

This function must utilize the lcdgotoxy() device driver function.

• Hex Dump: Read the entire contents of the EEPROM and display the data on the PC screen in

hexadecimal, with 16 bytes of data per line, in the following format:

AAAA: DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD

This format is similar to what you see when using the EPROM programmer or when dumping

memory contents using PAULMON2, where AAAA is the starting address (in hex) for each block of

16 data values DD (in hex). The first memory cell in the EEPROM is address 0000. You should be

able to leverage code from Lab #3.

The user must be able to execute menu items in any order (the program should not include any

dependencies on the order in which a user selects menu items).

Your code should not ignore ACK’s during I2C reads.

1
 Required elements are necessary in order to meet the requirements for the lab. Supplemental and

challenge elements of the lab assignment may be completed by the student to qualify for a higher grade,

but they do not have to be completed to successfully meet the minimum requirements for the lab.

© 2005-2011 Linden H. McClure, Ph.D. – 6 – Embedded System Design 3/13/2011 11:02 AM

17. [Supplemental Element
1
]:

NOTE: The following routines must be integrated into the previous C programs above. Modify your

previous C program to do the following additional things:

• In the bottom right corner of the LCD, continuously display the elapsed time since your program

started running using the format "MM:SS.S", where MM is the number of elapsed minutes and SS.S

represents the seconds to one-tenth of a second accuracy. For example, 5.1 seconds would be

displayed as "00:05.1" and 64.3 seconds would be displayed as “01:04.3”.

• Provide additional Clock menu options to stop the elapsed time clock, to restart the clock, and to reset

the clock back to "00:00.0".

NOTE: Make sure that the cursor location is correctly stored before and restored after any ISRs.

NOTE: If using SDCC, read the "interrupt" sections of the SDCC user manual carefully, and

remember the correct use of 'volatile' and ‘critical’. Be careful when using variables from within the

context of an ISR. This includes any functions that your ISR calls. Do not use printf/sprintf in an ISR

(note that printf and sprintf share code).

• [Challenge] If you are up for a software engineering challenge and want to learn more about how to

optimize code, then attempt this part. Note that you do not need to complete this part in order to get a

signature on this supplemental element; however, completing this part with good results will help

your work stand out. You may find it difficult or impossible to get this part working smoothly.

Add a feature to your code to allow the user to enter and exit an enhanced clock mode that tracks the

elapsed time to one-hundredth of a second accuracy. While in this enhanced mode, the clock should

display using the format “MM:SS.SS” where SS.SS represents the seconds to one-hundredth of a

second accuracy. For example, 64.37 seconds would display as “01:04.37”

NOTE: This supplemental element is an addition to the previous required element. The required and

supplemental code must be integrated together. The elapsed timer must work correctly while

simultaneously allowing all the menu options in the previous C program to work correctly.

NOTE: If you get this supplemental element signed off, don't turn in separate versions of code for both

the required part and the supplemental part - just submit one integrated version.

18. [Supplemental Element
1
]:

NOTE: This supplemental element may be a separate program, and does not need to be integrated into

the previous lab elements.

Create Custom Character: Design and implement C routines which allow the creation of custom LCD

characters using CGRAM. Implement the following function:
 // Name: lcdcreatechar()
 // Description: Function to create a 5x8 pixel custom character with
 // character code ccode (0<=ccode<=7) using the row values given in
 // the 8-byte array row_vals[].

 void lcdcreatechar(unsigned char ccode, unsigned char row_vals[])

Provide a way for users to enter and display their own customer characters. A good custom character

generation routine user interface should:

 (a) accept values from the user representing the pixel pattern for each row of the custom character (the

design can choose to allow either strings of bits or hex values representing each row of the character)

 (b) display the current state to the user after each row is entered

© 2005-2011 Linden H. McClure, Ph.D. – 7 – Embedded System Design 3/13/2011 11:02 AM

19. [Supplemental Element
1
]:

• This supplemental element may be a separate program, and does not need to be integrated into the

previous lab elements.

• Read the PCF8574 I
2
C I/O expander data sheets and application notes available from the course web

site. Integrate the chip into your embedded system, sharing the I2C bus with the EEPROM, and prove

that you can configure some of its I/O pins to work as inputs and other pins to work simultaneously as

outputs. Your parts kit already included a 16-pin wire wrap socket that could be used with the I2C

expander chip. You can purchase another wire wrap socket if necessary.

Provide a user interface that allows you to configure the pins individually as inputs or outputs, and

also to check the status of the pins and to write to the pins that are outputs. Remember to use a bit

mask in software when interacting with specific pins on the chip.

Use the interrupt signal from the I/O expander to notify the processor of a button press, and have at

least one of the I/O pins drive an LED directly.

20. [Supplemental Element
1
]:

• Modify your EEPROM I
2
C device driver to include a new function named eereset():

 // Name: eereset()
 // Description: Performs a software reset of the I2C EEPROM using an
 // algorithm that conforms to Microchip application note AN709.
 void eereset()

Use a logic analyzer to prove that eereset sends the correct sequence and has the correct I2C timing.

Show the trace on the logic analyzer to the TA during signoff. You do not need to print/submit the

trace with your report. Demonstrate that you understand the eereset code during your sign-off.

• [Challenge] Provide an option for the user to Measure EEPROM Write Times. Write a function

that enables the user to measure with a logic analyzer or oscilloscope how long it takes to write data

to the EEPROM in byte write and page write modes, including software overhead. One method is

to use two GPIOs on the 8051 to help measure these times. Toggle a GPIO just before issuing a byte

write command (including a STOP condition to force the EEPROM to commit the data). Use ACK

polling to determine when the device has finished the write, and toggle the GPIO again. Use a logic

analyzer or scope to measure the time the byte write took. Toggle a second GPIO just before sending

a page write command (send a page of 16 bytes to the EEPROM and then commit the data), use ACK

polling to determine the end of the write operation, and then toggle the second GPIO again. Compare

both byte write and page write times to the data sheet write cycle timing specification, and determine

how long it would take to write 1024 bytes of data to the EEPROM using the byte write and page

write methods. Note: You'll want to treat this function as a critical section, and make sure to turn off

interrupts while you are executing your write timing code. Be prepared to discuss how your measured

times compare to calculated times, and how you might further reduce EEPROM write cycle time

impact in an embedded system design.

NOTE: Make copies of your code, SPLD code, and schematic files and save them as an archive. You

will need to submit the Lab #4 files electronically at the end of the semester.

NOTE: When debugging your code, you can save paper by using the features in the printer driver

installed on the computers in the lab. Select duplex printing to print on both sides of the paper. Select "2

pages per sheet" to get two pages of your code on each side of the paper.

ECEN 4613/5613 Embedded System Design Spring 2011

 Lab #4 Signoff Sheet

You will need to obtain the signature of your TA on the following items in order to receive credit for your

lab assignment. Signatures are due by Friday, April 1, 2011 (Required Elements) and Tuesday,

April 5, 2011 (Supplemental Elements). Labs completed late will receive grade reductions.

Print your name below, sign the honor code pledge, and then demonstrate your working hardware & firmware in

order to obtain the necessary signatures. All items must be completed to get a signature, but partial credit is given

for incomplete labs. Note that receiving a signature on the signoff sheet does not mean that your work is eligible for

any particular grade; it merely indicates that you have completed the work at an acceptable level.

Student Name: ______________________________________ 4613 or 5613 (circle one)

Signoff Checklist

Required Elements

 Pins and signals labeled and decoupling capacitors present on board

 LCD functional, C code for basic LCD routines functional

 LCD control signal timing meets specifications (diagram)

 Serial EEPROM functional, contents present after power cycle

 C code for EEPROM functional, I
2
C timing correct

 LCD Display and hex dump of EEPROM _______________________________

 TA/Instructor signature and date
Supplemental Elements (Qualifies student for higher grade.)

 Elapsed time display (accurate 1 second resolution)

 Elapsed time stop, restart, reset to "00:00.0", up/down:

 Challenge: one-hundredth second accuracy

 Support for custom LCD characters

 Good integration with previous code, all functions work

with no irregularities _______________________________

Supplemental Elements (Qualifies student for higher grade.)

 PCF8574 I
2
C I/O Expander

 EEPROM eereset() functional and correct

 Challenge: Measure EEPROM Byte/Page Write Times _______________________________

FOR TA/INSTRUCTOR USE ONLY
Required Elements

Not
Applicable

Poor/Not
Complete

Meets
Requirements

Exceeds
Requirements Outstanding

Schematics, SPLD code
Hardware physical implementation
Required Elements functionality
Sign-off done without excessive retries
Student understanding and skills
Overall Demo Quality

FOR TA/INSTRUCTOR USE ONLY
Supplemental Elements

Not
Applicable

Below
Expectation

Meets
Requirements

Exceeds
Requirements Outstanding

Supplemental Elements functionality
Sign-off done without excessive retries
Student understanding and skills

Overall Demo Quality

TA/Instructor Comments (e.g. user interface quality/issues): □ □ □
 NOTE: This signoff sheet should be the top sheet of your submission.

Submission Sheet
Instructions: Print your name below, circle your course number, and sign the honor code pledge. Separate

the signoff and submission sheets from the rest of the lab and turn in these two signed forms, the items in

the checklist below, and the answers to any applicable lab questions to the instructor in order to receive

credit for your work. No cover sheet please.

In addition to the items listed on the signoff checklist, be sure to review the lab for additional

requirements for submission, including:

 Signed and dated signoff sheet as the top sheet (No cover sheet please) (hard copy)

 Submission Sheet with signed honor code pledge as the second sheet (printed on the back of the

signoff sheet is OK) (hard copy)

 Timing diagrams and analyses for the LCD and EEPROM interfaces (electronic or hard copy – if

turning in a hard copy, submit a note indicating this fact as part of your CULearn submission)

Submit all other files electronically via CULearn.

 PDF of full copy of complete and accurate schematic of acceptable quality (all old/new components

shown). Include programmable logic source code (e.g. .PLD file for the SPLD). Submit via CULearn.

 Full copy of fully, neatly, clearly commented source code (including C and header files, and .RST,

.MEM, and .MAP files). Ensure your code is neat and easy to read, and that each file has header

comments that identify the author and any leveraged code the file contains. Submit via CULearn.

Make copies of your code, SPLD code, and schematic files and save them as an archive. You will need to

submit all the lab files electronically at the end of the semester.

Submit as many items as possible electronically, to reduce paper usage. Make sure your name is on each

hard copy item and staple the items together, with the signoff sheet as the top item.

Student Name: ______________________________________ 4613 or 5613 (circle one)

Honor Code Pledge: "On my honor, as a University of Colorado student, I have neither given nor

received unauthorized assistance on this work. I have clearly acknowledged work that is not my own."

 Student Signature: __________________________________

FOR TA/INSTRUCTOR USE ONLY

Submission Evaluation Not
Applicable

Below
Expectation

Meets
Requirements

Exceeds
Requirements

Outstanding

 Required Elements
 Code Quality/Style/Comments

 Supplemental Elements
 Code Quality/Style/Comments

 Timeliness of Signoffs
very late
(4+ days)

Late
(1-3 days)

on time
early

(2-3 days)
very early
(4+ days)

 Overall Submission Quality

 Overall Assessment Adjustments/Late Penalty

 Final Grade

Comments: NOTE: This submission sheet should be the second sheet of your submission.

