AB65 Phase Shift Oscillator

> Operating Manual Ver.1.1

An ISO 9001 : 2000 company



Innovative Technology Ecosystem 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91- 731- 2555643 e mail : <u>info@scientech.bz</u> Website : <u>www.scientech.bz</u> Toll free : 1800-103-5050



## AB65 Phase Shift Oscillator

## **Table of Contents**

| 1. | Introduction                                                                                 | 4  |
|----|----------------------------------------------------------------------------------------------|----|
| 2. | Theory                                                                                       | 6  |
| 3. | Experiments<br>Study of Phase Shift oscillator with and without Buffer<br>between RC Section | 9  |
| 4. | Data Sheet                                                                                   | 12 |
| 5. | Warranty                                                                                     | 14 |
| 6. | List of Accessories                                                                          | 14 |

## **RoHS** Compliance



Scientech Products are RoHS Complied.

RoHS Directive concerns with the restrictive use of Hazardous substances (Pb, Cd, Cr, Hg, Br compounds) in electric and electronic equipments.

Scientech products are "Lead Free" and "Environment Friendly".

It is mandatory that service engineers use lead free solder wire and use the soldering irons upto (25 W) that reach a temperature of 450°C at the tip as the melting temperature of the unleaded solder is higher than the leaded solder.

#### Introduction

**AB65** is a compact, ready to use **Phase Shift Oscillator** experiment board. This is useful for students to understand functionality of phase shift oscillator. Student can also see phase shift introduced by different RC stages of a phase shift oscillator. It can be used as stand alone unit with external DC Power Supply or can be used with **Scientech Analog Lab ST2612** which has built in DC Power Supply, AC Power Supply, function generator, modulation generator, continuity tester, toggle switches, and potentiometer.

#### **List of Boards :**

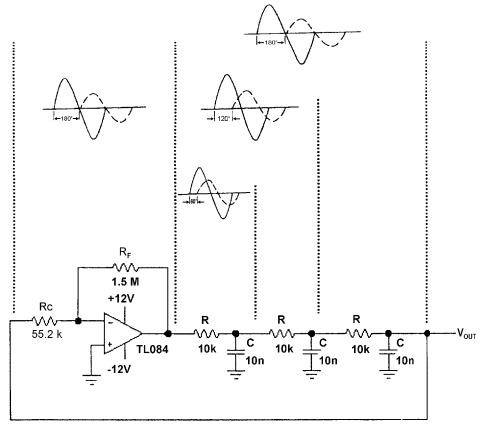
| Model       | Name                                           |
|-------------|------------------------------------------------|
| AB01        | Diode characteristics (Si, Zener, LED)         |
| AB02        | Transistor characteristics (CB NPN)            |
| AB03        | Transistor characteristics (CB PNP)            |
| <b>AB04</b> | Transistor characteristics (CE NPN)            |
| AB05        | Transistor characteristics (CE PNP)            |
| AB06        | Transistor characteristics (CC NPN)            |
| <b>AB07</b> | Transistor characteristics (CC PNP)            |
| <b>AB08</b> | FET characteristics                            |
| AB09        | Rectifier Circuits                             |
| <b>AB10</b> | Wheatstone bridge                              |
| AB11        | Maxwell's Bridge                               |
| AB12        | De Sauty's Bridge                              |
| AB13        | Schering Bridge                                |
| AB14        | Darlington Pair                                |
| AB15        | Common Emitter Amplifier                       |
| AB16        | Common Collector Amplifier                     |
| AB17        | Common Base Amplifier                          |
| <b>AB18</b> | RC-Coupled Amplifier                           |
| AB19        | Cascode Amplifier                              |
| <b>AB20</b> | Direct Coupled Amplifier                       |
| AB21        | Class A Amplifier                              |
| AB22        | Class B Amplifier (push pull emitter follower) |
| AB23        | Class C Tuned Amplifier                        |
| AB24        | Transformer Coupled Amplifier                  |
| AB25        | Phase Locked Loop (FM Demodulator & Frequency  |
|             | Divider / Multiplier)                          |
| AB26        | FET Amplifier                                  |
| AB27        | Voltage Controlled Oscillator                  |
| AB28        | Multivibrator (Mono stable/Astable)            |
| AB29        | F-V and V-F Converter                          |
| AB30        | V-I and I-V Converter                          |
| AB31        | Zener Voltage Regulator                        |
| AB32        | Transistor Series Voltage Regulator            |

| AB65        |                                                                    |
|-------------|--------------------------------------------------------------------|
| AB33        | Transistor Shunt Voltage Regulator                                 |
| <b>AB35</b> | DC Ammeter                                                         |
| <b>AB37</b> | DC Ammeter (0-2mA)                                                 |
| <b>AB39</b> | Instrumentation Amplifier                                          |
| AB41        | Differential Amplifier (Transistorized)                            |
| AB42        | Operational Amplifier (Inverting / Non-inverting / Differentiator) |
| AB43        | Operational Amplifier (Adder/Scalar)                               |
| <b>AB44</b> | Operational Amplifier (Integrator/ Differentiator)                 |
| AB45        | Schmitt Trigger and Comparator                                     |
| AB49        | K Derived Filter                                                   |
| AB51        | Active filters (Low Pass and High Pass)                            |
| AB52        | Active Band Pass Filter                                            |
| AB54        | Tschebyscheff Filter                                               |
| <b>AB56</b> | Fiber Optic Analog Link                                            |
| AB57        | Owen's Bridge                                                      |
| AB58        | Anderson's Bridge                                                  |
| AB59        | Maxwell's Inductance Bridge                                        |
| <b>AB64</b> | RC – Coupled Amplifier with Feedback                               |
| AB66        | Wien Bridge Oscillators                                            |
| <b>AB67</b> | Colpitt Oscillator                                                 |
| <b>AB68</b> | Hartley Oscillator                                                 |
| <b>AB80</b> | RLC Series and RLC Parallel Resonance                              |
| AB82        | Thevenin's and Maximum Power Transfer Theorem                      |
| AB83        | Reciprocity and Superposition Theorem                              |
| <b>AB84</b> | Tellegen's Theorem                                                 |
| AB85        | Norton's theorem                                                   |
| <b>AB88</b> | Diode Clipper                                                      |
| AB89        | Diode Clampers                                                     |
| <b>AB90</b> | Two port network parameter                                         |
| AB91        | Optical Transducer (Photovoltaic cell)                             |
| AB92        | Optical Transducer (Photoconductive cell/LDR)                      |
| AB93        | Optical Transducer (Phototransistor)                               |
| <b>AB96</b> | Temperature Transducer (RTD & IC335)                               |
| <b>AB97</b> | Temperature Transducer (Thermocouple)                              |
| AB101       | DSB Modulator and Demodulator                                      |
| AB102       | SSB Modulator and Demodulator                                      |
| AB106       | FM Modulator and Demodulator                                       |
|             | and many more                                                      |

and many more.....

### Theory

Oscillators are circuits that produce periodic waveforms without input other than perhaps a trigger. They generally use some form of active device, lamp, or crystal, surrounded by passive devices such as resistors, capacitors, and inductors, to generate the output.


There are two main classes of oscillator : Relaxation and Sinusoidal. Relaxation oscillators generate the triangular, saw tooth and other non-sinusoidal waveforms. Sinusoidal oscillators consist of amplifiers with external components used to generate oscillation, or crystals that internally generate the oscillation. The focus here is on sine wave oscillators, created using operational amplifiers "Op-Amps". Sine wave oscillators are used as references or test waveforms by many circuits.

An oscillator is a type of feedback amplifier in which part of the output is fedback to the input via a feedback circuit. If the signal fedback is of proper magnitude and phase, the circuit produces alternating currents or voltages. Two requirements for oscillation are :

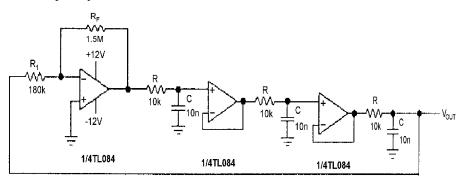
- 1. The magnitude of the loop gain  $A_VB$  must be at least 1.
- 2. The total phase shift of the loop gain  $A_VB$  must be equal to 0° or 360°. If the amplifier causes a phase shift of 180°, the feedback circuit must provide an additional phase shift of 180° so that the total phase shift around the loop is 360°.

Figure 1 shows a phase shift oscillator, which consists of an op-amp as the amplifying stage and three RC cascaded networks as the feedback voltage from the output back to the input of the amplifier. The op-amp is used in the inverting mode; therefore, any signal that appears at the inverting terminal is shifted by 180° at the output. An additional 180° phase shift required for oscillation is provided by the cascaded RC networks. Thus the total phase shift around the loop is 360° (or 0°). At some specific frequency when the phase shift of the cascaded RC networks is exactly 180° and the gain of the amplifier is sufficiently large, the circuit will oscillate at that frequency. This frequency is called the frequency of oscillation,  $f_0$ , and it is given by

 $f_0 = 1.732 / 2 \pi RC$ 



### Figure 1


A phase-shift oscillator can be built with one Op-Amp is shown above the normal assumption is that the phase shift sections are independent of each other. Then Equation is written

$$AB = A [1 / RCs + 1]^3$$

The loop phase is  $-180^{\circ}$  when the phase shift of each section is  $-60^{\circ}$ , and this occurs when  $\omega = 1.732 / 2\pi RC$  because the tangent of  $60^{\circ} = 1.732$ . The oscillation frequency with the component values shown in figure 1 is slightly different than the calculated oscillation frequency. These discrepancies are partially due to the component variations, but the biggest contributing factor is the incorrect assumption that the RC section does not load each other. This circuit configuration was very popular when active components were large and expensive, but now Op-Amps are inexpensive and small and come four in a package, so the single op-amp phase-shift oscillator is losing popularity.

## **Buffered Phase-Shift Oscillator :**

The buffered phase shift oscillator shown in figure 2 oscillates very close to the calculated frequency.



## Figure 2

The buffer prevent the RC sections from loading each other, hence the buffered phase shift oscillator performs closer to the calculated frequency and gain. The gain setting resistor, R1, loads the third RC section, and if the fourth op-amp in a quad op amp buffers this RC section, the performance becomes idle. Low-distortion sine waves can be obtained from either phase-shift oscillator, but the purest sine wave is taken from the output of the last RC section.

This is a high-impedance node, so a high-impedance input is mandated to prevent loading and frequency shifting with load variations.

## Experiment

## **Objective :**

# Study of Phase Shift Oscillator with and without buffer between RC sections Equipments Needed :

- 1. Analog board, AB65.
- 2. DC power supplies -12V, +12V from external source or ST2612 Analog Lab.
- **3.** 2 mm patch cords.

## Circuit diagram :

Circuit used to plot different characteristics of transistor is as shown in figure 3

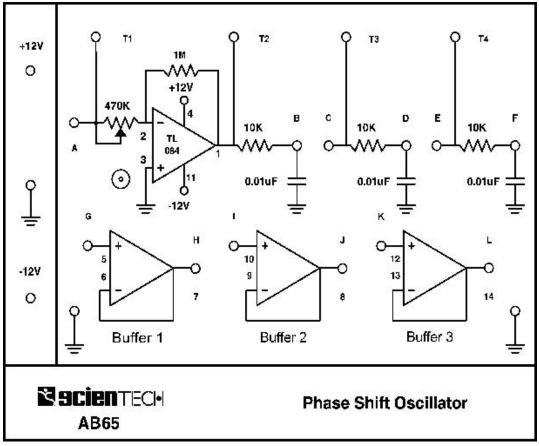



Figure 3

## **Procedure :**

- To study phase shift oscillator without buffer between RC sections proceed as follows :
- 1. Connect +12V, -12V DC power supplies at their indicated position from external source or ST2612 Analog Lab.
- 2. Connect a 2mm patch cord between test point B & C, D & E, F & A
- **3.** Switch 'On' the Power Supply.
- 4. Measure frequency at any test points T1, T2, T3, T4 using CRO.
- 5. Compare measured frequency with the theoretically calculated value.
- 6. Measure phase difference between test points Tl & T2, T2 & T3, T3 & T4, and T4 & T1 with the help of dual channel CRO.
- 7. Vary gain Potentiometer of 470K to adjust gain of the amplifier in case of clipped waveform.

## **Results :**

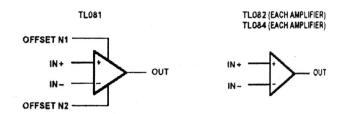
- 1. Theoretical value of output frequency =2. Practical value of output frequency = 3. Phase shift between Test Point T1 & T2 = 4. Phase shift between Test Point T2 & T3 = 5. Phase shift between Test Point T3 & T4 = 6. Phase shift between Test Point T4 & T1 =
- To study phase shift oscillator with buffer between RC sections proceed as follows :
- 1. Connect +12V, -12V DC power supplies at their indicated position from external source or ST2612 Analog Lab.
- Connect a 2 mm patch cord between Test Point B & G, C & H, D & I, E & J, F & K, L & A.
- **3.** Switch 'On' the Power Supply.
- 4. Measure frequency at any test points T1, T2, T3, T4 using CRO.
- 5. Compare measured frequency with the theoretically calculated value.
- 7. Measure phase difference between test points T1 & T2, T2 & T3, T3 & T4, T4 and T1 with the help of dual channel CRO.
- **8.** Vary gain Potentiometer of 470K to adjust gain of the amplifier in case of clipped waveform.

## **Results :**

| 1. | Theoretical value of output frequency  | = |
|----|----------------------------------------|---|
| 2. | Practical value of output frequency =  |   |
| 3. | Phase shift between Test Point T1 & T2 | = |
| 4. | Phase shift between Test Point T2 & T3 | = |
| 5. | Phase shift between Test Point T3 & T4 | = |

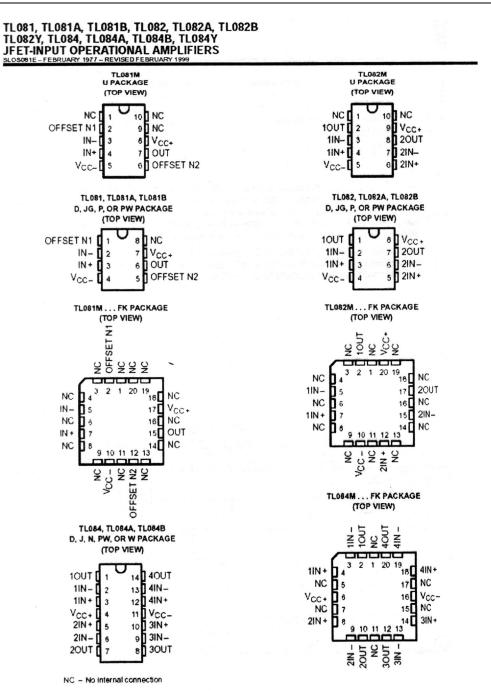
6. Phase shift between Test Point T4 & T1 \_\_\_\_ =

#### **Data Sheet**


|                                                                                                                                                                                                                                                    | TL081, TL081A, TL081B, TL082, TL082A, TL082B<br>TL082Y, TL084, TL084A, TL084B, TL084Y<br>JFET-INPUT OPERATIONAL AMPLIFIERS<br>SL0S061E - FEBRUARY 1977 - REVISED FEBRUARY 1999                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Low Power Consumption</li> <li>Wide Common-Mode and Differential<br/>Voltage Ranges</li> <li>Low Input Bias and Offset Currents</li> <li>Output Short-Circuit Protection</li> <li>Low Total Harmonic<br/>Distortion 0.003% Typ</li> </ul> | <ul> <li>High Input Impedance JFET-Input Stage</li> <li>Latch-Up-Free Operation</li> <li>High Slew Rate 13 V/µs Typ</li> <li>Common-Mode Input Voltage Range<br/>Includes V<sub>CC+</sub></li> </ul> |

description

The TL08x JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08x family.


The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The Q-suffix devices are characterized for operation from -40°C to 125°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

#### symbols



|                      |                                  |                                 |                                 |                                  | AVA                   | LABLE OPT              | IONS                            |                                 |               |                      |                     |             |
|----------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------|------------------------|---------------------------------|---------------------------------|---------------|----------------------|---------------------|-------------|
|                      | V <sub>IO</sub> max<br>AT 25°C   | PACKAGED DEVICES                |                                 |                                  |                       |                        |                                 |                                 |               |                      | CHIP                |             |
| TA                   |                                  | SMALL<br>OUTLINE<br>(D006)      | SMALL<br>OUTLINE<br>(D014)      | CHIP<br>CARRIER<br>(FK)          | CERAMIC<br>DIP<br>(J) | CERAMIC<br>DIP<br>(JG) | PLASTIC<br>DIP<br>(N)           | PLASTIC<br>DIP<br>(P)           | tssop<br>(PW) | FL AT<br>PACK<br>(U) | FLAT<br>PACK<br>(W) | FORM<br>(Y) |
|                      | 15 mV<br>6 mV<br>3 mV            | TL081CD<br>TL081ACD<br>TL081BCD | -                               | -                                |                       | -                      | -                               | TLOBICP<br>TLOBIACP<br>TLOBIBCP | TL081CPW      | -                    | -                   | -           |
| 0°C<br>to<br>70°C    | 15 mV<br>6 mV<br>3 mV            | TL082CD<br>TL082ACD<br>TL082BCD | -                               | -                                | -                     | -                      | -                               | TLO82CP<br>TLO82ACP<br>TLO82BCP | TL082CPW      | -                    | -                   | TL082Y      |
|                      | 15 mV<br>6 mV<br>3 mV            | -                               | TL084CD<br>TL084ACD<br>TL084BCD | -                                | -                     | . –                    | TLOSACN<br>TLOSAACN<br>TLOSABCN | -                               | TL064CPW      | -                    | -                   | TL084Y      |
| -40°C<br>10<br>85°C  | 0 m ∨<br>6 m ∨<br>6 m ∨<br>8 m ∨ | TL0611D<br>TL0821D<br>TL0841D   | TL084ID                         | 1                                | -                     | -                      | TL084IN                         | TLOB1IP<br>TLOB2IP              | -             | -                    | -                   | -           |
| -40°C<br>10<br>125°C | 9 m∨                             | -                               | TL084QD                         | -                                | -                     | -                      | -                               | -                               | -             | -                    | -                   | -           |
| -55°C<br>lo<br>125°C | Vm 8<br>Vm 8<br>Vm 9             | -                               | -                               | TLO81MFK<br>TLO82MFK<br>TLO84MFK | TL094MJ               | TL081MJG<br>TL082MJG   | -                               | -                               | -             | TLO91MU<br>TLO92MU   | TL064MW             | -           |

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLOBI CDR).



Scientech Technologies Pvt. Ltd.

## Warranty

- 1. We guarantee the product against all manufacturing defects for 24 months from the date of sale by us or through our dealers. Consumables like dry cell etc. are not covered under warranty.
- 2. The guarantee will become void, if
  - a) The product is not operated as per the instruction given in the operating manual.
  - **b)** The agreed payment terms and other conditions of sale are not followed.
  - c) The customer resells the instrument to another party.
  - d) Any attempt is made to service and modify the instrument.
- **3.** The non-working of the product is to be communicated to us immediately giving full details of the complaints and defects noticed specifically mentioning the type, serial number of the product and date of purchase etc.
- 4. The repair work will be carried out, provided the product is dispatched securely packed and insured. The transportation charges shall be borne by the customer.

For any Technical Problem Please Contact us at <a href="mailto:service@scientech.bz">service@scientech.bz</a>

## List of Accessories

| 1. | 2 mm Patch Cords (Red)  | 2 Nos. |
|----|-------------------------|--------|
| 2. | 2 mm Patch Cord (Blue)  | 7 Nos. |
| 3. | 2 mm Patch Cord (Black) | 3 Nos. |
| 4. | e-Manual                | 1 No.  |

Updated 27-03-2009