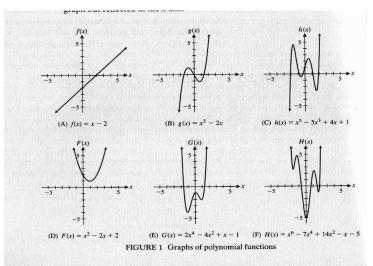
Math 142 Lecture Notes Section 2.1 – Polynomial and Rational Functions

$\underline{\Leftrightarrow}$ Polynomial Functions:

Polynomial Function A function that can be written in the form: $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ where *n* is a nonnegative integer, called the degree of the polynomial. It is the highest exponent present in the term. The domain is the set of real numbers. $a_n \neq 0$

Important points:

- 1) The shape is connected to the degree of the polynomial.
- 2) The sign (+/-) of the leading coefficient describes the end-line behavior.
- 3) Examples of even and odd polynomials:



from: pg 80 of Calculus for Business, Economics, Life Sciences and Social Sciences by: Barnett, Ziegler and Byleen

4) Even functions :

start high and end high, or start low and end low

depending on the sign of the leading coefficient

5) Odd functions :

start high and end low, or start low and end high

depending on the sign of the leading coefficient

- 6) Graphs of polynomials are **continuous.** No holes or breaks, and **NO** sharp corners.
- 7) **Turning point:** a place on the graph where the curve changes from increasing to decreasing or vice versa.

Theorem 1 The graph of a polynomial function of positive degree n can have at most *n* - *1* turning points. It can cross the x-axis at most n times.

Answer the following questions:

- 1. What is the least number of turning points an odd-degree polynomial function can have?
- 2. What is the least number of turning points an even-degree polynomial function can have?
- 3. What is the maximum number of x-intercepts for a polynomial of nth degree?
- 4. What is the least number of x-intercepts for a polynomial of nth degree,
 - a. if the polynomial has odd degree?
 - b. if the polynomial has even degree?
- 5. What is the least number of real solutions of a polynomial function
 - a. of odd degree?
 - b. of even degree?

Regression Polynomials:

1. Estimate the value of the car after by finding a quadratic function which relates it's age and value:

Age in yrs	0	2	3	5	7	8	9
Value in \$'s	42,120	39,575	36,500	28,455	18,750	12,575	4,580

- A, value after 4 yrs: _____
- B. value after 10 yrs: _____

C. What is the quadratic function you used to find the value of the car?

Rational Functions

A rational function is any function that can be written in the form

 $f(x) = \frac{n(x)}{d(x)}, d(x) \neq 0$ and $\mathbf{n}(\mathbf{x})$ and $\mathbf{d}(\mathbf{x})$ are polynomials.

Domains: Check for values that make the denominator zero, or any values that would make an even-indexed radical negative, or if logarithms are present, the values needed to keep the expression positive, and if it's a word problem, check to see what values make sense in the problem.

A value which would make the denominator zero is *point of discontinuity.*

Transform Intercepts: Let x=0 and solve for f(x), then let f(x)=0 and solve for x.

Page 3 of 3

A Asymptotes: A line the graph approaches. Asymptotes are graphed with *dotted* lines.

Vertical asymptotes If *a* is a real number, such that d(a)=0, then **x**=**a** is a vertical asymptote.

Horizontal asymptotes Compare the degrees of the numerator and the denominator.

 $f(x) = \frac{ax^n + \dots + c}{bx^d + \dots + f}$ Note: in this example the degree of the numerator is n, and the degree of the denominator is d.

1) if n>d, then no horizontal asymptote exist

2) if n=d, then a horizontal asymptote exist at $y = \frac{a}{h}$

3) if n<d, then a horizontal asymptote exist at y=0

- Note: You can always divide every term in the numerator and the denominator, by the highest power present in the denominator, to change it into a simplier form and then determine the asymptotes.
- **Oblique asymptotes** If the degree of the numerator is ONE more than the degree of the denominator, then an oblique (or slanted) asymptote exists. Discussed more in Ch 4

Graph:
$$f(x) = \frac{4-4x}{2x-10}$$

- 1) Intercepts:
- 2) Vertical asymptote:
- 3) Horizontal asymptote:
- 4) Graph: