
Proceedings of the First Southern Symposium on Computing
The University of Southern Mississippi, December 4-5, 1998

NEAR-CRITICAL PATH ANALYSIS: A TOOL FOR PARALLEL PROGRAM OPTIMIZATION

CEDELL A. ALEXANDER*, ARIC B. LAMBERT†, DONNA S. REESE†, JAMES C. HARDEN†

AND RON B. BRIGHTWELL‡

Abstract. Program activity graphs (PAGs) can be constructed from timestamped traces of appropriate execution

events. Information about the activities on the k longest execution paths is useful in the analysis of parallel program

performance. In this paper, four algorithms for finding the near-critical paths of PAGs are compared. A framework for

using the near-critical path information is also described. The framework includes statistical summaries and

visualization capabilities that build upon the foundation of existing performance analysis tools. Within the framework,

guidance is provided by the Maximum Benefit Metric, which uses near-critical path data to predict the maximum

overall performance improvement that may be realized by optimizing particular critical path activities.

1. Introduction. Developing efficient parallel programs has proven to be a difficult task. Substantial

research has been devoted to many aspects of the problem; active work spans the computer science

spectrum from algorithmic techniques, programming paradigms, advanced compilers, and operating

systems to architectures and interconnection networks. Complex interactions at each of these levels have

provided motivation for a suite of performance measurement and analysis tools.

Insight into a system's dynamic behavior is a prerequisite for high-productivity optimization of parallel

programs. Multiple tools, offering varying perspectives, may be required to gain the necessary insight. The

IPS Parallel Program Measurement System [1] and the Pablo Performance Analysis Environment [2] are

two significant toolkits facilitating different viewpoints based on timestamped probe descriptions of run-

time events.

IPS provides a hierarchy of statistical information based on a five layer model consisting of the whole

program, machine, process, procedure, and primitive activity levels. Critical path and phase behavior

analysis techniques guide the search for performance problems. Critical path analysis focuses the

optimization effort by identifying the activities on the longest execution path; to improve the program's

performance, the duration of activities on the critical path(s) must be shortened.

Pablo is a visualization and sonification toolkit designed to be a de facto standard through a philosophy

of portability, scalability, and extensibility. Custom performance analysis environments are constructed by

graphically interconnecting a set of analysis and display modules. The graphical programming model

encourages experimental exploration of the performance data.

The utility of critical path analysis can be extended when information is available about the k longest

paths. Optimization of specific critical path activities may provide little overall performance improvement

if the second, third, etc., longest paths are of similar duration and consist of independent activities. Near-

critical paths can be used to further refine the analysis process by quantifying the benefit of optimizing

critical path activities. The initial focus of this paper is on efficient algorithms for determining the near-

critical paths of program activity graphs. Efficient algorithms are important because program activity

graphs can be very large (hundreds of thousands of vertices).

We also present a framework for using near-critical path data that encompasses both statistical

summaries (patterned after IPS) and the visualization capabilities of Pablo. Guidance is provided by the

Maximum Benefit Metric, which includes the synergistic effects of common activities on near-critical paths

* IBM' s Networking Hardware Division, P.O. Box 12195, Research Triangle Park, NC 27709.
† NSF Engineering Research Center for Computational field Simulation, Mississippi State University, P.O. Box 6176,

Mississippi State, MS 39762.
‡ Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1110.

2 ALEXANDER, LAMBERT, REESE, HARDEN AND BRIGHTWELL

to predict the maximum overall performance improvement associated with optimization of particular

critical path activities.

In Section 2, critical path algorithms are reviewed to provide the background needed for description of

near-critical path algorithms in Section 3. Probe acquisition and construction of program activity graphs are

discussed in Section 4. A framework for near-critical path analysis is presented in Section 5. Section 6

contains the description of the applications and performance results from the Maximum Benefit Metric.

The paper is concluded in Section 7 with a summary of key results.

2. Critical Path Algorithms.

2.1. Program Activity Graphs. A program activity graph (PAG) is an acyclic, directed multigraph

representing the duration and precedence relationships of program activities. Edges represent execution

activities, weights represent activity durations, vertices mark activity boundaries, and outgoing activities

from a vertex cannot begin until all incoming activities have completed. Multigraphs are distinguished by

multiple edges between a given pair of vertices. Although not all PAGs are multigraphs, generality requires

that near-critical path algorithms accommodate multigraphs (PAG characteristics are determined by the

semantics of the target system). The biggest impact of the multigraph characteristic is on data structure

selection.

2.2. Longest Path Algorithm. IPS employs a modified shortest path algorithm, based on the diffusing

computation paradigm [3], to find the path with the longest execution duration. A diffusing computation on

a graph begins at the root vertices and diffuses to all descendant vertices. In the synchronous variation, a

vertex will not diffuse a computation to its descendants until all incoming computations are received. A

version of the synchronous algorithm with adaptations to accommodate multigraphs is given in [4].

2.3. Critical Path Method. The critical path method is an operational research algorithm for finding

the longest path(s) through an activity-on-edge network [5]. The critical path method calculates early start

and earl) finish times for each activity in a forward pass through the network. Late start times, late finish

times, and slack values are calculated in a backward pass. Table 1 defines the terms that will be used to

explain the algorithm.

Notation Definition

d(i) duration of activity i
ES(i) early start time of activity i
EF(i) early finish time of activity i, ES(i) + d(i)
LS(i) late start time of activity i
LF(i) late finish time of activity i, LS(i) + d(i)
TS(i) total slack of i, LS(i) - ES(i) := LF(i) – EF(i)
FS(i) free slack of i, ES(i’s immediate successors) – EF (i)

TABLE 1. Critical Path Method Notation

The early start time of an activity is the earliest possible time the activity can begin. The late start time

of an activity is the latest time the activity can start without extending the overall network completion time.

The slack values are criticality measures. The total slack of an activity is the amount of time that it can be

delayed without affecting the overall completion time. Activities with zero total slack are on a critical path.

The free slack of an activity is the amount of time the activity can be delayed without affecting the early

start time of any other activity. The total slack values of activities on a path are not independent; delaying

an activity longer than its free slack reduces the slack of subsequent activities. The values calculated by the

critical path method for a simple example network are shown in Fig. 1.

2.4. Algorithm Comparison. The longest path algorithm is more efficient than the critical path

method (since the longest path is found in a single pass through the edges). However, the critical path

method produces more information; multiple critical paths are identified and the slack criticality measures

are provided. Both algorithms have the same asymptotic time complexity, in 0(e), where e is the number of

edges in the graph. Selection of the most appropriate algorithm is dependent upon application needs.

NEAR-CRITICAL PATH ANALYSIS: A TOOL FOR PARALLEL PROGRAM OPTIMIZATION 3

3. Near-Critical Path Algorithms.

Definition 1: A near-critical path is a path whose duration is within a certain percentage, the near-
criticality percentage, of the critical path duration. The near-criticality percentage (denoted nc%) may be

specified by the user or reported by the algorithm. Three near-critical path algorithm approaches are

summarized in the following list:

1) Specify maximum number of longest paths to find, k, and report nc% of kth
 longest path,

2) Specify nc% and find all near-critical paths.

3) Specify both k and nc% (i.e., find up to k longest near-critical paths).

In this section, four near-critical path algorithms are compared: the path enumeration and extended

longest path algorithms are examples of approach 1); the branch-and-bound algorithm is based on approach

2); and the best-first search algorithm employs approach 3). Approach 3) can be advantageous, relative to

approach 1), when the number of near-critical paths is less than k.

3.1. Path Enumeration and Extended Longest Path Algorithms. An algorithm for listing the k
shortest paths between two vertices of an acyclic digraph is described in [6]. The algorithm can be easily

modified to enumerate longest paths. For a multigraph containing n vertices and e edges, the worst-case

time and memory requirements of the algorithm are in O(kne) and O(kn2+e), respectively.

A more straightforward approach is to simply extend the longest path algorithm to find the k longest

paths as described in [4]. Since the extended algorithm maintains an array of k (fixed-size) path description

records for each vertex, and a descriptor is required to represent each edge, the storage requirements are in

O(kn+e). The worst-case time complexity of the algorithm is in 0(ke).

3.2. Brunch-and-Bound Algorithm. Brute-force depth-first searches can solve the longest path

problem in linear space; however, the time complexity is exponential [7]. Branch-and-bound (BnB) is a

technique that may significantly improve the efficiency of depth-first searches by eliminating unproductive

search paths [8]. In this subsection, we show how the slack values calculated by the critical path method

can be used as the basis for a BnB near-critical path algorithm. The notation employed to explain the

algorithm is defined in Table 2.

To find the critical and near-critical paths, depth-first searches are started at the root vertices. A search

is terminated when either a leaf vertex is reached or max_path_duration is less than min_ncp_duration. If a
leaf vertex is reached, then a critical or near-critical path has been found (FS_sum = 0 for a critical path).

1

2

430

[0 ;2 0]

[0 ;2 0]

T S = 0

F S = 0

d = 2 0
n u m = 0

[0 ;1 0]

[2 0 ;3 0]
T S = 2 0

F S = 1 5

d = 1 0

n u m = 1

[2 0 ;2 5]

[2 5 ;3 0]

T S = 5

F S = 0
d = 5

n u m = 3

[2 0 ;3 5]

[2 0 ;3 5]
T S = 0

F S = 0

d = 1 5
n u m = 2

[2 5 ;3 0]

[3 0 ;3 5]

T S = 5

F S = 5

d = 5

n u m = 4

[3 5 ;4 5]

[3 5 ;4 5]
T S = 0

F S = 0

d = 1 0n u m = 5

Leg en d :

[ES ;EF]

[LS ;LF]

F ig . 2 .1 . C r itic al p ath m eth o d ex am p le.FIG. 1. Critical path method example.

4 ALEXANDER, LAMBERT, REESE, HARDEN AND BRIGHTWELL

Notation Definition

min_ncp_duration Minimum duration of a near-critical path,

critical_path_duration*((100-nc%)*.01)

FS_sum Sum of free slack on all preceding edges of path

max_path_duration maximum potential duration of current path at any edge of a depth-first

search,

critical_path_duration-(FS_sum + TS)

max_ncp_slack Maximum slack of near-critical path,

critical_path_duration-min_ncp_duration

TABLE 2. Near-Critical Path Notation

The performance of the algorithm is highly dependent upon the input PAG. In the best case, the time

complexity is in 0(1). If we optimistically assume that only one edge exists between any two vertices and

that no vertex has more than two outgoing edges (which is true for the PAGs that we generate), the worst-

case complexity, based on the number of edges that must be examined, is in 0(1.62
n). When the critical

path method is also included in the analysis, the best-case and worst-case time complexities are in 0(e) and

0(1.62
n+e), respectively.

3.3. Best-First Search Algorithm. The slack values provided by the critical path method can also be

used as the basis for a best-first search (BFS) algorithm that traverses the k longest near-critical paths in

order of nonincreasing duration. The algorithm begins by evaluating all outgoing edges from root vertices.

The edge with minimum total slack is selected. The critical path method guarantees that at least one of

these edges will be on a critical path and have zero total slack. Once a path has been selected, traversal is

an iterative process of following the edge with minimum total slack at each descendant vertex. When a leaf

vertex is reached, the next longest path is selected for traversal.

Traditionally, the applicability of BFS has been limited by an exponential memory requirement [9].

The memory is needed to save the state of all partially explored paths so that optimal selections can be

made. Slack values provide the information needed to overcome this limitation. Since slack is a global

criticality measure, storage can be constrained to maintaining state for the k longest near-critical paths that

have been found. To maintain this state information, partial paths encountered during near-critical path

traversal must be evaluated. Partial paths are formed by edges that are not on the current near-critical path.

Partial path evaluation is based on the cost function (FS_sum + TS), and state is maintained for the

minimum cost near-critical paths.

To minimize path evaluation overhead, path costs are maintained in a max-heap data structure. This

allows direct access to the maximum cost partial path and a new (lower) maximum can be established in

logarithmic time. To minimize the overhead of selecting the next longest path, path costs are also

maintained in a min-heap. When the max-heap is modified by sifting down a new entry, the associated

min-heap entry is percolated up to maintain the integrity of the dual heaps. Thus, the minimum cost partial

path is always available at the top of the min-heap.

Path state information is preserved in path_descriptor records. Pointers to the descriptors of edges on

near-critical paths are recorded in path_entry records. Paths consist of two segments. The first segment of a

path contains edges shared with the (parent) near-critical path that was being traversed when the partial

path was formed. These edges begin at a root vertex. When a partial path is formed, information about the

preceding segment is saved in the path_descriptor. This information includes a count indicating the number

of edges on the first path segment, path_1_cnt, and a pointer to the path_descriptor of the parent path,

path_1_p. The second path segment consists of a linked-list of path_entry records. The first path_entry
record for the second path segment, path_2, is also contained in the path_descriptor. The second path

segment is constructed during near-critical path traversal and terminates at a leaf vertex.

A pointer to the path_entry record corresponding to the minimum cost path from a vertex is saved at

the first visit to each vertex to allow additional path_entry record sharing. If, during near-critical path

traversal, a vertex is reached that has already been visited by an earlier traversal, then all succeeding edges

are shared with the earlier path. Duplicate path_entry records are required only when the same edge begins

the second segment of near-critical paths, which can occur a maximum of k/2 times. Therefore, the worst-

NEAR-CRITICAL PATH ANALYSIS: A TOOL FOR PARALLEL PROGRAM OPTIMIZATION 5

case memory requirement for the algorithm is in O(k+e). Fig. 1 provides an illustration of the path

description data structures for the graph in Fig. 2.

The worst-case time complexity of the algorithm is in 0(ke), with the dominant factor being that 0(e)
edges may need to be examined during each of the k near-critical path traversals. A detailed analysis of the

algorithm, along with proofs of correctness and worst-case optimality can be found in [10l (worst-case

optimality is established in terms of both time and space for the problem of enumerating the k longest paths

of acyclic, directed multigraphs).

Algorithm Comparison. Asymptotic upper bounds on the worst-case time and memory requirements

for the four near-critical path algorithms are summarized in Table 3.

Algorithm Enumeration Longest Paths BnB BFS

Time O(kne) O(ke) O(1.62
n+e) O(ke)

Memory O(kn2+e) O(kn+e) O(e) O(k+e)

TABLE 3. Worst-Case Complexities Of Near-Critical Path Algorithms

One advantage of the path enumeration algorithm is the capability to incrementally explore the next

longest path until sufficient data is available, which is potentially useful in an interactive environment. The

BFS algorithm can be used similarly, but is constrained to a maximum of k paths. Memory requirements

limit the utility of the extended longest path algorithm. Uncertainty differentiates the BnB and BFS

algorithms. With BnB, the uncertainty is associated with execution time; with BFS, the uncertainty is

associated with the near-criticality percentage of the kth longest path. The significance of the BFS algorithm

is in the combination of time and memory requirements.

4. Probe Acquisition and PAG Construction.

4.1. SuperMSPARC Multicomputer and Instrumentation System. The traces used in this study

were collected with the instrumentation facilities of the SuperMSPARC multicomputer [11]. The

SuperMSPARC is a 32-processor machine based on the SPARCstation 10 multiprocessor. There are eight

SPARCstations, each of which contains four 90 MHz Ross hyperSPARC processors. SuperMSPARC has

three types of interconnection communication networks: Ethernet, ATM, and Myrinet. Each node is

pa th_descrip tor 1 cost=0 next

pa th_1_cn t=0 edge_p
num 0pa th_1_p

next

edge_p
num 2

pa th_descrip tor 2 cost=5 next

pa th_1_cn t=1 edge_p
num 3pa th_1_p

next

edge_p
num 4

pa th_descrip tor 1 cost=20 next

pa th_1_cn t=0 edge_p
num 1pa th_1_p

next

edge_p
num 5

path 1

(0 ,2 ,5)

path 2

(0 ,3 ,4 ,5)

path 3

(1 ,4 ,5)

pa th_2 pa th_en try

Legen d:

path i
(edg e nu m bers)

F ig . 3 .1 . BF S path d es c r ip tio n data s truc tu res .FIG. 2. BFS path description data structures.

6 ALEXANDER, LAMBERT, REESE, HARDEN AND BRIGHTWELL

equipped with an intelligent performance monitor adapter that provides an interface to a separate data

collection network.

Hardware, software, and hybrid measurement systems have been used to record event traces. Hardware

instrumentation is unobtrusive and delivers useful low-level information, but is costly and provides

information with limited context. Software instrumentation is simple and flexible, but can perturb the

execution characteristics of the program being measured. Hybrid measurement systems combine software

with hardware support and provide an attractive compromise [12], The SuperMSPARC instrumentation

system implements a hybrid approach. Special hardware on the performance monitor adapter collects and

timestamps information written by software probes from the MPI environment. All processing of probes is

done by the instrumentation processor, so the only obtrusiveness comes from the actual writing of the

probe data, which has been measured to be ~2 microseconds per probe.

The SuperMSPARC instrumentation system records performance data to disk for postmortem analysis.

A global timestamp clock shared by the performance monitor adapters allows for a total ordering of events

collected from all nodes. Recorded probes are converted to the Pablo Self-Defining Data Format (SDDF)

for the purpose of PAG generation and visualization using a Pablo display.

4.2. Message Passing Environment. The defacto message passing standard Message Passing

Interface (MPI) was chosen as the vehicle for implementation of the construction of the PAG for near-

critical path analysis. The MPI standard is independent of any particular machine architecture and allows

the programmer to write portable programs that can be run without changes to the underlying

communication protocol [13]. Since the most important events a performance monitoring systems needs to

analyze are communication events, acquisition of probe information will be done primarily within the MPI

function calls.

An MPI probe library was designed with probe function calls placed at the beginning and end of each

MPI function call. This allows a timestamp of the beginning and end of the MPI call to be taken so the

interval of execution time of the function can be obtained. These probes were inserted by using the MPI

profiling interface. The MPI profiling interface allows MPI function calls to be replaced by user-defined

functions that can perform performance monitoring activities and then invoke the true MPI functions. The

programmer can easily link the probe library with the application to obtain probe data without source code

modification. Table 4 shows the types of MPI and additional probes that are implemented on the

SuperMSPARC.

Probe Type Overview

All Gather All the processes distribute data to all the other processes.

All Reduce An operation is performed on the data from all the processes. The result of the

operation is obtained by all the processes.

Barrier Each process is blocked until all the processes have called the barrier function.

Broadcast A root process distributes data to all the other processes.

Message IRecv A process attempts to receive data without blocking the task’s execution.

Message ISend A process attempts to send data without blocking the task’s execution.

Message Receive A process receives data while blocking the task’s execution.

Message Send A process sends data while blocking the task’s execution.

Reduce An operation is performed on the data from all the processes and result is

obtained by the root.

Wait Blocks a process until a non-blocking call is completed

Additional Probes
Computation Computation work being performed by the processes.

Idle Time Idle period for processes waiting for a message

TABLE 4. SuperMSPARC Probe Types. MPI Routines Instrumented

4.3. Construction of Program Activity Graphs. PAGs from a message passing environment contain

one root vertex for each node involved in the program execution. All vertices have a single child except

NEAR-CRITICAL PATH ANALYSIS: A TOOL FOR PARALLEL PROGRAM OPTIMIZATION 7

those that mark the beginning of a remote message being sent. These vertices could have two or more

children. One child is associated with the following event on the same node, and the other children mark

the ending of the associated receive edge on the destination node. The duration of the edge to the remote

node is the difference between the end of message reception time at the destination node and the start of

message transmission time at the source node, and thus takes into account effects such as network

congestion. To construct PAGs, several types of probes must be matched (e.g. the beginning and ending of

a receive call). However, the entire construction process, which is described in [4], can be performed in

linear time. A sample PAG is shown in Fig. 3.

5. Near-critical Path Analysis Framework. The output from the near-critical path program consists

of a list of all the critical and near-critical paths found. Each path consists of a duration and an edge list.

This information by itself is not meaningful to the user as the relationships between the edges listed and

program activities are not known. In any case, a list of all the program activities on the near-critical paths

would most likely contain too much information to be useful. Near-critical path analysis will attempt to

provide both guidance through hierarchical summaries expressed in terms of logical events within the

application program, and capabilities flexible enough to support detailed exploration of small-scale

behavior.

At the highest level, the critical paths are analyzed. Classical metrics such as computation and

communication percentages is provided. Activities may be viewed from a processor perspective or broken

down by function. Near-critical path activity classes are represented by a new performance metric that

considers contributions across all paths found. The availability of near-critical path data permits prediction

of the maximum performance improvement that may be achieved by optimizing a particular critical path

activity. More importantly, the broader perspective allows guidance to be offered regarding the relative

merits of tuning specific activities.

The computation to communication ratio can be used to assess the appropriateness of the application

decomposition. A high communications contribution to the critical path could indicate an inappropriate, or

too finely grained decomposition. Near-critical path data can also be used as an architecture evaluation

tool. A high communications contribution on all critical and near-critical paths can indicate that increased

interconnection network performance would result in improved application performance.

The availability of PAGs facilitates speculation about the effects of reducing the time associated with a

particular activity. The availability of near-critical path data facilitates selection of the most promising

activities for what if scenarios. The analysis framework supports rapid experimentation by allowing the

R ec eiv e M es s ag e

C o m p u tatio n

S en d M es s ag e

C o m p u tatio n

M es s ag e S en t

R ec eiv e M es s ag e

C o m p u tatio n

F ig . 4 .1 S am p le p ro g ram ac tiv ity g rap h .FIG. 3. Sample program activity graph.

8 ALEXANDER, LAMBERT, REESE, HARDEN AND BRIGHTWELL

durations of selected PAG activities to be adjusted. The potential effects are then quickly ascertained by

analysis of the modified PAG. While near-critical path guidance is based on a limited number of paths,

what if scenarios extend the analysis to all execution paths.

Visualization complements the statistical perspective by revealing the dynamics of when performance

determining activities occurred. Rather than attempt the impossible task of predicting and satisfying all

potential visualization needs, we have opted to simply output Pablo SDDF records corresponding to critical

and near-critical path activities. In this manner, the full capabilities of the Pablo environment may be

invoked to explore critical and near-critical path activities from the most appropriate perspectives.

The goal of performance debugging metrics is to rank the importance of improving specific program

activities. Six parallel program performance metrics were compared in [14], and although no single metric

was universally superior, the Critical Path Metric (CPM) provided the best overall guidance. CPM ranks

activities according to the magnitude of their durations on the critical path. The Maximum Benefit Metric
(MBM) is an extension of the Critical Path Metric that includes the synergistic effects of common activities

on near-critical paths. The Maximum Benefit Metric for activity i over the k longest paths is computed as

follows:

MBMk(i) = min(d(i)j + (dcp - dj)), for j = i to k, where

d(i)j = aggregate duration of activity i on jth longest path,

dcp = duration of the critical path, and

dj = duration of the j th
longest path.

Fig. 4 is a simple example that illustrates how optimizing the largest component on the critical path

may not yield the most overall improvement. Unless all the paths are considered, which is usually not

practical, the impact of the activities on the (k+l)th
longest path are not known. Thus, the metric represents a

prediction of the maximum overall benefit associated with particular critical path activities.

Fig. 5 illustrates the aggregate MBMs for communication and computation activities of a parallel

quicksort of 1000 integers. This information reveals additional clues to the application' s characteristics and

behavior. MBM information indicates the need to look at as many as 100 near-critical paths to help predict

the actual optimization benefit that could be obtained by optimizing communication activities. Note that the

actual benefit that can be achieved is much lower than what was deduced by the critical path.

d (A)= 1 0 d (A)= 1 0d (B)= 4 0 d (C)= 1 5

d (D)= 3 0

d (E)= 1 5
 C r itic al P ath Ac tiv ities : A,B,A,C

 D u ratio n :7 5

N ear -C r itic al P ath Ac tiv ities :D ,E ,A,C

 D u ratio n :7 0

Ac tiv ity

i

D u ratio n

d (i)

C r itic al

P ath

M etr ic

M BM 1

M ax im u m

Ben ef it

M etr ic

M BM 2

A 1 0 2 0 1 0

B 4 0 4 0 5

C 1 5 1 5 1 5

D 3 0 0 0

E 1 5 0 0

F ig . 5 .1 C o m m u n ic atio n an d c o m p u tatio n M BM sFIG. 4. Communication and computation MBMs.

NEAR-CRITICAL PATH ANALYSIS: A TOOL FOR PARALLEL PROGRAM OPTIMIZATION 9

Once the MBMs over a set of near-critical paths have identified program activities of interest for

optimization, what if scenarios can be used to recalculate the MBMs over all paths. This is accomplished

by zeroing the duration of an operator in the PAG and recalculating the critical path. The MBM for activity

i over all paths is computed as follows:

MBMall(i) = dcp - d(i0)cp,

where d(i0)cp is the duration of the critical path with activity i zeroed, and dcp is the original critical path

duration.

6. Algorithms and Performance Results.

6.1. Algorithms. Algorithm performance was assessed with PAGs from five application programs: an

N-body simulation application (NBODY), a Monte Carlo application (MONTE), and a ray-tracing

application (ZSNOOP). NBODY simulates the evolution of a system of N bodies where the force on each

body arises due to its interaction with all other bodies in the system. NBODY was designed by David W.

Walker from Oak Ridge National Laboratory in Tennessee [15]. MONTE is a simple parallel

implementation of an Auxiliary-Field Monte Carlo algorithm designed by Carey Huscroft at the

Department of Physics, University of California at Davis [16]. ZSNOOP is a parallel ray-tracing program

that uses a global combine to merge all of the images computed by the individual processors into one

rendering. Lance Burton designed it at the Engineering Research Center at Mississippi State University

[17]. Table 5 summarizes the application-related statistics.

Program Execution

Time (s)

No. of

Edges

No. of

Vertices

CPcom
*

No. of

Processors

MONTE 30.301 226 285 61.2% 16

NBODY 29.294 557 448 55.2% 8

ZSNOOP 3,757.882 2131 1908 4.3% 8

TABLE 5. Application-Related Statistics. (*Percent of critical path duration devoted to communication.)

6.2. Performance Results. Computational performance is measured by execution time of relevant

tasks. To obtain this information, probe calls are placed in delimiting points of the functional areas. Probe

calls are assigned meaningful label names labels. These labels are used to identify computational

performance for individual functional area.

�

��

� C o m m u n ic atio n

[C o m p u tatio n

1 0 0

1 0

1

1 1 0 01 0 1 0 0 0 1 0 0 0 0

M ax im u m

Ben ef it

M etr ic

N u m b er o f P ath s

F ig . 5 .2 . C o m m u n ic atio n an d c o m p u tatio n M BM s .FIG. 5. Communication and computation MBMs.

10 ALEXANDER, LAMBERT, REESE, HARDEN AND BRIGHTWELL

The MBM results for MONTE in Table 6 show that function MonteCarlo has a lower percentage of

possible performance benefit than was originally suggested by the critical path analysis, but that the true

percentage of performance benefit is not significantly different. MBM confirmed that the critical path

analysis was accurate for function Main, and since this function has a higher potential for performance

benefit, the user should focus on optimizing that function.

Function

Label

Critical

Path %

MBMall

Path %

Main 21.98% 21.98%

MonteCarlo 15.20% 14.60%

TABLE 6. MONTE Results

The NBODY MBM analysis in Table 7 shows that possible performance benefit from function Timing

is only 19.73%, where the critical path analysis showed a higher percentage of possible performance

benefit of 22.97%. This indicates that the optimization of functions Timing and ParticlesInput have nearly

identical expected benefits. Depending on the complexity of the individual functions, this information can

enable the user to better determine which function to optimize.

Function

Label

Critical

Path %

MBMall

Path %

Timing 22.97% 19.73%

ParticlesInput 18.04% 18.02%

TABLE 7. NBODY

For ZSNOOP, MBM results in Table 8 show a more comprehensive estimation of expected

improvement than does critical path analysis. In the original critical path analysis, the results indicated that

function Zprintf accounted for a bigger percentage of the critical path than did DrawImage. The MBM

indicates that optimization of function DrawImage actually has more potential benefit than that of function

Zprintf, The MBM also shows a more refined percentage of possible performance gains of function Zprintf,

which is 14.48 compared to 17.40 from critical path analysis.

Function

Label

Critical

Path %

MBMall

Path %

LoadTriangle 51.31% 51.31%

Zprintf 17.40% 14.48%

DrawImage 17.32% 17.25%

TABLE 8. ZSNOOP

7. Conclusion. As the availability of parallel computing resources becomes more common, the

practical importance of effective program optimization techniques increases. Consequently, the suite of

available performance analysis tools is evolving, and algorithmic advances are an important component of

the emerging solutions. In this paper, the near-critical path concept has been introduced, and an efficient

new algorithm for finding the k longest paths of directed, acyclic multigraphs has been presented. The

algorithm performs a best-first search in linear space. Best-first is the optimal search strategy, and the new

algorithm allows best-first solution of much larger problems than previously possible. The algorithm can be

used in conjunction with program activity graphs constructed from timestamped traces to identify the

activities on the k longest execution paths. This information forms the basis for a new addition to the suite

of available performance analysis tools by offering a broader perspective for focusing optimization efforts.

We have described a multiperspective framework for near-critical path analysis of program activity graphs

that builds upon the foundation of existing performance analysis tools. Near-critical path data has been

NEAR-CRITICAL PATH ANALYSIS: A TOOL FOR PARALLEL PROGRAM OPTIMIZATION 11

shown to complement proven techniques by revealing additional characteristics of parallel program

performance.

REFERENCES

[1] B. P. MILLER AND C.-Q. YANG, "IPS: An interactive and automatic performance measurement tool for parallel and

distributed programs," in Proceedings of the 7th International Conference on Distributed Computing Systems, IEEE

Computer Society, Sept. 21-25, 1987, pp. 482-489.

[2] D. A. REED, R. A. AYDT, T. M. MADHYASTHA, R. J. NOE, K. A. SHIELDS, AND B. M. SCHWARTE, "The Pablo

performance analysis environment," Tech. Rep., Department of Computer Science, Univ. of Illinois, Nov. 1992.

[3] E. W. Dijkstra and C. S. Scholten, "Termination detection for diffusing computations," Information Processing Letter,
vol. II, no. 1, pp. 1-4, Aug. 1980.

[4] C. A. ALEXANDER, D. S. REESE, AND J. C, HARDEN, "Near-critical path analysis of program activity graphs," in

Proceedings of the 2nd International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, IEEE Computer Society, Jan. 31-Feb. 2, 1994, pp. 308-317.

[5] J. D. WIEST AND F. K. LEVY, A Management Guide to PERT/CPM. Englewood Cliffs, NJ: Prentice-Hall, 1977.

[6] E. HOROWITZ AND S. SAHNI, Fundamentals of Data Structures, Rockville, MD: Computer Science Press, 1983.

[7] E. RICH, Artificial intelligence. New York: McGraw-Hill, 1983.

[8] W. ZHANG AND R. E. KORF, "An average-case analysis of branch-and-bound with applications: Summary of results," in

Proceedings of the 10th National Conference on Al, AAAI Press, July 12-16, 1992, pp. 545-550.

[9] R. E. KORF, "Linear-space best-first search: Summary of results," in Proceedings of the 10th National Conference on
Al, AAAI Press, July 12-16, 1992, pp. 533-538.

[10] C. A. ALEXANDER, "Near-critical path algorithms for program activity graphs," Ph.D. dissertation, Department of

Computer Engineering, Mississippi State Univ., May 1994.

[11] J. HARDEN, D. REESE, C. ALEXANDER, M. EVANS, S. KADAMBI, G. HENLEY, AND C. HUDNALL, “In Search of a

Standards-Based Approach to Hybrid Performance Monitoring,” in Evaluation Tools for Parallel and Distributed
Systems of Institute of Electrical and Electronics Engineers (IEEE) Parallel and Distributed Technology and
Computer”, Fall, 1995.

[12] A. MINK, R. CARPENTER, G. NACHT, AND J. ROBERTS, "Multiprocessor performance measurement instrumentation,"

IIIEE Computer, pp. 63-75, Sept. 1990.

[13] W. GROPP, E. LUSK AND A, SKJELLUM, Using MPl: Portable Parallel Programming with the Message-Passing
Interface. Massachusetts: The MIT Press, 1994.

[14] J. K. HOLLINGSWORTH AND B. P. MILLER, "Parallel program performance metrics: A comparison and validation," in

Proceedings ofSupercomputing'92, IEEE Computer Society, Nov. 16-20, 1992, pp. 4-13.

[15] DAVID W. WALKER, Oak Ridge National Laboratory.

[16] CAREY HUSCROFT, Physics Dept., University of California, Davis.

[17] LANCE BURTON, Engineering Research Center for Computational Field Simulation, Mississippi State University.

