Chapter 1A -- Real Numbers

Math Symbols:

\in	\forall
\exists	\ni
iff	\Leftrightarrow or \leftrightarrow
\cup	\cap

Example: Let $A=\{4,8,12,16,20, \ldots\}$ and let $B=\{6,12,18,24,30, \ldots\}$

Then $\mathrm{A} \cup \mathrm{B}=$ \qquad
and $A \cap B=$ \qquad

Sets of Numbers

	Name(s) for the set	Symbol(s) for the set
$1,2,3,4, \ldots$	Natural Numbers Positive Integers	
$\ldots,-3,-2,-1$	Negative integers	
$0,1,2,3,4, \ldots$	Non-negative Integers Whole Numbers	
$\ldots,-3,-2,-1,0,1,2,3, \ldots$	Integers	

Note: \qquad is the German word for number.

$$
\begin{array}{|l|l|l|}
\hline \frac{4}{5}, \frac{-17}{13}, \frac{1}{29} & \text { Rational Numbers } & \\
\hline
\end{array}
$$

Note: This is the first letter of \qquad

1. Circle One:
a) 5 is a rational number
b) $\frac{\pi}{4}$ is a rational number
c) $\frac{\sqrt{16}}{5}$ is a rational number
d) $\frac{\sqrt{17}}{5}$ is a rational number
e) 0 is a rational number

TRUE
TRUE

TRUE FALSE

TRUE

TRUE

FALSE
FALSE

FALSE

FALSE

Definition of a rational number: If $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$ and $b \neq 0$, then $\frac{a}{b} \in \mathbb{Q}$.
Translation: \qquad
\qquad

Decimal Expansions of Rational Numbers:

Fact: The decimal expansions of rational numbers either
or

Examples $\frac{1}{4}=$ \qquad (This is a terminating decimal.)
$\frac{4}{9}=$ \qquad (This is a repeating decimal.)

You know how to express a terminating decimal as a fraction. For example $.25=\frac{25}{100}$, but how do you express a repeating decimal as a fraction?
2. Express these repeating decimals as the quotient of two integers:
a) $.373737 \ldots$ or.$\overline{37}$
b).$\overline{123}$

Let $x=.37373737 \ldots$
Then $100 x=$

Let $x=.123123123 \ldots$

Then

There are a lot of rational numbers, but there are even more irrational numbers. Irrational numbers cannot be expressed as the quotient of two integers. Their decimal expansions never terminate nor do they repeat.

Examples of irrational numbers are \qquad
The union of the rational numbers and the irrational numbers is called the
\qquad . It is denoted by \qquad .

Properties of Real Numbers

4. What properties are being used?	Name of Property	
a) $(-40)+8(x+5)=8(x+5)+(-40)$		$a+b=b+a \quad \forall a, b \in \mathbb{R}$
b) $8(x+5)+(-40)=8 x+40+(-40)$		$a(b+c)=a b+a c \quad \forall a, b, c \in \mathbb{R}$
c) $8 x+40+(-40)=8 x+(40+(-40))$		$(a+b)+c=a+(b+c) \quad \forall a, b, c \in \mathbb{R}$
d) $0+5=5+0=5$		$0+a=a+0=a \quad \forall a \in \mathbb{R}$
e) $7+(-7)=(-7)+7=0$		For each $a \in \mathbb{R}, \exists$ another element of \mathbb{R} denoted by $-a$ such that $a+(-a)=(-a)+a=0$
f) $6 \cdot 1=1 \cdot 6=6$		$1 \cdot a=a \cdot 1=a \quad \forall a \in \mathbb{R}$
g) $4 \cdot\left(\frac{1}{4}\right)=\left(\frac{1}{4}\right) \cdot 4=1$		For each $a \in \mathbb{R}, \quad a \neq 0 \quad \exists$ another element of \mathbb{R} denoted by $\frac{1}{a}$ such that $a \cdot\left(\frac{1}{a}\right)=\left(\frac{1}{a}\right) \cdot a=1$

Notice that the commutative property considers the \qquad of the numbers.

When demonstrating the associative property, the order of the numbers stays the same but the \qquad changes.

When do we use the commutative property of addition? Consider $7+28+43$.
The rules for order of operation tell us to add left to right, but the commutative property of addition allows us to change the order to make our life easier:
$7+29+43=$ \qquad

When do we use the associative property of multiplication? Consider 16×25. $16 \times 25=$ \qquad

Is subtraction commutative? \qquad Example: \qquad Is division commutative? \qquad Example: \qquad

Consider ($12-3$)-4 = \qquad while $12-(3-4)=$ \qquad

So is subtraction associative? \qquad

Consider $(12 \div 3) \div 4=$ \qquad while $12 \div(3 \div 4)=$ \qquad

So is division associative? \qquad

Notice that there are 2 identities:

The additive identity is \qquad . The multiplicative identity is \qquad .

Notice there are $\mathbf{2}$ kinds of inverses.

The additive inverse of 4 is \qquad . Note that \qquad
The additive inverse of -9 is \qquad . Note that \qquad

What is true about the sum of a number and its additive inverse? \qquad

Every real number has an additive inverse.

The multiplicative inverse of 4 is \qquad . Note that \qquad
The multiplicative inverse of -9 is \qquad Note that \qquad
What is true about the product of a number and its multiplicative inverse? \qquad
Almost all of the real numbers have a multiplicative inverse.
Which real number does NOT have a multiplicative inverse? \qquad

Absolute Value

$$
|4|=
$$

$$
|-9|=
$$

Formal definition for absolute value

$$
|x|=\{
$$

It will help if you learn to think of absolute value as \qquad
(Notice that -4 is 4 units away from the origin.)

Distance between two points:

3.) Find the distance between

a) 4 and 1	
b) -1 and 5	
c) 4 and -2	$\underset{-5}{\bullet}$
d) -3 and -4	
e) 1 and x	
f) x and y	

Notice that

$$
|4-1|=|1-4|
$$

and $\quad|-3-2|=|2-(-3)|$.

In general $|x-y|=$ \qquad

Notice that $\quad|-5+4|=$ \qquad whereas $|-5|+|4|=$ \qquad

So, in general $|x+y| \neq$ \qquad

A solution set is the set of values that make a (mathematical) statement true.

Interval Notation

Determine the solution sets for the following inequalities

	Number Line	Inequality	Interval Notation
$\|x\| \leq 3$			
$\|x\|>3$			
$\|x\|>-3$			
$\|x\|<-3$			

Suggested problems:

Text: 1-9, 22, 23
My Previous Exams:
Fall 2014 1A: 11c \& 13 a, b, d, e, f, g
Spring 2013 1A: 3, 4,
Spring 2014 1A: 13b, c, d, e

Chapter 3C -- Linear Equations in Two Variables

A \qquad is any set of ordered pairs of real numbers.

A relation can be finite: $\{(-3,1),(-3,-1),(0,5),(1,-3),(2,3)\}$

This is a set of ordered pairs of real numbers, so it is a \qquad .

Each ordered pair of real numbers corresponds to a \qquad on the Cartesian plane.

The set of all points corresponding to a relation is the \qquad of the relation.

Graph the relation given above.

The \qquad of a relation is the set of all
first elements of the ordered pairs.

The \qquad of a relation is the set of all
second elements of the ordered pairs.

What is the domain of this relation?

What is the range of this relation? \qquad

A relation can be infinite:

Consider $\quad\{(x, y) \mid-3 \leq x<-2,1<y \leq 4\}$

List 4 different elements of that set.

Graph the relation

What is the domain of this relation?

What is the range of this relation? \qquad

Equations can be used to define relations

2. Consider the set $\{(x, y) \mid x+y=3\}$

List several elements of that set.

It is important to note that the elements of this relation are the solutions to the equation.

Graph the relation
What is the domain of this relation?

What is the range of this relation?

3. Consider the set $\left\{(x, y) \mid x=y^{2}\right\}$

List several elements of that set.

It is important to note that the elements of this relation are the solutions to the equation.

What is the domain of this relation?
\qquad

What is the range of this relation?
4. Consider the $\operatorname{set}\left\{(x, y) \mid y=x^{2}\right\}$

List several elements of that set.

It is important to note that the elements of this relation are the solutions to the equation.

What is the domain of this relation?
\qquad

What is the range of this relation?

Functions

True or False:

\qquad A function is a relation in which no two different ordered pairs have the same first element.
_ A function is a relation where there is only one output (called the y-value), for each input (called the x-value).
\qquad A function is a rule that assigns exactly one element in a set B
(called the range) to each element in a set A (called the domain).

Which of the following represent a function?
$\{(1,2),(1,3),(2,3)\} \quad$ This set of ordered pairs is \qquad $\{(1,3),(2,3),(3,3),(4,3)\} \quad$ This set of ordered pairs is \qquad

Functions as a Rule:

1. If $f(x)=3 x+4$ then $f(2)=$ \qquad
2. If $f(x)=3 x^{2}+4 x+1$ then $f(-1)=$ \qquad

Note: Order of operations dictates that $-3^{2}=$ \qquad while $(-3)^{2}=$ \qquad

These "rules" create sets of ordered pairs of real numbers $(x, f(x))$

In these cases the domain is the set of numbers for which $f(x)$ is defined.

The range is the set of values that $f(x)$ attains.

The set of all points corresponding to a function is the \qquad of the function.

A curve in the $x y$ - plane is the graph of a function iff no \qquad line
\qquad the curve \qquad
So if there is a \qquad line that \qquad the curve \qquad
then the curve is \qquad the graph of a \qquad

This is called \qquad

Looking back at examples 3 and 4 on page 11,
$\left\{(x, y) \mid x=y^{2}\right\}$ Is a relation, but \qquad

It \qquad the vertical line test.
$\left\{(x, y) \mid y=x^{2}\right\}$ Is a relation and a \qquad

It \qquad the vertical line test.

So what we are seeing is that there are 2 common ways to define a function.

A function can be defined with an equation such as $\left\{(x, y) \mid y=x^{2}\right\}$
or a function can be defined with a rule such as $\left\{(x, f(x)) \mid f(x)=x^{2}\right\}$

But having seen all of this, the truth is that we seldom use the set notation, just the equation or the $f(x)$ notation.

Linear Equations

Which of the following is a linear equation in 2 variables?
$3 x+4 y=5$
$\pi x+4 y=\sqrt{5}$
$x+y+z=0$
$y=x-9$
$3 x+x y+4 y=5$
$\sqrt{x}+4 y=2$
$x^{2}+4 y=2$
$y=\frac{2}{x}$
$v=32 t+16 y=2$
$x=\sqrt{5}$
$x=y$

Any equation that can be written in the form \qquad where A and B are not both \qquad is called a \qquad

You already know a lot about lines, but let's review quickly:
Consider $x+y=4$

When you create a table to list points to create the graph, you are finding the solutions to the equation. Solutions to linear equations in two variables are ordered pairs of real numbers that when substituted into the equation create an identity. The coordinates of all of the points on the line are solutions to the equation. How many solutions exist for this equation?

Graphing lines with both intercepts

Consider $x+3 y=-3$
When $x=0, y=$ \qquad and when
$y=0, \quad x=$ \qquad
Intercepts (crossings)
The y-intercept is where the graph crosses the

It occurs when \qquad
The x-intercept is where the graph crosses the \qquad
It occurs when \qquad

Consider $2 x+y=4$. Solve this equation for y. \qquad
What is the y-intercept? When $x=0, y=$ \qquad

What is the slope of this line?

Slope Calculate the slope m of the line on the graph below.

$$
m=\frac{\Delta y}{\Delta x}=
$$

Note Δ is the Greek letter \qquad .
Δ or D is for \qquad

Some people like the phrase
slope $=$ \qquad

What is the equation of this line? \qquad
This $y=m x+b$ form of a linear equation is known as the \qquad form.

The slope of a horizontal line is \qquad

The slope of a vertical line is \qquad

Parallel lines do not \qquad .

Parallel lines have the same \qquad .

When 2 lines are perpendicular their slopes are
\qquad -.

The set of ordered pairs of real numbers $\{(x, y) \mid x=3\}$ is a relation, but it is \qquad a

Determine the equation of the line through $(-1,-2)$ that is perpendicular to $y=-3 x+4$.

Determine the equation of the line through $(1,2)$ and $(4,3)$.

The Midpoint of a Line Segment.

Consider the points $A(-3,0)$ and $B(5,-4)$. Find the midpoint of the segment connecting these 2 points.

Remember: The number half between a and b is the average of a and b

Given a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the midpoint of that segment is

Suggested Problems:

Text: 17, 21a, 22 g, h, i , 23d, 27-29
My Previous Exams: Fall 2014 2A: 17
Spring 2014 1A: 1, 2, 13f
Spring 2013 2A: 10
Fall 2012 2A: 5

Chapter 7A Systems of Linear Equations

The set $\{(x, y) \mid x+y=3\}$ is a set of ordered pairs of real numbers. It is a function, and all of the elements of this set are solutions to the equation $x+y=3$

Definition: A solution to an equation in 2 variables is an ordered pair of real numbers (x, y) that, when substituted into the equation, make the equation an identity.

1. a) List 3 examples of solutions for the equation $x+y=3$.
b) How many solutions exist for the equation $\quad x+y=3$? \qquad
c) Graph all of the solutions of $x+y=3$

2. a) List 3 examples of solutions for the equation
$x-y=1$. \qquad
b) How many solutions exist for the equation
$x-y=1 \quad ?$ \qquad
c) Graph all of the solutions of $x-y=1$

Do these two solution sets have any common elements? \qquad
A solution to a system of equations in 2 variables is an ordered pair of real numbers (x, y) that, when substituted into all of the equations in the system, make all of the equations identities.
\qquad is the solution to the system $\begin{aligned} & x+y=3 \\ & x-y=1\end{aligned}$
because \qquad and \qquad
2. How many solutions exist for the following system of equations ?

$$
\begin{aligned}
& x+y=1 \\
& x+y=2
\end{aligned}
$$

$x+y=1$
$-x+y=1$

$x+y=1$
$3 x+3 y=3$

Geometrically there are 3 possibilities for the graphs of 2 lines.
Finding solutions to systems of linear equations (when they exist!)
By Graphing Solutions to systems of equations correspond to the intersections of the graphs of the equations.

By Substitution

3. Find all of the solutions, if any exist, to the system

$$
\begin{aligned}
& x+3 y=7 \\
& 2 x-y=7
\end{aligned}
$$

By Elimination Our goal will be to add or subtract the equations in a way that eliminates one of the variables. Part of the process will remind you of finding a common denominator.

Why is elimination a legitimate technique?

$$
\begin{array}{r}
2 x+y=1 \\
x-y=5
\end{array}
$$

Start with the first equation

$$
2 x+y=1
$$

Rewrite the equation adding 5 to both sides
Substitute $x-y$ for the 5 on the left hand side.

In essence we have added the 2 equations to one another.
4. Solve

$$
\begin{aligned}
& 2 x+3 y=4 \\
& 5 x+6 y=7
\end{aligned}
$$

5. Solve $\begin{array}{r}-6 x+7 y=18 \\ 4 x+3 y=-12\end{array}$

Applications

6. An airplane makes the 2400 miles trip from Washington D.C. to San Francisco in 7.5 hours and makes the return trip in 6 hours. Assuming that the plane travels at a constant airspeed and that the wind blows at a constant rate from west to east, find the plane's airspeed and the wind rate.
7. To raise funds, the hiking club wants to make and sell trail mix. Their plan is to mix dried fruit worth $\$ 1.60$ per pound with nuts worth $\$ 2.45$ per pound to make 17 pounds of a mixture worth $\$ 2$ per pound. How many pounds of dried fruit and how many pounds of nuts should they use?
8. How many gallons of each of a 60% acid solution and an 80% acid solution must be mixed to produce 50 gallons of a 74% acid solution?

Suggested Problems: Text: 7-17
My Previous Exams:
Fall 2014 3A: 9
Spring 2014 1A: 3
Spring 2013 3A: 8
Fall 2013 3A: 11
Fall 2012 3A: 14

Chapter 8A Angles and Circles

From now on angles will be drawn with their vertex at the \qquad

The angle's initial ray will be along the positive \qquad . Think of the angle's terminal ray as starting along the positive x-axis, and then swinging into its position.

If the terminal ray swung away from the x-axis in a counterclockwise direction, then the angle has \qquad measure. If the terminal ray swung away from the x-axis in a clockwise direction, then the angle has \qquad measure.

The circle below has a radius of 1 unit. It is called the \qquad .

The circumference of a unit circle is \qquad

If a terminal ray swings through an entire rotation, you would say it has a measure of \qquad You could also say that it has a measure of \qquad .

1. Sketch the following angles on the unit circle below
a) $\frac{\pi}{4}$
b) $\frac{2 \pi}{3}$
c) $\frac{7 \pi}{6}$
d) $\frac{3 \pi}{2}$
e) $\frac{7 \pi}{4}$

2. Sketch the following angles on the unit circle above
a) $-\frac{\pi}{4}$
b) $-\frac{2 \pi}{3}$
C) $\frac{13 \pi}{6}$
d) 3π
e) $-\pi$
3π and $-\pi$ are called \qquad because they share the same \qquad
To find an angle that is coterminal to θ, just add or subtract \qquad

Another way to say this:
To find an angle that is coterminal to θ, just add or subtract \qquad
3. List 2 other angles that are coterminal angles with $\frac{\pi}{2}$
4. List 2 other angles that are coterminal angles with $\frac{2 \pi}{3}$ \qquad

An angle is called acute if its measure is between \qquad

An angle is called obtuse if its measure is between \qquad

Two angles are called complementary if the sum of their measures is \qquad

An example of complementary angles: $\theta_{1}=$ \qquad and $\theta_{2}=$ \qquad

Two angles are called supplementary if the sum of their measures is \qquad

An example of supplementary angles: $\theta_{1}=$ \qquad and $\quad \theta_{2}=$ \qquad

A line which intersects the circle twice is called a \qquad

A line which intersects the circle at exactly one point is called a \qquad

The region inside of a circle is called a \qquad

Any piece of the circle between two points on the circle is called an \qquad

Any line segment between 2 points on the circle is called a \qquad

Any piece of the disk between 2 radial lines is called a \qquad

An angle whose vertex is at the center of a circle is called \qquad

Three ways to measure angles: Revolutions -- Degrees -- Radians

Revolutions	Degrees	Radians
$\frac{3}{2}$		
$3 \frac{1}{3}$		
		75

Arc Length: (Think about the fraction of the circumference.)

$\theta=120^{\circ}$	$\theta=\frac{\pi}{4}$

Area of a sector: (Think about the fraction of the area of the circle.)

$$
\theta=30^{\circ}
$$

$$
\theta=\frac{7 \pi}{6}
$$

When using degrees to measure the central angle
Area of a sector $=$
Length of arc $=$

When using radians to measure the central angle

Suggested Problems: Text: 1-12

My Previous Exams: Fall 2014 3A: 16

Spring 2014 1A: 5,
Fall 2012 3A: 9, 11

4B Graphs of Functions

Graph the following library of basic functions.
It is important to be able to recognize and sketch these graphs with ease!

The constant function $f(x)=c$ c is a real number

Domain \qquad
Range \qquad

Squaring Function

$$
f(x)=x^{2}
$$

Identity function $f(x)=x$

Domain \qquad
Range \qquad

Cubing Function

$$
f(x)=x^{3}
$$

Domain \qquad
Domain \qquad
Range \qquad
Range \qquad

Square Root Function

$$
f(x)=\sqrt{x}
$$

Domain \qquad Range \qquad

$$
f(x)=\frac{1}{x}
$$

> Absolute Value Function $$
f(x)=|x|
$$

Domain \qquad
Range \qquad

Reciprocal Function

Domain \qquad
Range \qquad

Piecewise Functions

1. Let $f(x)= \begin{cases}-x, & x<0 \\ 3, & x=0 \\ \sqrt{x}, & x>0\end{cases}$
a) $f(-2)=$ \qquad
b) $f(4)=$ \qquad
c) Graph $f(x)$
d) x-intercept \qquad
e) y-intercept \qquad
f) domain \qquad
g) range \qquad

Assume that the graph below is that of the function $g(x)$.

Evaluate $g(-1)$
$g\left(-\frac{3}{2}\right)$
$g(\sqrt{3})$

Write a definition for $g(x)$
\qquad
\qquad

Increasing, Decreasing, and Constant

A function $f(x)$ is increasing on an interval I iff $x_{1}<x_{2} \rightarrow$ \qquad $\forall x_{1}, x_{2} \in I$

A function $f(x)$ is decreasing on an interval I iff $x_{1}<x_{2} \rightarrow$ \qquad $\forall x_{1}, x_{2} \in I$

A function $f(x)$ is constant on an interval I iff $x_{1}<x_{2} \rightarrow$ \qquad $\forall x_{1}, x_{2} \in I$

The graph below is associated with a function $f(x)$

Domain \qquad

Range \qquad
x - intercept \qquad
y-intercept \qquad
$f(x)$ is increasing on \qquad
$f(x)$ is decreasing on \qquad
$f(x)$ is constant on \qquad

Suggested Problems:
My Previous Exams:

Text: 2-4, 6, 8
Fall 2014 2A: 15
Spring 2014 2A: 16, Fall 2012 2A: 10

Chapter 4C -- Transformations of Functions

Vertical Shifts

x	$f(x)=\|x\|$	$g(x)=\|x\|+2$	$h(x)=\|x\|-1$
-3	3		
-2	2		
-1	1		
0	0		
1	1		
2	2		
3	3		

Domain of $g(x)$ \qquad Range of $g(x)$ \qquad

Domain of $h(x)$ \qquad Range of $h(x)$ \qquad
$g(x)$ is increasing on \qquad $g(x)$ is decreasing on \qquad
x-intercept for $f(x)$ \qquad y-intercept for $f(x)$ \qquad
x-intercept for $g(x)$ \qquad y-intercept for $g(x)$ \qquad
x-intercept for $h(x)$ \qquad y-intercept for $h(x)$ \qquad

In general, adding a constant to a function shifts the graph \qquad

1. Write a function $g(x)$ that shifts the graph of $f(x)=x^{3} 4$ units down.
2. Write a function $h(x)$ that shifts the graph of $f(x)=\sqrt{x} 3$ units up. \qquad

Horizontal Shifts

\mathbf{x}	$\mathbf{- 5}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$f(x)=x^{2}$			9	4	1	0	1	4	9			
$g(x)=(x-3)^{2}$												
$h(x)=(x+2)^{2}$												

vertex of $g(x)$ \qquad
x-intercept for $f(x)$ \qquad
x-intercept for $h(x)$ \qquad
y-intercept for $g(x)$ \qquad
$g(x)$ is increasing on \qquad $g(x)$ is decreasing on \qquad
$h(x)$ is increasing on \qquad $h(x)$ is decreasing on \qquad

x	-4	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$f(x)=\sqrt{x}$					0	1			2					3	
$g(x)=\sqrt{x+4}$															
$h(x)=\sqrt{x-1}$															

For square root functions, there is a value for x which makes the radicand equal 0 .

I call this the
\qquad

The anchor point for $f(x)$ \qquad The anchor point for $g(x)$ \qquad

The anchor point for $h(x)$ \qquad Domain of $f(x)$ \qquad

Domain of $g(x)$ \qquad Domain of $h(x)$ \qquad

$$
x \text { - intercept for } f(x)
$$

y-intercept for $f(x)$ \qquad
x-intercept for $g(x)$ \qquad y-intercept for $g(x)$ \qquad
x-intercept for $h(x)$ \qquad y-intercept for $h(x)$ \qquad
$g(x)$ is increasing on \qquad $g(x)$ is decreasing on \qquad

In general adding a constant to x before applying the function results in a shift of the graph.

3. $f(x)=\sqrt{x}$ Write the function $g(x)$ that shifts the graph of $f(x)$ four units to the right.

$$
g(x)=
$$

\qquad

Domain of $g(x)$ \qquad
The anchor point for $g(x)$ \qquad

4. Write the function $h(x)$ that shifts the graph of $f(x)=|x|$ two units to the left.
$h(x)=$ \qquad
vertex of $h(x)=$ \qquad
x-intercept for $h(x)$ \qquad
y-intercept for $h(x)$ \qquad

Reflections

$$
\text { Let } f(x)=x^{2} \quad \text { Let } g(x)=-f(x)=-x^{2}
$$

Range of $f(x)$ \qquad Range of $g(x)$ \qquad

We can see $-f(x)$ is a \qquad of $f(x)$ through the \qquad
Evaluating $f(-x)$

If $f(x)=x^{2}$ then $f(-x)=$ \qquad If $g(x)=\frac{1}{x}$ then $g(-x)=$ \qquad
If $h(x)=x^{3}$ then $h(-x)=$ \qquad
If $r(x)=\sqrt{x}$ then $r(-x)=$ \qquad

Let $p(x)=r(-x)=$ \qquad What is the domain of $p(x) ?$ \qquad

Graph $r(x)=\sqrt{x}$ and $p(x)=\sqrt{-x}$

Consider $f(x)=(x-3)^{2} \quad$ Let $g(x)=f(-x)=$ \qquad

Graph $f(x)$ and $g(x)$.
Here we see that $f(-x)$ is a \qquad
of $f(x)$ through the \qquad

Stretching and Shrinking

x	$f(x)=x^{3}$	$g(x)=\left(\frac{1}{2}\right) x^{3}$	$h(x)=\left(\frac{1}{4}\right) x^{3}$
-2	-8		
-1	-1		
0	0		
1	1		
2	8		

x	$f(x)=\frac{1}{x}$	$g(x)=2\left(\frac{1}{x}\right)$	$h(x)=4\left(\frac{1}{x}\right)$
-4	$-\frac{1}{4}$		
-2	$-\frac{1}{2}$		
-1	-1		
$\frac{1}{2}$	-2		
$\frac{1}{4}$	-4		
0	0		
$\frac{1}{4}$	4		
$\frac{1}{2}$	2		
1	1		
2	$\frac{1}{2}$		
4	$\frac{1}{4}$		

Stretching and Shrinking

If $c>1$, then the transformation $y=c f(x)$ \qquad $f(x)$ by a factor of c.

Whereas if $0<c<1$, then the transformation $y=c f(x)$ \qquad $f(x)$ by a factor of \qquad

Combinations of Transformations:

5. $f(x)=2 \sqrt{x+1}-6$
a) function \qquad
b) transformations \qquad
\qquad

c) domain \qquad

d) anchor point \qquad e) range \qquad
f) x-intercept for $f(x)$ \qquad
g) y-intercept for $f(x)$ \qquad
h) increasing on \qquad i) decreasing on \qquad
6. $g(x)=\frac{(x-2)^{2}}{-4}+1$
a) function \qquad
b) transformations \qquad
\qquad

c) domain \qquad
d) vertex \qquad e) range \qquad
f) x-intercept for $f(x)$ \qquad g) y-intercept for $f(x)$ \qquad
h) increasing on \qquad i) decreasing on \qquad

Even Functions:

Notice if $f(x)=x^{2}$, then $f(-x)=$ \qquad In other words $f(-x)=$ \qquad
A function is \qquad iff \qquad for every x in the domain of $f(x)$

The graph of an even function has symmetry about the \qquad
Look back at the catalog of basic functions. Which of the functions do you think are even? Test the function to determine if it is even.

Odd Functions:

Notice if $f(x)=x^{3}$, then $f(-x)=$ \qquad In other words $f(-x)=$ \qquad

A function is \qquad iff \qquad for every x in the domain of $f(x)$.

The graph of an odd function has symmetry about the \qquad

What does it mean for a function to be symmetric about the origin?
All three of these graphs are symmetric about the origin:

Informally, a graph is symmetric about the origin if when it is rotated 180° about the origin, the graph looks the same.

By definition, a graph is symmetric about the origin iff for each (x, y) on the graph, \qquad is also on the graph.

Interestingly, if a graph is symmetric about the origin, then for each point on the graph, there is a corresponding point on the graph such that the line segment connecting these two points has the origin as its midpoint.

To determine if a function $f(x)$ is even or odd or neither, simplify $f(-x)$.

$$
\begin{aligned}
& \text { If } f(-x)=f(x) \text {, then } f(x) \text { is an _____ function. } \\
& \text { If } f(-x)=-f(x) \text {, then } f(x) \text { is an _____ }
\end{aligned}
$$

7. Determine if the following functions are even, odd, or neither
a) $f(x)=3 x^{4}-x^{2}+1$
b) $g(x)=x^{5}+1$
c) $h(x)=-x^{3}+x^{2}$
d) $q(x)=\frac{x^{2}+1}{x^{3}}$

Suggested Problems: Text: 1-12
My Previous Exams:
Spring14 1A: 11, 12, 13 a\&g, 14-16, Spring 2013 2A: 5abc,

Fall 2014 2A: 1 f, 6, 10, Fall 2013 2A: 5, 10, Fall 2012 2A: 2, 7, 10

Chapter 1B - Exponents and Radicals

Multiplication is shorthand notation for repeated addition $4+4+4+4+4=5 \times 4$

Exponents are shorthand notation for repeated multiplication. So

$$
2 \times 2 \times 2 \times 2 \times 2=
$$ $x \cdot x \cdot x \cdot x=$

You probably know that $3^{-1}=$ \qquad and $x^{-5}=$ \qquad this is because by definition $x^{-1}=$ \qquad .

In general if $m \in \mathbf{N}$, then $x^{-m}=$ \qquad

Properties of exponents

Example	In general
$a^{4} a^{3}$	$x^{m} x^{n}$
$\frac{b^{8}}{b^{5}}$	$\frac{x^{m}}{x^{n}}$
$\frac{y^{3}}{y^{3}}$	$x^{0} \quad$ for $x \neq 0$

Note: $\quad 0^{0} \neq 0$ and $0^{0} \neq 1 \quad 0^{0}$ is an \qquad

More Properties of Exponents

Example	In general
$(x y)^{3}$	$(x y)^{m}$
$\left(\frac{x}{y}\right)^{2}$	$\left(\frac{x}{y}\right)^{m}$

1. Simplify
a) $(-8)^{2}$
b) -8^{2}
c) 3^{0}
d) $\left(\frac{1}{y^{-6}}\right)$
e) $\left(\frac{a}{b}\right)^{-1}$
e) $\frac{x^{-3}}{x^{2}}$
f) $\left(\frac{y^{4}}{y^{-5}}\right)^{-1}$
g) $\left(\frac{12 a^{-3} b^{2}}{4 a^{4} b^{-1}}\right)^{-2}$
h) $\frac{\left(\frac{1}{3}\right)^{-1005}-27^{334}}{9^{502}+9^{501}}$

Roots or Radicals

TRUE or FALSE: $\quad \sqrt{4}= \pm 2$.

Important distinction: $x^{2}=25$ has \quad solutions: $x=\ldots$ and $x=\ldots$ $\sqrt{25}$ represents exactly \qquad number. $\sqrt{25}=$ \qquad .

Recall that $2^{5}=32$. Now suppose you have $x^{5}=32$ with the instructions: "Solve for x."

How do you express x in terms of 32? The vocabulary word is \qquad

In this case x equals the \qquad .

The notation is

$$
x=
$$

\qquad or $x=$ \qquad

This second notation is called a fractional exponent.

Examples: $\sqrt[4]{81}=(81)^{\left(\frac{1}{4}\right)}=$ \qquad because $3^{\square}=$ \qquad .

$$
(125)^{\left(\frac{1}{3}\right)}=\square \text { because } 5^{\square}=
$$

\qquad .

Properties of Roots (just like properties of exponents!)

Example	In general
$\sqrt[3]{27 \cdot 8}$	
$\sqrt[3]{27} \sqrt[3]{8}$	$\sqrt[n]{x y}$

Example	In general
$\sqrt{\frac{36}{4}}$	
$\left(\frac{\sqrt{36}}{\sqrt{4}}\right)$	$\frac{\sqrt[m]{x}}{\sqrt[m]{y}}$

Now consider $8^{\frac{2}{3}}$. Notice that $\left(8^{2}\right)^{\frac{1}{3}}=$ \qquad

Also $\left(8^{\left(\frac{1}{3}\right)}\right)^{2}=$

So it would seem that $8^{\frac{2}{3}}=$ \qquad

In fact, more generally, it is true that $x^{\left(\frac{m}{n}\right)}=$ \qquad

Similarly, consider $\sqrt[3]{\sqrt{64}}=\left(64^{\left(\frac{1}{2}\right)}\right)^{\frac{1}{3}}=$ \qquad

Whereas, $\sqrt{\sqrt[3]{64}}=\left(64^{\left(\frac{1}{3}\right)}\right)^{\frac{1}{2}}=$

So it would seem that $\sqrt[3]{\sqrt{64}}$ \qquad

In general $\sqrt[m]{\sqrt[n]{x}}$

Simplify $\sqrt[n]{a^{n}}$ for all $n \in \mathbb{N}$.
In recitation you graphed $y=\sqrt[3]{x^{3}}$. Hopefully you found that its graph looked just like the graph of $y=x$. In other words, you saw that $\sqrt[3]{x^{3}}=$ \qquad

You also graphed $y=\sqrt[2]{x^{2}}$. Hopefully you found that its graph looked just like the graph of $y=|x|$. In other words, you saw that $\sqrt[2]{x^{2}}=$ \qquad

Most people believe that $\sqrt[5]{2^{5}}=$ \qquad and agree easily that $\sqrt[n]{2^{n}}=$ \qquad $\forall n$

But $\quad \sqrt[4]{(-2)^{4}}=$ \qquad while $\sqrt[5]{(-2)^{5}}=$ \qquad

So hopefully you see believe $\sqrt[n]{(-2)^{n}}=2$ whenever n is \qquad and $\sqrt[n]{(-2)^{n}}=-2$ whenever n is \qquad
So to simplify $\sqrt[n]{a^{n}}$ for any $a \in \mathbb{R}$ and any $n \in \mathbb{N}$ we have

$$
\sqrt[n]{a^{n}}=\{
$$

Simplifying Radicals

A radical expression is simplified when the following conditions hold:

1. All possible factors ("perfect roots") have been removed from the radical.
2. The index of the radical is as small as possible.
3. No radicals appear in the denominator.

2. Simplify

a) $\sqrt[5]{-32}$
b) $(-216)^{\left(\frac{1}{3}\right)}$
C) $-9^{\left(\frac{1}{2}\right)}$
d) $\sqrt{-64}$
e) $\sqrt[6]{(-13)^{6}}$
f) $\sqrt[4]{16 x^{4}}$
g) $\sqrt[3]{x^{5}}$
h) $\sqrt[3]{648 x^{4} y^{6}}$
i) $\sqrt[8]{16}$
j) $\left(\frac{-125}{64}\right)^{\frac{-2}{3}}$

Rationalizing the Denominator

"Rationalizing the denominator" is the term given to the techniques used for eliminating radicals from the denominator of an expression without changing the value of the expression. It involves multiplying the expression by a 1 in a "helpful" form.
3. Simplify
a) $\frac{1}{\sqrt{2}}$
b) $\frac{1}{\sqrt[3]{2}}$
c) $\frac{1}{\sqrt[3]{4 x}}$
d) $\sqrt{\frac{(9 x)^{3} y^{-4}}{50 x^{8} y^{-5}}}$

Notice: $(x+\sqrt{3})(x-\sqrt{3})=$ \qquad .

To simplify $\frac{1}{\sqrt{2}-\sqrt{5}}$ we multiply it by 1 in the form of So $\frac{1}{\sqrt{2}-\sqrt{5}}=$
and $\frac{41}{2+3 \sqrt{5}}=$

Adding and Subtracting Radical Expressions

Terms must be alike to combine them with addition or subtraction. Radical terms are alike if they have the same index and the same radicand. (The radicand is the expression under the radical sign.)
4. Simplify
a) $\sqrt{5}+2 \sqrt{7}-3 \sqrt{5}-\sqrt{7}$
b) $\sqrt[3]{16 x^{4}}-3 x \sqrt{18 x}-x \sqrt[3]{250 x}$

Please notice $\sqrt{9}+\sqrt{16}=$ \qquad Whereas $\sqrt{25}=$ \qquad

In other words \qquad

In general \qquad

Suggested Problems: Text: 1-32

My Previous Exams:
Spring 2014 2A: 11, 14,
Spring 2013 1A: 1, 2,

Fall 2014 1A: 1
Fall 2013 1A: 1, 2 ,
Fall 2012 1A: 1 a, b, d,

Chapter 4E - Combinations of Functions

1. Let $f(x)=\sqrt{3-x}$ and $g(x)=\sqrt{3+x}$
a) What is the domain of $f(x)$?
b) What is the domain of $g(x)$?
c) $(f+g)(x)=$
d) What is the domain of $(f+g)(x)$?
e) $(f-g)(x)=$
f) What is the domain of $(f-g)(x)$?
g) $(f g)(x)=$
h) What is the domain of $(f g)(x)$?
i) $\left(\frac{f}{g}\right)(x)=$
j) What is the domain of $\left(\frac{f}{g}\right)(x)$?

Practicing with function notation:

2. Let $f(x)=-x^{2}+x$ Determine
a) $f(2)$
b) $f(-3)$
c) $f(*)$
d) $f\left(x^{2}\right)$
e) $f(4 x)$
f) $f(x+h)$

Function Composition

Definition For functions $f(x)$ and $g(x)$, the composition of functions $(f \circ g)(x)$ is defined as \qquad
3. Let $f(x)=x^{2}-9 \quad$ and $g(x)=\frac{1}{x+5}$
a) $(f \circ g)(-3)=$
b) $(g \circ f)(-3)=$
c) $(f \circ g)(x)=$
d) $(g \circ f)(x)=$
4. Here are the graphs of two functions. If the line is the graph of $f(x)$ and the parabola is the graph of $g(x)$, sketch $(f+g)(x)$
5. Using the same graph and functions, determine
a) $(f \circ g)(4)$
b) $(g \circ f)(4)$
c) $(f \circ g)(0)$
d) $(g \circ f)(0)$

Suggested Problems: Text: 3, 8-11

