# UNIVERSITY OF SASKATCHEWAN Department of Mathematics \& Statistics 

Mathematics 101.3 Solutions to Practice Quiz \#1
Early October, 1999
Time:50 minutes
Instructor: Doug MacLean

CLOSED BOOK - NO CALCULATORS PERMITTED
Each question is worth 4\%
The possible answers to all questions are the digits in the ANSWER SET:
(A) 0
(B) 1
(C) 2 (D) 3
(E) 4
(F) 5
(G) 6
(H) 7
(I) 8
(J) 9

If $\frac{7}{12}-\frac{3}{5}$ is written in its simplest form as $\frac{-a}{10 b+c}$, where $a, b$, and $c$ are digits, then
Solution: $\frac{7}{12}-\frac{3}{5}=\frac{7}{12} \frac{5}{5}-\frac{3}{5} \frac{12}{12}=\frac{35-36}{60}=\frac{-1}{60}$
(1) $a=1$
(2) $b=6$
(3) $c=0$
$x^{2}+8 x+20$ is to be written in the form $a(x+b)^{2}+c$ by completing squares. We must have:

## Solution: $x^{2}+8 x+20=x^{2}+2(4) x+4^{2}-4^{2}+20=(1)(x+4)^{2}+4$

(4) $a=1$
(5) $b=4$
(6) $c=4$
$3 x^{2}+12 x+4$ is to be written in the form $a(x+b)^{2}-c$ by completing squares. We must have:

Solution: $3 x^{2}+12 x+4=3\left(x^{2}+4 x+\frac{4}{3}\right)=3\left(x^{2}+2(2) 4 x+2^{2}-2^{2}+\frac{4}{3}\right)=$ $3\left(\left(x+2^{2}(2)-4+\frac{4}{3}\right)=3\left(\left(x+2^{2}(2)-\frac{12}{3}+\frac{4}{3}\right)=3\left(\left(x+2^{2}(2)-\frac{8}{3}\right)=\right.\right.\right.$ $3(x+2)^{2}-3 \frac{8}{3}=3(x+2)^{2}-8$
(7) $a=3$
(8) $b=2$
(9) $c=8$
(10) If $-a$ is the slope of the line through the points $(5,-3)$ and $(-1,3)$, then $a$ is:

Solution: $-a=\frac{3-(-3)}{-1-5}=\frac{6}{-6}=-1$, so $a=1$
(11) Let $f(x)=\frac{x^{3}}{(x+3)^{3}}$. Find Correction: $-f(-2)$

Solution: $-f(-2)=-\frac{(-2)^{3}}{((-2)+3)^{3}}=-\frac{-8}{1}=8$
The roots of $x^{2}-8 x+16=0$ in their simplest form are $\frac{A \pm B \sqrt{C}}{D}$. We must have:
Solution: The roots are $\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(16)}}{2(1)}=\frac{8 \pm \sqrt{64-64}}{2}=\frac{8 \pm \sqrt{0}}{2}$
(12) $A=8$
(13) $B=1$
(14) $C=0$
(15) $D=2$

The polynomial $3 x^{4}+x^{3}-3 x^{2}-x$ can be factored in the form $x(x-a)(x+b)(c x+d)$, where $a$, $b, c$, and $d$ are digits. Their values are:
Solution: $p(x)=3 x^{4}+x^{3}-3 x^{2}-x=x\left(3 x^{3}+x^{2}-3 x-1\right)$. The only possible integer roots of $p(x)$ are -1 and 1 . It is easily computed that both numbers are roots of $p(x)$, so we have $x+1$ and $x-1$ are factors of $p(x)$. Dividing them both into $3 x^{3}+x^{2}-3 x-1$, we find that $3 x+1$ is th eremaining factor. Thus $p(x)=x(x-1)(x+1)(3 x+1)$
(16) $a=1$
(17) $b=1$
(18) $c=3$
(19) $d=1$
$\frac{4-2 \sqrt{2}}{2-\sqrt{2}}$ can be simplified to the expression $a-b \sqrt{c}$, where $a, b$, and $c$ are digits. Their values are:
Solution: Use conjugates: $\frac{4-2 \sqrt{2}}{2-\sqrt{2}}\left(\frac{2+\sqrt{2}}{2+\sqrt{2}}\right)=\frac{(4-2 \sqrt{2})(2+\sqrt{2})}{2^{2}-2}=\frac{8+4 \sqrt{2}-4 \sqrt{2}-2(2)}{4-2}=$ $\frac{4}{2}=2-0 \sqrt{2}$
(20) $a=2$
(21) $b=0$
(22) $c=2$

If we solve the inequality $\left|\frac{2-x}{3}\right| \leq 2$, the solution is an interval of the form $[a, b]$.
The values of $a$ and $b$ are:

Solution: $\left|\frac{2-x}{3}\right| \leq 2 \Leftrightarrow \frac{|2-x|}{|3|} \leq 2 \Leftrightarrow \frac{|2-x|}{3} \leq 2 \Leftrightarrow 3 \frac{|2-x|}{3} \leq 3(2) \Leftrightarrow|2-x| \leq 6$ so the inequality is satisfied by all numbers within 6 units of 2 , so the solution is $(-4,8)$

$$
\text { (23) } a=-4
$$

(25) The slope of the line perpendicular to the line $y=-\frac{x}{9}$ which passes through the point $(0,0)$ is:

Solution: $-\frac{1}{-\frac{1}{2}}=9$

