Meson Form Factors and the BaBar Puzzle

Nils Offen

Universität Regensburg

Séminaire Particule Orsay 17.November 2011

Introduction: The BaBar Puzzle

- 2 Collinear Factorisation
- 3 Proposed Solutions
- 4 Light Cone Sum Rules
- 5 Reprise: $\eta^{(\prime)} \rightarrow \gamma \gamma^*$ -Transitions

6 Conclusions/Summary

 $\pi(\eta^{(\prime)}) \rightarrow \gamma^* \gamma$ -transition form factors

$$\int d^4x \, e^{iq_1 \cdot x} \langle P(\rho) | \mathsf{T} \left\{ j_{\mu}(x) \, j_{\nu}(0) \right\} | 0 \rangle = i \, e^2 \epsilon_{\mu\nu\alpha\beta} \, q_1^{\alpha} \, q_2^{\beta} \, \mathcal{F}_{\gamma^*\gamma^* \to \mathcal{P}}(q_1^2, q_2^2)$$

- related to axial anomaly for $q_1^2 = q_2^2 = 0$ $F(0,0) = \frac{1}{4n^2 t_{\pi}}$
- theoretically cleanest case: both photons virtual $q_1^2 \neq 0$, $q_2^2 \neq 0$

• experimentally easier: one real photon $q_2^2 = 0$, $q_1^2 = -Q^2 < 0$

0

Good Old Times

asymptotic limit from handbag diagram

Brodsky, Lepage

- collinear QCD seemed to describe main part of FF
- asymptotic regime reached for $Q^2 \sim \text{few GeV}^2$?

The BaBar-Puzzle

BaBar-Puzzle part I: experimental results exceed asymptotic limit for the π⁰ form factor

The BaBar-Puzzle

- BaBar-Puzzle part I: experimental results exceed asymptotic limit for the π⁰ form factor
- BaBar-Puzzle part II:
 - $\eta^{(')}$ form factors behave as expected
 - assume flavour mixing scheme

$$|n\rangle = \frac{1}{\sqrt{2}}(|\bar{u}u\rangle + |\bar{d}d\rangle), \quad |s\rangle = |\bar{s}s\rangle$$

 $|\eta\rangle = \cos \phi |n\rangle - \sin \phi |s\rangle, \quad \eta' = \sin \phi |n\rangle + \cos \phi |s\rangle$

• for similar DAs the difference between $F_{\pi\gamma^*\gamma}$ and $F_{|n\rangle\gamma^*\gamma}$ factor $\frac{3}{5}$

The BaBar puzzle II

• Fixed-order NLO QCD calculation with $\mu^2 = Q^2$ does not work:

Input parameters at 1 GeV:

magenta:	$a_{0}=1,$	
blue:	$a_0 = 1,$	$a_2 = 0.39$,
black:	$a_0 = 1,$	$a_2 = 0.39$,

Figure: The fixed-order NLO QCD calculation

• Changing pion distribution amplitude does not help at all

• ? Power-suppressed effects $\sim 1/Q^{p}$??

The general picture

Figure: Schematic structure of the QCD factorization for the $F_{\gamma^*\gamma\to\pi^0}(Q^2)$ formfactor.

- A: hard subgraph that includes both photon vertices
- B: real photon is emitted at large distances
- C: Feynman Mechanism: soft quark spectator
 - Contributions of regions A, B, C are additive
 - All other possibilities lead to exponentially small corrections exp[-Q²] not seen in OPE

Region A: $\frac{1}{O^2}$ -Terms

- leading term of OPE from $T\{j_{\mu}(x) j_{\nu}(0)\}$
- can be written in factorised form:

$$F_{\gamma\gamma^*\to\pi}(\mathsf{Q}^2) = \frac{\sqrt{2}f_{\pi}}{3} \int dx \, T_{\mathsf{H}}(x, \mathsf{Q}^2, \mu, \alpha_{\mathsf{s}}(\mu)) \, \phi_{\pi}(x, \mu)$$

• T_H known to NLO in MS scheme and NNLO in conformal scheme

• ϕ_{π} : leading twist distribution amplitude

$$\sqrt{2} f_{\pi} p_{\mu} \int_{0}^{1} d\mathbf{x} e^{i\mathbf{x}\mathbf{p}\cdot\mathbf{z}} \phi(\mathbf{x},\mu) = \langle \pi(\mathbf{p}) | \bar{u}(\mathbf{z}) \gamma_{\mu}[\mathbf{z},0] u(0) | 0 \rangle_{z^{2}=0}$$

ER-BL evolution implies expansion in Gegenbauer-polynomials

$$\phi_{\pi}(x,\mu) = 6x(1-x)\sum_{n=0}^{\infty} \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\right)^{\gamma_{n}^{(0)}/2\beta_{0}} a_{n}(\mu_{0})C_{n}^{3/2}(2x-1), \qquad a_{0}(\mu) = 1$$

expect 1 = $a_0 > a_2 > a_4 > a_6 > \cdots$

 $a_2 [1 \text{ GeV}] = 0.30 \pm 0.15, \quad a_4 [1 \text{ GeV}] \sim \left\{ \begin{array}{cc} 0.1 & \text{B-decays} \\ -0.1 & \text{NLC SR [BMS-model]} \end{array} \right., \quad a_{n>4} [1 \text{ GeV}] \text{ unconstrained}$

Region A: Twist 4 terms

• twist 4 term from OPE of $T\{j_{\mu}(x) j_{\nu}(0)\}$

Figure: Twist-4 corrections to the pion transition form factor

involves twist-4 quark-gluon pion distribution amplitudes

$$\mathcal{F}_{\gamma^*\gamma o \pi^0}(\mathsf{Q}^2) \quad = \quad rac{\sqrt{2}f_\pi}{\mathsf{Q}^2} \left(rac{1}{3}\int rac{dx}{x} \phi_\pi(x) - rac{80}{27}rac{\delta^2_\pi}{\mathsf{Q}^2}
ight) \qquad \delta^2_\pi \simeq 0.2~{
m GeV}^2$$

 $\bullet\,$ Might be significant at $Q^2\sim 1-5~GeV^2$ but does not change high Q^2 behaviour

Region B: Photon Emission From Large Distances

hard scattering kernel convoluted with twist three pion and photon DA

results in

$$F^{(B)}_{\gamma^*\gamma\to\pi^0}(Q^2) = \frac{\sqrt{2}f_{\pi}}{3} \frac{16\pi\alpha_s \chi \langle \bar{q}q \rangle^2}{9f_{\pi}^2 Q^4} \int_0^1 dx \, \frac{\phi_{3,\pi}^p(x)}{x} \int_0^1 dy \, \frac{\phi_{\gamma}(y)}{\bar{y}^2}$$

- $\bullet \ \ infrared \ divergent \longrightarrow overlap \ with \ region \ C \\$
- regularised result

$$F_{\gamma^*\gamma\to\pi^0}(\mathsf{Q}^2) = \frac{\sqrt{2}f_\pi}{\mathsf{Q}^2} \left(\frac{1}{3}\int \frac{dx}{x}\phi_\pi(x) + \frac{0.2~\mathsf{GeV}^2}{\mathsf{Q}^2}\cdot\ln^2\frac{\mathsf{Q}^2}{\mu_{IR}^2}\right)$$

 ${\small \bullet}~$ might be significant up to ${\sf Q}^2\sim 5~{\sf GeV}^2$

Region C: Feynman Mechanism

- truly non-perturbative
- one quark carries almost all momentum
- overlap integral of wave functions
- use e.g. Drell-Yan representation as convolution of light-cone WFs (Brodsky-Lepage)

$$(\varepsilon_{\perp} \times q_{\perp}) F^{\bar{q}q}_{\gamma^* \gamma \to \pi^0}(\mathsf{Q}^2) = \frac{f_{\pi}}{4\pi^3 \sqrt{3}} \int_0^1 d\mathsf{x} \int d^2 \mathsf{k}_{\perp} \frac{(\varepsilon_{\perp} \times (\mathsf{x}q_{\perp} + \mathsf{k}_{\perp}))}{(\mathsf{x}q_{\perp} + \mathsf{k}_{\perp})^2 - i\epsilon} \Psi_{\bar{q}q}(\mathsf{x}, \mathsf{k}_{\perp})$$

has to be calculated in some model

Needs approaches that go geyond this picture.

Sudakov Suppression

Kroll; Li, Sterman; Botts, Sterman

• general idea: keep k_{\perp} dependence in hard scattering kernel

$$\frac{1}{xQ^2} \longrightarrow \frac{1}{xQ^2 + k_{\perp}^2}$$

- ... and in wave function
- double logs from collinear and soft regions exponentiate

$$F_{\gamma^*\gamma\to\pi^0}(\mathsf{Q}^2) = \frac{\sqrt{2}f_{\pi}}{3}\int d\mathsf{x}\int \frac{d^2b}{2\pi}\widetilde{T}_H(\mathsf{x},\mathsf{Q}^2,\mathsf{b},\mu,\alpha_{\mathsf{s}}(\mu))\,\mathbf{e}^{-\mathcal{S}}\,\phi_{\pi}(\mathsf{x},\mathsf{b}_0/\mathsf{b})$$

- Sudakov factor suppresses region of large b
- soft contributions modelled by wave function
- hard scattering kernel and Sudakov factor suppress higher Gegenbauer moments

State-of-the-art calculations in k_{\perp} factorization

k_{\perp} factorization

- flat: *a*₂ = 0.39, *a*₄ = 0.24
- $\int dx \int d^2 k_t |\Psi_{\bar{q}q}(x,k_{\perp})|^2 = \infty$

P. Kroll, arXiv:1012.3542 • fit: *a*₂ = 0.25, *a*₄ = 0.07

needs separate fit for $\eta \rightarrow \gamma \gamma^*$

Quark Models

simple interal over quark loop

- with constituent quark mass $M_q \approx 135$ MeV reproduces BaBar data for $F_{\gamma\gamma^* \to \pi}$
- ٠ caveat: f_{π} in same model divergent
- ٠ regularised model does not reproduce data...

no Pion in QCD, no γ_5 -vertex, wrong chiral limit $M_q \rightarrow 0, m_\pi \rightarrow 0$ similar model from PCAC by Pham. Pham

- guark models imply flat DA for light guarks, more peaked DAs for heavier guarks 0
- introducing

dynamical constituent mass $m(k^2) = M_q e^{-\Lambda k^2}$ nonlocal quark photon vertex $\Gamma_{\mu} = -ie_q(\gamma_{\mu} + \Delta \Gamma_{\mu})$ pion guark vertex \sim LCWF

- $\gamma_5 F(k_1^2, k_2^2)$
- can describe $\gamma\gamma^* \to \pi^0, \eta^{(\prime)}, \eta_c$ data with three different M_a
- physical justification for $m(k^2)$?

models soft contribution...

Musatov-Radyushkin Model I

• Use Drell-Yan representation as convolution of light-cone WFs (Brodsky-Lepage)

$$(arepsilon_{\perp} imes q_{\perp}) F^{ar{q}q}_{\gamma^* \gamma
ightarrow \pi^0}(Q^2) = rac{f_{\pi}}{4\pi^3 \sqrt{3}} \int_0^1 dx \int d^2 k_{\perp} rac{(arepsilon_{\perp} imes (xq_{\perp} + k_{\perp}))}{(xq_{\perp} + k_{\perp})^2 - i\epsilon} \Psi_{ar{q}q}(x, k_{\perp})$$

with a model wave function

$$\Psi_{\bar{q}q}(x,k_{\perp}) = rac{4\pi^2}{\sigma\sqrt{6}} rac{\phi_{\pi}(x)}{xar{x}} \exp\left(-rac{k_{\perp}^2}{2\sigma xar{x}}
ight)$$

to get

$$F_{\gamma^*\gamma\to\pi^0}^{\rm MR}(\mathsf{Q}^2) = \frac{\sqrt{2}f_\pi}{3} \int_0^1 \frac{dx\,\phi_\pi(x)}{x\mathsf{Q}^2} \left[1 - \exp\left(-\frac{x\mathsf{Q}^2}{2\bar{x}\sigma}\right)\right]$$

• using $\sigma = 0.53 \text{ GeV}^2$ and flat pion DA $\phi_{\pi}(x) = 1$ can fit the BABAR data !

caveat: $\int dx \int$

$$\int dx \int d^2 k_t |\Psi_{\bar{q}q}(x,k_{\perp})|^2 = \infty, ?!$$

$$F_{\gamma^* \gamma \to \pi}(0) \sim \int_0^1 dx \frac{\phi_{\pi}(x)}{\bar{x}} = \infty, ?!$$

Musatov-Radyuskin Model II

correction in Musatov-Radyushkin model is exponentially suppressed

absent in OPE

$$F_{\gamma^*\gamma \to \pi^0}^{\mathrm{MR}}(\mathsf{Q}^2) = \frac{\sqrt{2}f_{\pi}}{3} \int_0^1 \frac{dx \, \phi_{\pi}(x)}{x \mathsf{Q}^2} \left[1 - \exp\left(-\frac{x \mathsf{Q}^2}{2 \bar{x} \sigma}\right) \right]$$

• for flat DA and large Q² numerically very similar to

$$\frac{\sqrt{2}f_{\pi}}{3}\int_{0}^{1} dx \frac{\phi_{\pi}(x)}{xQ^{2}+M^{2}}, \qquad {}^{M^{2}\approx0.6GeV^{2}}_{\sigma\approx0.53}$$

• average
$$k_{\perp}^2$$
, $\langle k_{\perp}^2 \rangle = \frac{\sigma}{3} = (0.42 \, \text{GeV})^2$

- close to folklore value $\sqrt{k_{\perp}^2} \approx 300 \text{ MeV}$
- flat DA does not evolve for Photon-Pion form factor

Flat Distribution Amplitude?
 flat distribution amplitude would force us to reconsider pQCD predictions e.g.

$$F_{\pi}^{as}(\text{pQCD})(\text{Q}^2) = \frac{8\pi\alpha_s}{9\text{Q}^2} \int_0^1 dx \int_0^1 dy \frac{\phi_{\pi}(x) \phi_{\pi}(y)}{x \, y \, \text{Q}^2} \to \infty$$

flat DA really necessary in MR-model?

Answer:

alternatively, check how much is contributed by each successive Gegenbauer polynomial:

 $\mathcal{F}^{MR}_{\text{flat}}(Q^2 = 20) \quad = \quad 3.56513 = 2.72402 + 0.648618 + 0.16226 + 0.027945 + \cdots$ n = 0n=2 n=4n=6Orsay 17.11.11 Nils Offen (Universität Regensburg) The BaBar Puzzle 17/30

First Summary

- shape of Pion distribution amplitude
 - The Gegenbauer expansion for the form factor calculated with flat DA converges very fast
 - At $Q^2 < 10 20 \text{ GeV}^2$ using n = 4 truncation is sufficient
 - End-point behavior of a "true" pion DA is irrelevant
- soft corrections are modelled by different approaches

physical (QCD) interpretation not always clear...

Systematic calculation of soft effects possible? Dispersion relations.

The Method I

Khodjamirian

• The QCD result satisfies an unsubtracted dispersion relation

$$F^{\rm QCD}_{\gamma^*\gamma^*\to\pi^0}(\mathsf{Q}^2,q^2) = \frac{1}{\pi}\int_0^\infty ds \, \frac{{\rm Im} F^{\rm QCD}_{\gamma^*\gamma^*\to\pi^0}(\mathsf{Q}^2,-s)}{s+q^2} \, .$$

hadronic sum looks like

$$\mathcal{F}_{\gamma^*\gamma^* \to \pi^0}(\mathsf{Q}^2, q^2) = \frac{\sqrt{2} f_\rho \mathcal{F}_{\gamma^*\rho \to \pi^0}(\mathsf{Q}^2)}{m_\rho^2 + q^2} + \frac{1}{\pi} \int_{s_0}^\infty ds \, \frac{\mathrm{Im} \mathcal{F}_{\gamma^*\gamma^* \to \pi^0}(\mathsf{Q}^2, -s)}{s + q^2} \, .$$

• Duality: assume that above a certain threshold

$$\int {\rm Im} {\pmb {\cal F}}_{\gamma^*\gamma^*\to\pi^0}({\ {\bf Q}}^2,-s) \quad = \quad \int {\rm Im} {\pmb {\cal F}}_{\gamma^*\gamma^*\to\pi^0}^{QCD}({\ {\bf Q}}^2,-s) \qquad \mbox{for } s>s_0$$

• Asymptotic freedom: QCD expression must be correct at $q^2
ightarrow -\infty$, therefore

$$\sqrt{2}f_{\rho}F_{\gamma^*\rho\to\pi^0}(\mathsf{Q}^2)=\frac{1}{\pi}\int_0^{s_0}ds\,\mathrm{Im}F^{\mathrm{QCD}}_{\gamma^*\gamma^*\to\pi^0}(\mathsf{Q}^2,-s)\,.$$

Duality sum rules: use this result to correct the QCD calculation

The BaBar Puzzle

The Method II

The Method II

Nils Offen (Universität Regensburg)

The Method II

Nils Offen (Universität Regensburg)

Leading order example

QCD calculation

$$F^{\rm QCD}_{\gamma^*\gamma^* \to \pi^0}(Q^2,q^2) = \frac{\sqrt{2}f_\pi}{3} \, \int_0^1 \frac{dx \, \phi_\pi(x)}{xQ^2 + \bar{x}q^2} \, .$$

$$\operatorname{Im}_{s} \frac{1}{x \mathsf{Q}^{2} - \bar{x}s} \longrightarrow \frac{\pi}{\bar{x}} \delta\left(s - \frac{x}{\bar{x}} \mathsf{Q}^{2}\right)$$

$$F_{\gamma^*\gamma\to\pi^0}^{\rm LCSR}(Q^2) = \frac{\sqrt{2}f_{\pi}}{3} \left\{ \int_{x_0}^1 \frac{dx \, \phi_{\pi}(x)}{xQ^2} + \int_0^{x_0} \frac{dx \, \phi_{\pi}(x)}{\bar{x}m_{\rho}^2} \right\}, \quad x_0 = \frac{s_0}{s_0 + Q^2}$$

- The difference is a soft correction that suppresses higher Gegenbauer-moments
- qualitative picture stays the same after inclusion of NLO corrections

The BaBar Puzzle

Results I

Agaev et al.

• Three models with $a_{n>4} \neq 0$

Nils Offen (Universität Regensburg)

The BaBar Puzzle

Results II

Agaev et al.

comparison of soft and hard contributions in LCSRs

 $\bullet~$ soft part still $\sim 25\%$ at $Q^2 \approx 40~GeV^2$

• asymptotic regime starts later than assumed?!

Results III

Agaev et al.

• The same models describe pion form EM factor and $B \rightarrow \pi \ell \nu_{\ell}$ width

NLO LCSRs including twist up to 6 and up to 4, respectively

• What about η , η' ?

$\eta \leftrightarrow \eta'$ -mixing

singlet-octet scheme

$$\langle 0|J_{\mu 5}^{i}|P(p)
angle = i f_{P}^{i} p_{\mu}$$
 $(i = 1, 8; P = \eta, \eta')$
 $f_{\eta}^{8} = f_{8} \cos \theta_{8}, \qquad f_{\eta}^{1} = -f_{1} \sin \theta$
 $f_{\eta'}^{8} = f_{8} \sin \theta_{8}, \qquad f_{\eta'}^{1} = f_{1} \cos \theta$

flavour scheme

$$egin{aligned} J^q_{\mu5} &= rac{1}{\sqrt{2}} (ar{u} \gamma_\mu \gamma_5 u + ar{d} \gamma_\mu \gamma_5 d), \quad J^s_{\mu5} &= ar{s} \gamma_\mu \gamma_5 s \ &\langle 0 | J^r_{\mu5} | P(p)
angle &= i \, f^r_P \, p_\mu \quad (r=q,\,s) \ &f^q_\eta &= f_q \cos \phi_q, \qquad f^s_\eta &= -f_s \sin \phi_s \ &f^q_{\eta'} &= f_q \sin \phi_q, \qquad f^s_{\eta'} &= f_s \cos \phi_s \end{aligned}$$

neglect difference $\phi_q - \phi_s$

$$\phi_q \approx \phi_s \approx 41^\circ$$

include η_c and G into mixing?

Nils Offen (Universität Regensburg)

The BaBar Puzzle

Orsay 17.11.11 25 / 30

BaBar-Measurement

• BaBar measured $\eta^{(')} \to \gamma \gamma^*$ and $e^+e^- \to \eta^{(')} \gamma$ form factors

BaBar-Measurement

- BaBar measured $\eta^{(')} \to \gamma \gamma^*$ and $e^+e^- \to \eta^{(')}\gamma$ form factors
- used flavour scheme to translate to light quark and strange quark content
 - $|n\rangle$ FF does not rise as pion FF
 - $|s\rangle$ FF falls short even of prediction with asymptotic DA

BaBar-Measurement

• BaBar measured $\eta^{(')} \to \gamma \gamma^*$ and $e^+e^- \to \eta^{(')}\gamma$ form factors

used flavour scheme to translate to light quark and strange quark content

- $|n\rangle$ FF does not rise as pion FF
- $|s\rangle$ FF falls short even of prediction with asymptotic DA
- Can additional contributions solve this?

Additional Corrections for the $\eta^{(\prime)}$ form factors

Agaev et al. work in progress

gluonic content

include three Gluon or Twist 4 contribution?

- mass corrections due to $m_{\eta^{(\prime)}}^2
 eq 0$
- SU(3)-breaking due to additional twist 3 corrections for massive strange quark

$$\sim \frac{m_{s}\,\mu_{\eta^{(\prime)}}}{Q^{2}}\,\frac{\sqrt{2}f_{\eta}^{(\prime)}}{3}\left\{\int_{x_{0}}^{1}\frac{dx}{xQ^{2}}\,\frac{d\phi_{\eta^{(\prime)},3}^{\sigma}(x)}{dx}+\int_{0}^{x_{0}}\frac{dx}{\bar{x}m_{\rho}^{2}}\,\frac{d\phi_{\eta^{(\prime)},3}^{\sigma}(x)}{dx}\right\}\quad x_{0}=\frac{s_{0}+m_{s}^{2}}{s_{0}+Q^{2}}$$

- even though $m_{|n\rangle}^2 > m_{\pi}^2$ larger effect if η_c is taken into account
- unlikely to cure discrepancy of $F_{\gamma\gamma^* \to \pi} \leftrightarrow F_{\gamma\gamma^* \to |n\rangle}$

Conclusions/Summary

- picture still rather confusing
- some important issues
- LCSR fits generally prefer a small value $a_2(1 \text{ GeV}) \simeq 0.13 0.16$ compared to $a_2(1 \text{ GeV}) \simeq 0.35 \pm 0.15$ from lattice calculations

 $\stackrel{\hookrightarrow}{\hookrightarrow} \text{higher precision lattice data needed} \\ \stackrel{\hookrightarrow}{\hookrightarrow} \text{BES data?}$

 BABAR data in the Q² = 10 − 20 GeV² range require large a₄(1 GeV) ≃ 0.25; older data/other reactions not sensitive because of lower effective Q²

• No natural explanation for the difference $\gamma^*\gamma \to \pi$ and $\gamma^*\gamma \to \eta$

← more experimental data needed (KEK?)

Method	$\mu=$ 1 GeV	$\mu=$ 2 GeV	Reference
LO QCDSR, CZ model	0.56	0.38	CZ 1981
QCDSR	$0.26^{+0.21}_{-0.09}$	$0.17^{+0.14}_{-0.06}$	Khodjamirian et al. 2004
QCDSR	0.28 ± 0.08	0.19 ± 0.05	Ball et al. 2006
QCDSR, NLC	0.19 ± 0.06	0.13 ± 0.04	BMS 91, 98, 01
$F_{\pi\gamma\gamma^*}$, LCSR	0.19 ± 0.05	$0.12\pm 0.03~(\mu=2.4)$	Schmedding, Yakovlev 99
$F_{\pi\gamma\gamma^*}$, LCSR	0.32	$0.20(\mu = 2.4)$	BMS 02
$F_{\pi\gamma\gamma^*}$, LCSR, R	0.44	0.30	BMS 05
$F_{\pi\gamma\gamma^*}$, LCSR, R	0.27	0.18	Agaev 05
F_{π}^{em} ,LCSR	$0.24 \pm 0.14 \pm 0.08$	$0.16 \pm 0.09 \pm 0.05$	Braun 99, Bijnens 02
$F_{\pi}^{\rm em}$,LCSR, R	0.20 ± 0.03	0.13 ± 0.02	Agaev 05
$F_{B\to\pi\ell\nu}$, LCSR	0.19 ± 0.19	0.13 ± 0.13	Ball 05
$F_{B \rightarrow \pi \ell \nu}$, LCSR	0.16	0.10	Duplancic 08
LQCD, $N_f = 2$, CW	0.329 ± 0.186	0.201 ± 0.114	QCDSF/UKQCD 06
$LQCD, N_f = 2+1, DWF$	0.382 ± 0.143	0.233 ± 0.088	RBS/UKQCD 07

Region C: LCSR vs. MR model

Separate contributions of different Gegenbauer polynomials

$$Q^{2}F_{\gamma^{*}\gamma \to \pi^{0}}(Q^{2}) = \sqrt{2}f_{\pi}\left\{f_{0}(Q^{2}) + a_{2}f_{2}(Q^{2}) + a_{4}f_{4}(Q^{2}) + \ldots\right\}$$

• ... and compare the coefficients $f_n(Q^2)$

A qualitative agreement

Convincing evidence for strong suppression of end-point regions alias contributions of higher Gegenbauer polynomials in pion DA

Nils Offen (Universität Regensburg)

The BaBar Puzzle