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Abstract

Pattern recognition is a technique that tries to recognize data based on a priori
knowledge or on a statistical information extracted from the patterns. It is
“the act of taking in raw data and making action based on the category of the
pattern”2. In this paper we shall exemplify the face recognition by presenting
two approaches: the eigenfaces technique and the HOSVD one (Higher Or-
der Singular Value Decomposition) for tensors. For each technique, we shall
present some examples with the face and digit recognitions.

1 Introduction

In this section we shall briefly present the problem of pattern recognition. Given
a image z (the picture of a face or a digit), we want to find out the closest
image from the database {v1, . . . , vM}. All the images have the same resolution
(we shall consider the square resolution to simplify the exposure). Every single
image is transformed into a vector. We created a face database of pictures of

11 persons, 10 pictures for each person and a digit database, with 10 pictures
for each digit {0, 1, 2, . . . , 9}.
The simplest thing we can do is to compare z with each vi from the database.
Thus, we want to find out an index i0 ∈ {1, . . . ,M} such that

‖z − vi0‖ = min
1≤i≤M

‖z − vi‖ . (1)

In our experiments, for the consistent case of (1) (i.e. z belongs to the face or
digit database), we obtained the results in Figure 1 below.
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Figure 1: Consistent case of (1)

In the inconsistent case of (1) (i.e. z does not anymore belong to the core-
sponding database), we obtain unsatisfactory results, as one can see below in
Figure 2.

Figure 2: Inconsistent case of (1)

2 Eigenfaces Approach

2.1 Eigenfaces Algorithm

In Eigenfaces algorithm (proposed in [4]) we have to pursue the following steps.
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• Set the database compossed by the images I1, I2, . . . , IM (all images ha-
ving the same resolution N × N).

• Set every single image Ii as a vector Γi of N2 × 1 dimension.

• Compute the average face vector Ψ

Ψ =
1

M

M
∑

i=1

Γi.

• Substract the average face vector from all vectors

Φi = Γi − Ψ.

• Compute the covariance matrix C

C =
1

M

M
∑

n=1

ΦnΦT
n = AAT .

where C of N2 × N2 type and A = [Φ1 Φ2 . . . ΦM ] is of N2 × M type.

• Compute the eigenvectors qi of C = AAT .

For the matrix C = AAT it exists the orthogonal matrix Q such that QT CQ =
diag(σ1, . . . , σN2) = D, where σi ≥ 0, Q =col[q1, . . . , qN2 ] (see [1]). Since
Cqi = σiqi and {q1, . . . , qN2} is an orthonormal basis in IRN2

, any x ∈ IRN2

can be written as x =
N2

∑

i=1

< x, qi > qi.

Remark 1 Similar considerations can be made for Ĉ = AT A.

In practical applications, N2 (the dimension of the matrix C) can be very large,
thus the diagonalization QT CQ =diag(σ1, . . . , σN2) can be very expensive. A
possible solution is to keep from the N2 eigenvectors q1, . . . , qN2 , only the first
K corresponding to the K largest eigenvalues σ1 ≥ . . . ≥ σK > 0. Because

Cx =
N2

∑

j=1

xjCqj =
N2

∑

j=1

σjxjqj and Cx =
N2

∑

j=1

< x, Φj > Φj,

we have the approximation

Cx =
N2

∑

j=1

< x, Φj > Φj ≈

K
∑

j=1

σjxjqj.

Now, we represent Φi in the basis {q1, . . . , qN2}.
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Φi = Γi − Ψ =
N2

∑

j=1

< Φi, qj > qj.

Then we introduce the “truncated” vectors Φ̂i ≈ Φi as

Φ̂i =
K

∑

j=1

< Φi, qj > qj =
K

∑

j=1

wi
jqj (2)

The vector Φ̂i is represented by the Fourier coefficients vector from (2), i.e.

wi =











wi
1

wi
2
...

wi
K











∈ IRK , i = 1, 2, . . . ,M .

Given a image Γ, with the same resolution as Γi, then we follow the steps

• Normalize Γ: Φ = Γ − Ψ.

• Project on the eigenvectors space

Φ̂ =
K
∑

j=1

< Φ, qj > qj =
K
∑

j=1

wjqj.

• Represent Φ̂ as w =











w1

w2
...

wK











.

• Find i0 ∈ {1, . . . ,M} satisfying ‖w − wi0‖ = min
1≤i≤M

‖w − wi‖.

• The corresponding database approximation for Γ is given by

Γ̂ =
K

∑

j=1

wi0
j qj. (3)

Remark 2 The algorithm works also for images with N × N1 resolution. In

this case we obtain a vector Γ of dimension NN1 × 1.
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2.2 Experiments

In our experiments we have a face database with 110 pictures (92×112) and a
digit database with 100 pictures (92×112). We considered K=20 because we
have computed with Matlab the eigenvalues σj and noticed that σi, i ≥ 21
were much smaller than the first 20 singular values of our matrix.
The results for the consistent case are the same as in Figure 1. For the in-
consistent case we obtained the results from Figure 3, in which, for the digits
pictures, they are much better than the ones from Figure 2.

Figure 3: Inconsistent case

This means that the eigenfaces algorithm returns satisfactory results for the
inconsistent case, unlike the similar case from Section 1.

3 HOSVD Approach

3.1 Preliminary results

In what follows, we shall briefly present a generalization of the matrix SVD
theorem to 3-mode tensors (from now on, we shall call them just tensors), and
afterwards some theorems which allows us to use the tensor SVD theorem for
the problem of face recognition. For further details, see [3].

Let A ∈ IRl×m×n, U ∈ IRl0×l, and A×1 U a tensor of dimension l0 ×m×n,
defined by

(A ×1 U) (j, i2, i3) =
l

∑

k=1

uj,kak,i2,i3 .
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Similarly, we have 2-mode and 3-mode multiplication of a tensor by a matrix

(A ×2 U) (i1, j, i3) =
m

∑

k=1

uj,kai1,k,i3 ,

(A ×3 U) (i1, i2, j) =
n

∑

k=1

uj,kai1,i2,k.

We can unfold a tensor into a matrix, A(i) = unfoldi(A), and we obtain

unfold1 (A) = A(1) = ( A (:, 1, :) A (:, 2, :) . . . A (:, m, :) ) ,

unfold2 (A) = A(2) =
(

A (:, :, 1)T
A (:, :, 2)T

. . . A (:, :, n)T
)

,

unfold3 (A) = A(3) =
(

A (1, :, :)T
A (2, :, :)T

. . . A (l, :, :)T
)

.

Using these unfoldings we obtain the following expresions for all three modes
of multiplication:

A ×1 U = fold1 (U · unfold1 (A)) ,

A ×2 U = fold2 (U · unfold2 (A)) ,

A ×3 U = fold3 (U · unfold3 (A)) .

One of the generalizations of the SVD theorem for tensors is the next one,
often referred to as the higher order SVD, from now on denoted by HOSVD
theorem (see [3]).

Figure 4: The SVD theorem for tensors

Theorem 1 The tensor A ∈ IRl×m×n can be written as

A = S ×1 U (1) ×2 U (2) ×3 U (3)

where U (1) ∈ IRl×l, U (2) ∈ IRm×m, U (3) ∈ IRn×n are orthogonal matrices. S is

a tensor of the same dimensions as A and has the property that any two slices

of S are orthogonal. The matrices U (i) result from A(i) = U (i)Σ(i)
(

V (i)
)T

,

A(i) = unfoldi(A).

6



We can write the HOSVD in different ways depending on what we want to
do next. For example, we can write

A = D ×e G ×p H,

where D = S ×i F . The e-mode multiplication is in fact the 2-mode multipli-

Figure 5: Another form of the SVD theorem for tensors

cation

(D ×e G) (i1, j, i3) =
ne
∑

k=1

gjkdi1,k,i3 .

If we set a parameter from the expresion with a particular value, for example,
if we put j = e0, it means that we only use the eth

0 row from matrix G. If we
also put i3 = p0 we obtain

A (:, e0, p0) = D ×e ge0
×p hp0

,

where ge0
is the eth

0 row from G and hp0
the pth

0 from H.

Figure 6: The obtainment of the person p0 in the expression e0
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3.2 Face Recognition Using HOSVD

Given a picture of an unknown person, represented as a vector from IRni , we
want to decide if this person is or is not in our database, and if the answer
is positive, to find out which of the np persons from our face database it
represents. For this problem, we use the following form of the HOSVD of
tensor A

A = C ×p H, C = S ×i F ×e G

For a particular expression e we have

A (:, e, :) = C (:, e, :) ×p H.

Tensors A (:, e, :) and C (:, e, :) are in fact matrices, which we can denote them
by Ae and Ce, respectively. Hence we obtain the linear relations

Ae = CeH
T , e = 1, 2, . . . , ne.

The same orthogonal matrix H appears in all ne relations. If HT =
(

h1 . . . hnp

)

,

we get a
(e)
p = Cehp. Let z ∈ IRni be the picture of an unknown person, in an

unknown expresion and we want to decide if the picture belongs to a person
from the database or not. We can do that by computing its coordinates in all
expresion bases and verify if the coordinates are the same (or almost the same)
with the elements of a row from H. The coordinates of z in the e expresion
basis can be obtained resolving the least squares problem

min
αe

‖Ceαe − z‖2 . (4)

The algorithm (see [2]) is
Algorithm A1

for e = 1, 2, . . . , ne

solve min
αe

‖Ceαe − z‖2

for p = 1, 2, . . . , np

if ‖αe − hp‖2 < tol, then is person p and STOP
end

end

For each image z we have to solve ne least square problems with Ce ∈ IRni×np .
This will take a lot of time to compute. From C = S ×i F ×e G we obtain
Ce = FBe, where Be ∈ IRnenp×np , Be = (S ×e G) (:, e, :). Matrix F ∈ IRni×nenp

and we shall enlarge it so that it becomes square and orthogonal: F̂ =
(

F F⊥
)

.

We insert F̂ T inside the norm
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‖Ceαe − z‖2
2 =

∥

∥

∥
F̂ T (FBeαe − z)

∥

∥

∥

2

2
=

∥

∥

∥

∥

(

Beαe − F T z

−
(

F⊥
)T

z

)∥

∥

∥

∥

2

2

=

∥

∥Beαe − F T z
∥

∥

2

2
+

∥

∥

∥

(

F⊥
)T

z

∥

∥

∥

2

2
.

Hence we can solve the ne least squares problems by solving

min
αe

∥

∥Beαe − F T z
∥

∥

2
, e = 1, 2, . . . , ne. (5)

The algorithm is the following (see [2]).
Algorithm A2

Compute the QR decompositions of all matrices Be, Be = QeRe, with
e = 1, 2, . . . , ne.

Compute ẑ = F T z

for e = 1, 2, . . . , ne

Solve Reαe = QT
e ẑ for αe

for p = 1, 2, . . . , np

If ‖αe − hp‖2 < tol, then is person p and STOP

end

end

Because the tensors and matrices have large dimensions, we can truncate them
in such way that the truncated HOSVD can still approximate the tensor A.

We can define Fk = F (:, 1 : k), for a value k that is much smaller than ni, but
larger than np. We obtain Ĉ = (S ×e G) (1 : k, :, :) ×i Fk. Hence we have to
solve the least squares problems

min
αe

∥

∥

∥
Ĉeαe − z

∥

∥

∥

2
. (6)

Also, we shall have Ĉe = FkB̂e, where B̂e ∈ IRk×np , and we obtain

∥

∥

∥
Ĉeαe − z

∥

∥

∥

2

2
=

∥

∥

∥
B̂eαe − F T

k z

∥

∥

∥

2

2
+

∥

∥

∥
F̃ T
⊥ z

∥

∥

∥

2

2
,

with ẑk = F T
k z.

3.3 Experiments

With the same databases from Section 2, we implemented both A1 and A2

algorithms. The results for both of them were the same, but the algorithm A2

is faster than the A1. For the consistent case, the results are those depicted
in Figure 7, while for the inconsistent case, are those from Figure 8.
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Figure 7: Consistent case

Figure 8: Inconsistent case

This means that this approach returns satisfactory results for the consistent
case. For the inconsistent case, it eliminates the human decision factor in face
recognition, but in digit recognition there is a drawback because it does not
find the closest digit.

4 Conclusions and Future Work

In the consistent case we know from the very beginning that the pattern we
are looking for (face or digit) is in our database, so both approaches have
satisfactory results. In the real life applications, the problems are generally
inconsistent. So, for face recognition is better to use the HOSVD approach
because we do not need the human decision factor. But for digit recognition,
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we shall use the Eigenfaces approach, because it returns the closest digit to
the one we are looking for, and this could be helpfully if we want to decode a
handwritten postal code or phone number, and so on.
As future work, we want to improve the running time for the tensor algo-
rithm and to enlarge our digit database, so the program can return the results
faster. We also want to use the Eigenfaces technique and wavelets analysis
with respect to the face detection, and edge detection, respectively.
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