Chapter 1E - Complex Numbers

 $\sqrt{-16}$ exists! So far the largest (most inclusive) number set we have discussed and the one we have the most experience with has been named the real numbers.

And
$$\forall x \in \mathbb{R}$$
, $x^2 \ge 0$

But there exists a number (that is not an element of \mathbb{R}) named *i* and $i^2 =$ _____

Since $i^2 = _$, $\sqrt{-1} = _$, so $\sqrt{-16} = _$

i is not used in ordinary life, and humankind existed for 1000's of years without considering *i*. *i* is, however, a legitimate number. *i*, products of *i*, and numbers like $\sqrt{2} + i$ are solutions to many problems in engineering. So it is unfortunate that it was termed "imaginary!"

i and numbers like 4*i* and -3*i* are called _____

Numbers like $\sqrt{2} + i$ and $\frac{17}{3} - 5i$ are called _____

More formally \mathbb{C} is the set of all numbers _____

When a complex number has been simplified into this _____ form, it is called

1. Put the following complex numbers into standard form:

a) $(16 + \sqrt{-9}) + (-13 - \sqrt{-100}) =$ _____

b) (1+2i)-(3-4i) =_____

c) (2+3i)(4+5i) =_____

d) (5+4i)(3-2i) =_____

e) $i^3 = _$ ____ f) $i^4 = _$ ____ g) $i^5 = _$ ____

©Fry Te	exas A&M University	Math 150		21						
Graph	ning Complex Num	bers								
When	we graph elements	of ${\mathbb R}$, we use)							
When we graph elements of ${\mathbb C}$, we use the complex plane which will seem a lot like the Cartesian plane.										
In the	Cartesian plane, a	point represer	nts							
In the	complex plane, a p	oint represent	S							
The h	orizontal axis is the									
The ve	ertical axis is the									
2. Gra plar	aph and label the fo ne:	llowing points	on the complex							
A 3	+4i	B $-2+i$								
C $\frac{3}{2}$	$\frac{3}{2}-3i$	D 3i			-2					
E –	4	F -1-2 <i>i</i>			4					

Absolute Value of a Complex Number:

If $z \in \mathbb{C}$ then |z| is defined as its

Calculate |3+4i| (How far is 3+4i from the origin?)

|3+4*i*| = _____

Consider a + bi, an arbitrary element of \mathbb{C} .

What is |a+bi|? (How far is a+bi from the origin?)

				F -		
				1.		
				г ·		
				••••••••		
				L		
				· ·		

				1		
				F 1		
				1 1		
				L		
				F		
				F 5		
			<u> </u>	<u> </u>		
1	-4	-2			2	4
	-4	-2			2	4
	-4	-2			2	4
	-4	-2			2	4
	-4	-2			2	4
	-4	-2		-	2	4
	-4	-2			2	4
	-4	-2		-	2	4
	-4	-2			2	4
	4	-2			2	4
	4	-2			2	4
	4	-2			2	4
	4	-2			2	4
	-4	2	2		2	4
	-4	-2	2		2	4
	4	2	2	-	2	4
	-4	-2	2	-	2	
	-4	-2		-	2	4
	-4	-2	2	-	2	
	-4	-2	2	-	2	
	-4	-2		-	2	
	-4	-2		-	2	
	-4	-2		-	2	
	-4	-2		- - - -	2	
	-4	-2		-	2	
	-4	-2	2		2	
	-4	-2		-	2	
	-4	-2			2	
	-4	-2			2	
	4	-2		-	2	
	4	-2			2	
	-4	-2		-	2	

In general |z| =_____

Notice that |z| is a real number. It is *z* 's distance from the origin. We did not use *i* to calculate |z|.

3. Calculate |-5+i|. (How far is -5+i from the origin?)

|-5+*i*| **=**_____

Complex Conjugate

If z = 3 + 4i, then $\overline{z} =$ _____.

If z = -1 - 2i, then $\overline{z} =$ _____.

Graphically the complex conjugate is the

_____ of the number through the

			4			
			- L			
			-: F			
			2			
			- 1			
	<u> </u>		-i	. i.		
	-4	-2			2	4
			- E		1	
			-: t			
			-: L			
			-: [
			- L			
			······································			
			-4-			
			4			
			4			
			4			
			4-			
			4 -			
			4			
			4-			
			4			
·····			4			
		-2	4		2	
	4	-2	4		2	

4. Put the following complex numbers into sta	ndard form.	
a) $\overline{2-3i} =$	b) $\overline{4i} =$	
c) 5 =	d) $\overline{3i-2} =$	
Finally notice that $(3+4i)(3-4i) =$		
More generally $(a+bi)(a-bi) =$		
in other words $z \cdot \overline{z} = $		
Distance Between Two Complex Numbers	5	
Plot and label two points in the complex plane $z_1 = 3 + 5i$ and $z_2 = 1 + 2i$	4	
The distance between z_1 and z_2 is	3	
	2	
		4 5
Just for fun, calculate $z_1 - z_2 =$		_
And $ z_1 - z_2 = $		
What we have seen is that for this particular z	z_1 and z_2 , the distance between these	e points is

equal to ______. But this is actually true for all complex numbers.

The distance between two general points z_1 and z_2 is _____

5. Solve $0 = x^2 + 4$

6. Solve $3x^2 + 1 = 2x$

7. Solve $8x^4 + 18x^2 - 5 = 0$

Suggested Problems:

Text: 1-12

My Previous Exams:	Fall 2014: 11, a, b, 12	Fall 2013 1A: 5,
	Spring 2013 1A: 7,	Fall 2012 1A: 5

Chapter 9 -- Vectors

Remember that \mathbb{R} is the set of real numbers, often represented by the number line,

 \mathbb{R}^2 is the notation for the 2-dimensional plane. (Think about the Cartesian plane which is drawn by intersecting 2 numbers lines. $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$)

 \mathbb{R}^3 is the notation for 3-dimensional space. (Imagine another number line passing through the origin, perpendicular to the plane.)

Vectors are used to represent quantities such as force and velocity which have both

_____ and _____.

The magnitude of a vector corresponds to its _____.

Vectors are directed line segments. (Like the cross between a segment and a ray.)

Each of these directed line segments has an initial (starting) point and a terminal (ending) point.

Naming Vectors:

Vectors in \mathbb{R}^2 are defined by their terminal point on the Cartesian plane, assuming their initial point is at the origin.

For example, the vector (3,4) has its initial point at the origin and its terminal point at (3, 4).

Notice that distinction between the vector (3,4) and its terminal point (3, 4).

(3,4) is a vector. It is a directed line segment. It has magnitude and direction.

(3, 4) is simply an ordered pair of real numbers.

Definition: A vector \vec{v} in the Cartesian plane is *defined by* an ordered pair of real numbers in the form $\langle v_x, v_y \rangle$. We write $\vec{v} = \langle v_x, v_y \rangle$ and call v_x and v_y the ______ of vector \vec{v} . Specifically

 v_x is the _____ of the vector.

The graphical representation of $\langle 3, 4 \rangle$ is given in Figure 1.

Note: Although the vectors in Figure 2 have different initial points and different terminal points, they are all equivalent to (3,4) because they have the same magnitude and direction. Usually

what is important about the vector \vec{v} is not where it is, but how long it is and which way it points.

Two or more vectors with the same magnitude and direction are

When a vector's initial point is NOT at the origin, we must figure out how to name the vector so that it has the same magnitude and direction as the equivalent vector with initial point at the origin.

Note that you can think of the vector $\langle 3,4 \rangle$ as set of instructions to get from the initial point to the terminal point: "Go to the right 3 and up 4."

Consider a vector with initial point at (3, -4) and terminal point at (-2, 0).

What is the name of the vector with initial point at (x_0, y_0) and terminal point at (x_T, y_T) ?

What is the length of $\langle 3, 4 \rangle$?

Length of a vector:

The magnitude or length of a vector $\langle v_x, v_y \rangle$ is denoted $\left\| \langle v_x, v_y \rangle \right\|$

$$\langle v_x, v_y \rangle =$$

In \mathbb{R}^3 the length of a vector $\langle v_x, v_y, v_z \rangle$ is denoted $||\langle v_x, v_y, v_z \rangle||$

 $\left\|\left\langle v_{x}, v_{y}, v_{z}\right\rangle\right\| =$

- 5 re																							
-																							
- F																							
-4-																							
L L																							
- 1																							
. L																							
ab																							
- 1																							
- L																							
- F																							
L L																							
- F																							
- F																							
- r																							
-21																							
- 1																							
- t																							
- 1																							
- 1°E																							
1																							
_	-	_	-	_	-	_	-	_	_	_	-		_	_	_	-	-	-	_	-	-	-	_
0				1										- 3					4				5

28

If
$$\vec{\mathcal{U}} = \langle 3, -5 \rangle$$
 and $\vec{\mathcal{V}} = \langle -4, 1 \rangle$,

then $\vec{\mathcal{U}}$ + $\vec{\mathcal{V}}$ =

Geometrically, imagine "picking up" vector \vec{v} and putting its initial point at the terminal point of \vec{u} . Then the new terminal point of \vec{v} will be at the terminal point of $\vec{u} + \vec{v}$.

Notice that algebraically and geometrically,

In other words, vector addition is _____

Definition: If $\vec{\mathcal{U}} = \langle u_x, u_y \rangle$ and $\vec{\mathcal{V}} = \langle v_x, v_y \rangle$, then $\vec{\mathcal{U}} + \vec{\mathcal{V}} =$

If
$$\vec{\mathcal{V}} = \langle 1, 3 \rangle$$
, find $\vec{\mathcal{V}} + \vec{\mathcal{V}} + \vec{\mathcal{V}} + \vec{\mathcal{V}}$

This suggests the reasonableness of the following definition:

Scalar Multiplication: (When working with vectors, the term scalar refers to a real number.)

If $\vec{\mathcal{U}} = \langle u_x, u_y \rangle$ and *c* is a real number, then the scalar multiple $c \vec{\mathcal{U}} =$

 $\vec{\mathcal{U}} + \vec{\mathcal{V}} = \vec{\mathcal{V}} + \vec{\mathcal{U}}$

If $\vec{\mathcal{V}} = \langle 1, 2 \rangle$, then

$2\vec{v}$ =	

3*v* = _____

Notice how	\vec{v}	, $2\vec{v}$	and $3\vec{v}$	all have the
------------	-----------	--------------	----------------	--------------

same _____

So scalar multiplication is simply the multiplying a vector by a number. The result is another vector.

A scalar of particular interest is -1.

If $\vec{u} = \langle u_x, u_y \rangle$, then $(-1)\vec{u} = -\vec{u} =$ _______ If $\vec{v} = \langle 1, 2 \rangle$, then $-\vec{v} =$ ______ Notice how \vec{v} and $-\vec{v}$ lie

Direction of a vector:

We say that two nonzero vectors \vec{u} and \vec{v} have the

same direction if

opposite directions if _____

Give two examples of vectors that are not equivalent to $\langle 3, \, -5\rangle$, but have the same direction.

Give two examples of vectors that have the opposite direction of $\left<3,\ -5\right>.$

Do $\langle 6, 10 \rangle$ and $\langle 9, 15 \rangle$ have the same direction? If $\langle 6, 10 \rangle$ and $\langle 9, 15 \rangle$ have the same direction then

Do $\langle 4,9\rangle$ and $\langle 2,3\rangle$ have the same direction? If $\langle 4,9\rangle$ and $\langle 2,3\rangle$ have the same direction then

31

Unit Vectors

What if you wanted a unit vector that is in the same direction as $\langle v_x, v_y \rangle$?

You would want a scalar *c* , so that $|c\langle v_x, v_y\rangle| = 1$

If $\vec{\mathcal{V}} = \langle v_x, v_y \rangle$, then ______ is a unit vector in the same direction as $\vec{\mathcal{V}}$.

If $\vec{\mathcal{V}} = \langle -1, 3 \rangle$, what is the unit vector that is in the opposite direction as $\vec{\mathcal{V}}$?

	\rightarrow	\rightarrow
	i	and i
In other words every vector is a	of <i>i</i>	and J

Direction angles: If \vec{v} makes an angle θ with the positive x-axis, then

If $\vec{u} = \langle 5, 2 \rangle$ and $\vec{v} = \langle 1, 5 \rangle$, find the angle θ , between \vec{u} and \vec{v} .

If $\vec{u} = \langle u_x, u_y \rangle$ and $\vec{v} = \langle v_x, v_y \rangle$, find the angle θ , between \vec{u} and \vec{v} .

Vector Dot Product If $\vec{u} = \langle u_x, u_y \rangle$ and $\vec{v} = \langle v_x, v_y \rangle$, then the dot product $\vec{u} \cdot \vec{v} =$ ______

Notice that the dot product of two vectors is a _____.

The vector dot product is sometimes called the _____

It is important to notice the distinction between the scalar product of two vectors (an operation on two vectors which yields a scalar), and scalar multiplication of a vector (an operation between a scalar and a vector that yields a vector).

Notice also that $\vec{u} \cdot \vec{v}$

Find $\langle 3, 4 \rangle \cdot \langle -2, 5 \rangle$

Find the angle between the vectors $\langle 3, 4 \rangle$ and $\langle -2, 5 \rangle$

$$\vec{i} \cdot \vec{j} =$$

What is the angle between \vec{i} and \vec{j} ?

Notice that since
$$\vec{u} \cdot \vec{v} =$$

if \vec{u} and \vec{v} are \perp then $\vec{u} \cdot \vec{v} =$ ______
In fact $\vec{u} \cdot \vec{v} = 0$ iff ______

Synonyms for perpendicular include _____

In
$$\mathbb{R}^3$$
 If $\vec{\mathcal{U}} = \langle u_x, u_y, u_z \rangle$ and $\vec{\mathcal{V}} = \langle v_x, v_y, v_z \rangle$,
then the dot product $\vec{\mathcal{U}} \bullet \vec{\mathcal{V}}$

Find a vector perpendicular to $\left<1,\ 1\right>$

Find all of the unit vectors perpendicular to $\langle 1, 1 \rangle$.

Unit 4

Find a vector perpendicular to $\left<3,\,\text{-}4\right>$

Find all the unit vectors perpendicular to $\left<3,\,\text{-}4\right>$

An airplane is flying at 300 miles per hour, heading 30 degrees North of East. What are the magnitudes of the North and East components of the velocity?

A wind from due North starts blowing at 40 miles per hour. What is the new velocity of the plane? (magnitude and direction)

A river flows at 3 mph and a rower rows at 6 mph. What heading should the rower take to go straight across the river?

What if the river flowed at 6 mph and the rower rowed at 3 mph?