
© 2005-2009 Linden H. McClure, Ph.D. � 1 � Embedded System Design

ECEN 4613/5613 Embedded System Design Week #6

Fall 2009 Lab #3 9/30/2009

Lab Overview

In this lab assignment, you will do the following:

• Add RS-232 communication to the hardware developed in Labs #1 & #2.

• Replace the C501 processor with an Atmel AT89C51RC2 processor.

• Learn how to use the Atmel FLIP utility to program the processor flash memory.

• Learn how to configure the 8051 for serial communication and how to write serial device drivers.

• Learn how to use internal XRAM and external XRAM (using the NVSRAM).

• Begin learning how to use the SDCC compiler and Eclipse IDE to develop C programs.

The signature due date for this lab assignment is Tuesday, October 27, 2009.

The submission due date for this lab is 5:30pm Wednesday, October 28, 2009.

This lab is weighted as 20% of your course grade.

Finish Lab #3 early, to give you more time for Lab #4 and your final project.

Lab Details

1. Refer to Lab #1 for comments regarding layout considerations, labeling, wiring, etc. All signals and

pin numbers on all ICs must be labeled.

2. Determine how to program the Atmel AT89C51RC2 using the EMP-100 programmer to set the

lowest security levels, to enable reset at address 0000h, and to enable the XRAM. See the

programming guide notes, that will be available on the course web site.

3. Replace the C501 on your board with the Atmel AT89C51RC2. Verify that the oscillator circuit and

run-time reset circuit work correctly, like you did in Lab #1. The ALE signal should come up at the

correct frequency after every power cycle and reset. Note: The AO bit of the AUXR register must be

'0b' (its default value) in order for the processor to emit ALE like the C501 processor.

4. [Optional] Add a supervisory circuit (e.g. Microchip MCP-101) to protect the processor Flash

memory against corruption due to power supply brownout or shutdown issues. See Atmel application

note "External Brown-out Protection for C51 Microcontrollers with Active High Reset Input".

5. Design and implement your RS-232 circuit utilizing the MAX232 driver/receiver. This circuitry is not

memory mapped, but instead will use the RX and TX lines on Port 3 of the 8051. On your RS-232

connector, you may connect RTS to CTS, and you may connect DTR to DSR and DCD.

TIP: You can determine which pin on the cable is the TX pin from the PC by pressing and holding a

key on the keyboard while probing the cable pins with an oscilloscope to see which pin is toggling.

NOTE: DO NOT probe the +10V and -10V RS-232 voltages with a digital logic probe.

Your parts kit should contain four 1.0uF caps suitable for the charge pump capacitors (C1, C2, C3,

C4) for the MAX232 chip. You can use larger capacitors up to 10uF instead, if you desire. While

some newer versions of the MAX232 chip can use smaller capacitors, some older versions of the chip

prefer the larger caps. Using a smaller capacitor value saves space on your board; however, using a

large capacitance value reduces ripple on the +10V and �10V charge pump outputs.

© 2005-2009 Linden H. McClure, Ph.D. � 2 � Embedded System Design

6. Implement the required circuit features for /EA and /PSEN to enable the Atmel UART bootloader to

execute when you come out of reset. Use a momentary pushbutton and pull-down resistor for

/PSEN, and hold that button when coming out of reset in order to force bootloader operation; then,

after the bootloader has started, release that button to eliminate drive fight issues on the /PSEN line.

Use a header/jumper for the /EA input. Note that if you use these hardware conditions to enter the

bootloader when you come out of reset, then the Atmel bootloader is entered regardless of the values

of BLJB, BSB, and SBV.

7. Verify that FLIP can communicate with the Atmel bootloader.

8. Verify that your final code for Lab #2 runs correctly on the new processor. You can use FLIP to

download the code to internal flash memory on the processor.

9. Learn how to configure a terminal emulator program (TeraTerm or RealTerm are recommended) on a

host computer to allow you to communicate over the serial port. Students report that RealTerm works

under both Vista and XP. Students report that TeraTerm works better (much faster) than the

HyperTerminal terminal emulator included with Windows. [Note: early versions of HyperTerminal

did not correctly handle echoing of characters over the serial port.] Be sure that you have the serial

cable hooked up to the correct serial port on the computer, and that the terminal emulator is

configured to use that same serial port. When first testing your hardware, you should configure the

terminal emulator to communicate directly to the appropriate COM port on the PC at 9600 baud, 8

data bits, 1 stop bit, no parity and no flow control. After you verify the hardware is working fine, you

can increase the baud rate.

NOTE: If you get an error message 'bytes not written correctly' when downloading your hex file with

one terminal emulator program, try the other terminal emulator program and see if the error persists.

10. [Optional] This optional program just aids in making sure your system is wired correctly. Write an

assembly program which initializes the 8051 serial port and then continuously (in an infinite loop)

transmits the character 'U'. Using an oscilloscope, verify that the transmitted patterns correspond with

the ASCII value for this character and that the baud rate is correct. Verify that the characters appear

on screen.

Now, modify the program to make it echo the characters it receives from the 8051 serial port. Every

time a valid character is received, that same character should be transmitted back out the serial port.

NOTE: If you want to simulate your code using Emily52, note that SFR�s are not emulated in our

version of Emily52, so you can�t simulate all features of the 8051, such as the real-time aspects of serial

port operation, timers, and interrupts. However, you can still use the simulator to verify much of your

code. You can simulate interrupts in Emily52 by pressing �v� for �vector�.

11. Complete Homework #8, regarding PAULMON2, makefiles, Eclipse, and SDCC/MICRO-C.

© 2005-2009 Linden H. McClure, Ph.D. � 3 � Embedded System Design

12. [Required Element
1
] Configure your hardware to use the NVSRAM as additional XRAM data

memory in your system. It should respond to data reads and writes in the address range of 0x0400-

0x83FF. This will provide you with a total of 33KB of system data memory (1KB of XRAM

built into the Atmel AT89C51RC2 + 32KB in the NVSRAM).

13. [Required Element
1
] Visit the PAULMON2 web site (the link is available on the course web site)

and learn about this free monitor program. Download PAULMON2 (paulmon21.asm and extra.asm)

and understand how to configure its assembly code to match your memory map � you will only have

to make a couple of minor changes to the code. You may see that pre-assembled versions of

PAULMON2 that use different memory maps are available on the PAULMON2 web site; however,

don�t use those versions.

Remember that you need to configure PAULMON2 before assembling it with the AS31 assembler.

As you're analyzing the equates at the beginning of the PAULMON2 code, think about using the

following values for your situation - will these work for you?

.equ base, 0x0000 ;location for PAULMON2 (beginning of Flash)

.equ vector, 0x2000 ;location to LJMP interrupt vectors (in Flash)

.equ pgm, 0x2000 ;default location for the user program (in Flash)

.equ bmem, 0x1000 ;beginning of memory (extra code could be in Flash)

.equ emem, 0x7FFF ;end of the memory (end of user code memory in Flash)

Also add a new line of assembly code to the beginning of the PAULMON2 monitor program to

enable the full 1KB of XRAM in the AT89C51RC2 processor. Note that when the processor

comes out of reset, it has only 256 bytes of XRAM available. In order to gain access to all 1KB of

internal XRAM, user code would need to program the XRS1:XRS0 bit field to 11b. (The data sheet

also describes dependencies on the XRAM bit in the HSB, and the EXTRAM bit in AUXR.)

You must assemble your own version of PAULMON2 with the AS31 assembler in order to

match your memory map. The AS31 assembler and notes regarding its use are available on the

course web site. Note that AS31 requires a different assembly source file syntax than the

ASM51 assembler you have been using for your own code, and PAULMON2 is written with the

AS31 syntax.

Assemble your base PAULMON2 code to create one hex file. Then assemble the extra.asm code

separately to create a second hex file. If using the device programmer to program your processor, you

can then load both hex files into the device programmer buffer before programming your Flash. The

main PAULMON2 code and the extra.asm code modules do not need to be linked together, since they

are ORG'ed at different addresses and occupy different parts of the programmer buffer.

© 2005-2009 Linden H. McClure, Ph.D. � 4 � Embedded System Design

14. [Required Element
1
] Program the processor with the PAULMON2 monitor program (including

extra.asm). If your serial port is working correctly, then when you turn on your system with

PAULMON2 installed, and after you press the ENTER key, PAULMON2 should print a welcome

message to your terminal emulator screen.

Learn how to use the monitor to modify and examine hardware. Become familiar with all monitor

commands, including the three extra commands ('L', 'S', 'E') provided by extra.asm. To download a

hex record file to your board, use the 'D' (download) command in PAULMON2, and then use the

Transfer/Send Text File menu item within the terminal emulator to transfer the hex file to your

board's XRAM. Note that since the internal XRAM is located in data memory space and is not

accessible with the /PSEN signal, you will not be able to execute code out of internal XRAM (i.e.,

you will not be able to execute the hex records that you download using the 'D' command).

• Determine and document the maximum baud rate at which you can reliably run PAULMON2

on your system. Using an oscilloscope, verify that the baud rate is correct.

15. [Required Element
1
] Verify that you can write your entire XRAM (internal and external) using

the PAULMON2 block fill capability.

Step 1) Fill the entire XRAM space 0x0000 to 0x83FF with a specific value, like 0x55.

Step 2) Fill the rest of data memory space 0x8400 to 0xFFFF with a different value, like 0xAA. This

operation shouldn't have any bad effect, as there is nothing else in your hardware that should respond

to data addresses in that range (with either /RD or /WR active).

Step 3) Dump memory from 0x0000 to 0x83FF and verify that all XRAM cells contain 0x55. If you

see blocks that do not have 0x55, something may be wrong with the hardware or with PAULMON2.

NOTE: It's possible to use part of your SRAM for code storage and be able to execute code from SRAM.

In that case, you'd be able to download code to the NV-SRAM using PAULMON2, and that code would

remain in memory after you turn power off to the system. When you turn power back on, the code would

already be ready to run. Slight adjustments to your memory map and chip select and output enable logic

might be needed. A portion of your SRAM (e.g. 0x8000-0x83ff) would need to be enabled by /PSEN and

/RD to respond during both code read and data read operations.

NOTE: For the rest of the semester, use the Atmel FLIP utility to program your code into the

processor flash memory.

NOTE: For the following C programs, remember that your C code has to finish initializing the

AT89C51RC2 chip. In order to gain access to all 1KB of XRAM, user code would need to program the

XRS1:XRS0 bit field to 11b. (The data sheet also describes dependencies on the XRAM bit in the HSB,

and the EXTRAM bit in AUXR.) Be sure to review the sdccman.pdf file regarding the

_sdcc_external_startup() function. If you specify an XRAM size of 0x400 on the linker command line,

you need to make sure there are actually 0x400 bytes of XRAM enabled in the hardware. Likewise, if you

specify an XRAM size of 0x8400 on the linker command line, 0x8400 bytes of XRAM must be enabled.

16. [Required Element
1
] Learn how to use SDCC to generate hex records for your hardware using the

compact (or large) memory model. Know how to verify that SDCC has been configured with the

correct addresses for ROM/RAM by analyzing the SDCC output files. Verify that the correct

addresses were generated in your code listing file (.rst) and hex record file (.ihx). You should also

examine the other output files to see how SDCC has allocated space for objects in memory (check the

other output files, such as .mem, .lnk, and .map).

Learn how to use Eclipse to allow you to do the following:

(a) Open a new SDCC project. NOTE: Create a subfolder for your source files (e.g. src).

(b) Edit your C code and examine the files in your project.

(c) Compile your C code and create a hex file.

© 2005-2009 Linden H. McClure, Ph.D. � 5 � Embedded System Design

NOTES: The Eclipse IDE is free (see links on course web site). The Eclipse development environment is

quite powerful. It supports managed make, where the tool automatically generates and maintains the

makefile based on the information you use to configure Eclipse, or standard make, where you generate the

makefile you want Eclipse to use.

For source code control, the free Subversion (SVN) version control system is recommended:

http://subversion.tigris.org and http://tortoisesvn.tigris.org/

The Dunfield make utility is quite limited and doesn�t have the same options as other make utilities you

might be used to, such as UNIX make. If you want to use a stand-alone version of make, you are

encouraged to download GNU make from the course web site, since it has better functionality and is free.

Makefile examples are available on the course web site.

If you want to use a different 8051 compiler, such as Keil or Franklin, this is acceptable with some

caveats:

1) You need to have the compiler available in the lab during signoffs, so that you can build code and

demonstrate knowledge of the tool set. You will need to have a demo version or licensed version

available on your notebook computer, if the tools are not installed on the computers in the ECEE Dept.

2) You will not get as much help from the TAs or instructor if they are not familiar with your tool set.

3) You must realize that examples given in class or on the web will be specific to SDCC or MICRO-C.

We cannot support more tools than those related to SDCC or MICRO-C.

NOTE: When asking the instructor or TAs for help with your program via e-mail, be sure to attach all

relevant files to your e-mail. Attach the source files (.c, .h), and the .rst, .mem, and .map files.

NOTE: The following C program has a little complexity. Don't try to code it all at once. Instead, identify

elements of the assignment, and then write and debug in an incremental manner. For example, here are

some suggestions on how one might approach the assignment:

1) Become comfortable with the compiler and Eclipse IDE/makefiles. Write very simple programs (like

an 8051 pin toggling program) to gain confidence and understanding of the tools. Refer to the SDCC

syntax examples that are available on the course web site.

2) Learn how to initialize the hardware properly, including the serial port.

3) Learn how to use putchar() or putch() to output single characters to the terminal emulator.

4) Learn how to input single characters from the terminal emulator, using the getchar or getch()

functions. Use the putchar() or putch() function to echo received characters to the screen.

5) Learn how to create a buffer using the malloc() command. Learn how to free up memory space once

the buffer is no longer needed. Learn how to use pointers to write to and read from a buffer.

6) Write a function that can print out buffer contents, using the specified format.

7) Identify other independent elements of the program assignment, and write functions to implement

those elements.

8) After you have the individual functions working, then concentrate on how to use those functions to

complete the programming assignment.

USE AN INCREMENTAL APPROACH TO SAVE YOURSELF MUCH DEBUGGING TIME!

START YOUR ASSIGNMENT EARLY, AS IT MAY TAKE MORE TIME THAN YOU MAY THINK.

© 2005-2009 Linden H. McClure, Ph.D. � 6 � Embedded System Design

17. [Required Element
1
] Write a C program which first allocates a heap of size 1800 bytes, and then

prompts the user to specify an even number buffer size between 20 and 1400 bytes. The program

must then allocate a buffer (buffer0) of the requested buffer size in XRAM using the malloc()

function. The program must then malloc in XRAM a second buffer (buffer1) which is half the

requested buffer size. If the malloc fails for either buffer, then any successfully allocated space must

be freed and the user must be prompted to choose a smaller buffer size.

The program must then prompt the user to enter characters. Every time a valid printable character is

received at the 8051 serial port, that same character must be transmitted back out the 8051 serial port

and must also be stored in buffer0. Use pointers to external memory to access the buffer. The use of

buffer1 is not specified in this assignment, and buffer1 may be used for any other purpose you desire.

Valid printable characters include upper/lower case letters, numbers, punctuation, single space, etc.

For this lab, special control characters, such as line feed, carriage return, horizontal tab, etc., are not

valid printable characters.

The program must keep count of how many characters are received, and every time the character '?' is

received, the program must echo the character and must also report the total number of printable

characters received in buffer0 since the last '?', as well as the starting address and the total allocated

size of each buffer (buffer0 and buffer1). The C program must clearly report these numbers on the

terminal emulator screen, along with descriptive text. The C program must then provide some

statistics on buffer0's contents, by displaying the number of times each number '0'-'9' and each lower

case vowel 'a', 'e', 'i', 'o', 'u' appears in buffer0. For example, the program may report the following

statistics for buffer0: "a-5; e-50; i-0", etc. Statistics for other printable characters in the buffer do not

need to be displayed. The program then must empty each buffer by transmitting all the characters

which were stored in buffer0, with a maximum of 70 ASCII characters displayed on each line of the

screen. buffer0 will then be empty. The quality of your user interface will be a factor in the grade you

receive.

If buffer0 fills completely before a '?' command is received, any excess character subsequently

received is echoed out the serial port, but is not added to buffer0 (it is discarded). Once the '?'

command is received, then buffer0 is emptied, as described above.

If the �/� character is ever received, the program must display the current contents of buffer0 in hex,

but must not empty the buffer � the data will remain in the buffer until the buffer emptied in

response to a �?� command. Display the data on the PC screen in hexadecimal (not ASCII), with 16

bytes of data per line, in the following format:

AAAA: DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD

This format is similar to what you see when using the device programmer or when dumping memory

contents using PAULMON2, where AAAA is the starting address (in hex) for each block of 16 data

values DD (in hex).

In order for you to maximize your grade, your code must gracefully handle erroneous inputs, such as

the user trying to specify a buffer size outside the allowed range. You should verify that your code

handles cases like this correctly before you get signed off. During signoff, you will be evaluated on

the quality of your code at that point in time. You do not get an infinite number of chances to get

feedback from the TA or instructor and make improvements to your code based on that feedback

prior to your signoff, so be well prepared before your signoff. Code with a good user interface, robust

error handling, and good structure and comments will score higher than code lacking these features.

! Submit a copy of your neat and fully commented program (source code only, not .LST listing file).

© 2005-2009 Linden H. McClure, Ph.D. � 7 � Embedded System Design

18. [Supplemental Element
1
]:

Use the processor's Counter 0 to count an external event of your choice (some signal which you hook

up to both the Counter 0 input, pin P3.4). One good choice for an external event would be a different

port pin on the 8051 toggled by firmware.

Configure two pins as pulse width modulation outputs, using the PWM capability of the Atmel

processor. Configure one output with a 25% duty cycle and one with a 55% duty cycle.

Prove that your hardware works by providing firmware which demonstrates the required

functionality. Your program must provide a well-designed user menu which allows the user to

perform the following options:

• Clear Counter 0 (reset counter to zero)

• Run Counter 0 (set TR0 bit)

• Stop Counter 0 (clear TR0 bit)

• Run PWM (turn on both PWM outputs)

• Stop PWM (turn off both PWM outputs)

• Read Counter 0 and print out current value (verifiable numbers) to the serial port

• Enter Idle mode (set IDLE bit in PCON register)

• Enter Power Down mode (set PDE bit in PCON register)

If the event you are counting is a port pin toggled by firmware, provide an additional menu option

which allows the user to toggle that port pin high and low.

Prove that you can control the resolution of your counter to one count per event. Note that the

maximum count rate is 1/24 of the oscillator frequency.

Prove that you have successfully entered Idle mode by examining ALE, PSEN*, and XTAL2 with a

digital logic probe or oscilloscope. Prove that you can exit Idle mode and continue running code when

an interrupt is received at external interrupt 1 while the processor is in Idle mode. You can use C code

or inline assembly to generate the ISR to handle the event.

Prove that you have successfully entered Power Down mode by examining ALE, PSEN*, and

XTAL2 with a digital logic probe or oscilloscope.

! Submit a copy of your neat and fully commented program (source code only, not .LST listing file).

19. [Supplemental Element
1
]:

Hook up a momentary pushbutton switch to one of the unused Port 1 pins and configure the pin as an

input. Debounce the switch in firmware (debounce both the switch press and release). Your debounce

algorithm should correctly handle a button bounce time of at least 10ms, even if you do not observe

any switch bounce with the pushbutton included in your parts kit. Each time the switch is pressed,

increment a value written to the screen (or to the optional 74LS374 debug circuit from Lab #2).

Demonstrate your solution and prove that each button press is interpreted as a single event. Usability

will be evaluated during the demo. Solutions which provide a better user experience (such as

responsiveness of the system to quick button presses and good instructions on the screen) will be

rated higher than those solutions which are not as enjoyable to use.

! Submit a copy of your neat and fully commented program (source code only, not .LST listing file),

including a description of your debounce algorithm.

1 Required elements are necessary in order to proceed to the next lab assignment. Supplemental elements of the lab

assignment may be completed by the student to qualify for a higher grade, but they do not have to be completed to

successfully meet the requirements for the lab. The highest possible grade an ECEN 5613 student can earn on this

assignment without completing any of the supplemental elements is a 'B-'. The highest possible grade an

ECEN 4613 student can earn on this assignment without completing any of the supplemental elements is a 'B+'.

ECEN 4613 students can qualify for full credit for this lab assignment by completing the required elements and any

one of the supplemental elements.

© 2005-2009 Linden H. McClure, Ph.D. � 8 � Embedded System Design

20. Demonstrate your assignments and get your lab signoff sheet signed by the TA or the instructor. Be

well prepared before attempting your signoff. Submit a copy of your neat and fully commented

program (source code only, not .LST listing file). In addition to the items listed on the signoff

checklist, be sure to review the lab for additional requirements for submission. Style points will be

deducted for poorly structured and poorly commented code.

NOTE: You can demonstrate your hardware functionality using PAULMON2. Make sure you are very

familiar with all commands for the PAULMON2 monitor. To demonstrate your XRAM and RS-232

hardware, modify values in your XRAM using the monitor, and then verify those values by reading them.

Consider developing just one or two programs which allow you to demonstrate all optional hardware and

firmware functionality. This will reduce the amount of time it takes to get signed off.

NOTE: Make copies of your code, SPLD code, and schematic files and save them as an archive.

You will need to submit the Lab #3 files electronically at the end of the semester.

NOTE: Notes about SDCC are available on the course web site. If you're using SDCC, you should

absolutely read these notes, as they should save you a significant amount of time.

NOTE: A formatted version of the AS31 assembler documentation is also available on the course web

site. AS31 (not ASM51) is used to assemble the PAULMON2 source code.

TIP: When loading hex files with PAULMON2, use the fastest baud rate to shorten download time.

TIP: To speed testing, you can create text files with specific contents and send the text files from the PC

to your embedded system to simulate a large number of characters being entered on the keyboard. A fast

baud rate will save you time. Note that TeraTerm allows you to drag and drop a file into the terminal

emulator window.

NOTE: When you're using a debug monitor, the monitor initializes the 8051 serial port, so you don't have

to. However, note that the MICRO-C serinit() library function does not initialize the SMOD bit (it

assumes SMOD is in its reset state of 0), so you might see a baud rate error if you use MICRO-C and

PAULMON2 together. PAULMON2 initializes SMOD to 1, but since serinit() assumes that SMOD

is zero, you will see twice the expected baud rate when using serinit() in a system that uses

PAULMON2. SMOD needs to be correctly set in your code.

NOTE: Whenever you're not using a monitor and you're burning your code into Flash or an EPROM,

remember to initialize the serial port prior to using any serial input/output function calls (e.g. write your

own serial port initialization routine or call a library routine, like the MICRO-C serinit() function).

NOTE: Flow control only tells the transmitter to stop transmitting - it doesn't tell that system to stop

receiving. You can send flow control characters from your terminal emulator by pressing Control-S (^S)

and Control-Q (^Q). XOFF = DC3 = ^S = 0x13 XON = DC1 = ^Q = 0x11

NOTE: We are using SDCC in this course. However, if you purchased the MICRO-C development tools

from Dunfield Development Systems, you can use the MON51 monitor in addition to PAULMON2.

NOTE: When using the PAULMON2 monitor, which has automatic baud rate detection, you must

cycle power and press ENTER after each baud rate change: just pressing the 8051 run time reset

button will not clear the current baud rate.

ECEN 4613/5613 Embedded System Design Fall 2009

Lab #3 Signoff Sheet

You will need to obtain the signature of your instructor or TA on the following items in order to receive

credit for your lab assignment. This assignment is due by Tuesday, October 27, 2009. Labs completed

after the due date will receive grade reductions.

Print your name below, circle your course number, and then demonstrate your working hardware &

firmware in order to obtain the necessary signatures. All items must be completed to get a signature, but

partial credit is given for incomplete labs.

Student Name: ______________________________________ 4613 or 5613 (circle one)

Signoff Checklist

Required Elements

" Schematic of acceptable quality (all components shown):

" Pins and signals labeled, decoupling capacitors, and two 28-pin wire wrap sockets present on board:

" Very good knowledge of a monitor and a terminal emulator:

" Using PAULMON2, demonstrates highest baud rate supported as: ____________

" Demonstrates XRAM block fill, all 33KB of XRAM are functional:

" Demonstrates use of FLIP and ISP Bootloader:

" Knows how to use SDCC and Eclipse IDE:

" Knows how to analyze output files (.RST, .MEM, .MAP) for correct addresses:

" C serial program functional and code commented:

" Hex display of buffer contents: _______________________________

Instructor or TA signature and date

Supplemental Elements (Qualifies students for higher grade.)

" Counter 0 input and register read firmware functional:

" PWM control works correctly:

" Correctly enters Idle mode and exits via external interrupt 1:

" Correctly enters Power Down mode:

" All other software menu items function correctly:

" Good user interface; program is easy to use: _______________________________

" Pushbutton switch hardware

" Firmware debounce functional and code commented _______________________________

Instructor/TA Comments: □ □ □ Instructor or TA signature and date

FOR INSTRUCTOR USE ONLY
Not

Applicable
Poor/Not
Complete

Meets
Requirements

Exceeds
Requirements Outstanding

Schematics, SPLD code
Hardware physical implementation
Required Elements functionality
Supplemental Elements functionality
Sign-off done without excessive retries
Student understanding and skills

Overall Demo Quality

Comments:

NOTE: This signoff sheet should be the top sheet of your submission.

Submission Sheet

Instructions: Print your name below, circle your course number, sign the honor code pledge, and then

demonstrate your working hardware & firmware in order to obtain the necessary signatures. All items

must be completed to get a signature, but partial credit is given for incomplete labs. Separate this sheet

from the rest of the lab and turn in this signed form, a full copy of complete and accurate schematic of

acceptable quality (all components shown), a printout of your fully and neatly commented source code

(not .LST or .RST listing files), and the answers to any applicable lab questions to the instructor in order

to receive credit for your work. No cover sheet please. Note that receiving a signature on this signoff

sheet does not mean that your work is eligible for any particular grade; it merely indicates that you have

completed the work at an acceptable level. [Watch for instructions about probable electronic

submission via CULearn.]

In addition to the items listed on the signoff checklist, be sure to review the lab for additional

requirements for submission, including:

" Signed and dated signoff sheet as the top sheet (No cover sheet please)

" Submission Sheet with signed honor code pledge

" Full copy of complete and accurate schematic of acceptable quality (all old/new components shown).

Include programmable logic source code (e.g. .PLD file), if using an SPLD.

" Full copy of fully, neatly, clearly commented source code. Ensure your code is neat and easy to read.

" Debounce algorithm description and code (if this supplemental element is completed)

Make copies of your code, SPLD code, and schematic files and save them as an archive. You will need to

submit the Lab #3 files electronically at the end of the semester.

Make sure your name is on each item and staple the items together, with the signoff sheet as the top item.

Student Name: ______________________________________ 4613 or 5613 (circle one)

Honor Code Pledge: "On my honor, as a University of Colorado student, I have neither given nor

received unauthorized assistance on this work. I have clearly acknowledged work that is not my own."

Student Signature: __________________________________

FOR INSTRUCTOR USE ONLY

Submission Evaluation Not
Applicable

Poor/Not
Complete

Meets
Requirements

Exceeds
Requirements

Outstanding

 Required Elements
 Code Quality/Style/Comments

 Supplemental Elements
 Code Quality/Style/Comments

 Overall Submission Quality

Overall Assessment

Adjustments/Late Penalty

Final Grade

Comments:

