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Abstract

Since the first investigations on web graph compression, it has been clear that the or-

dering of the nodes of the graph has a fundamental influence on the compression rate (usu-

ally expressed as the number of bits per link). The authors of the LINK database [2],

for instance, investigated three different approaches: an extrinsic ordering (URL ordering)

and two intrinsic orderings based on the rows of the adjacency matrix (lexicographic and

Gray code); they concluded that URL ordering has many advantages in spite of a small

penalty in compression. In this paper we approach this issue in a more systematic way,

testing some known orderings and proposing some new ones. Our experiments are made

in the WebGraph framework [3], and show that the compression technique and the struc-

ture of the graph can produce significantly different results. In particular, we show that

for the transposed web graph URL ordering is significantly less effective, and that some

new mixed orderings combining host information and Gray/lexicographic orderings outper-

form all previous methods: in some large transposed graphs they yield the quite incredible

compression rate of 1 bit per link. We experiment these simple ideas on some non-web

social networks and obtain results that are extremely promising and are very close to those

recently achieved using shingle orderings and backlinks compression schemes [4].

1 Introduction

The web graph [5] is a directed graph whose nodes correspond to URLs, with an arc from x

to y whenever the page denoted by x contains a hyperlink toward page denoted by y; more

loosely, the same term is sometimes used for the undirected version of the graph, when arc

direction is not relevant. Web graphs are a huge source of information, and contain precious

data that find applications in ranking, community discovery, and more. In many cases, the

results obtained and the techniques applied for the web graph are also appropriate for the larger

realm of social networks, of which the web graph is only a special case; while the first studies

on web graph compressions date back to the early 2000’s, very large non-web social graphs

were made available only more recently, triggering research about their compressibility as it

had happened in the case of web graphs a decade earlier.

Indeed, one nontrivial practical issue when dealing with such graphs is their size: a typi-

cal web graph or real-world social network contains millions, sometimes billions, of nodes and

∗This work is partially supported by the EC Project DELIS, by MIUR PRIN Project “Automi e linguaggi formali:

aspetti matematici e applicativi”, and by MIUR PRIN Project “Web Ram: web retrieval and mining”. A preliminary

version of the results in this paper appeared in [1].
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although sparse its adjacency matrix is way too big to fit in main memory, even on large com-

puters. To overcome this technical difficulty, one can access the graph from external memory,

which however requires to design special offline algorithms even for the most basic problems

(e.g., finding connected components or computing shortest paths); alternatively, one can try to

compress the adjacency matrix so that it can be loaded into memory and still be directly accessed

without decompressing it (or, decompressing it only partially, on-demand, and efficiently).

The latter approach, that can be referred to as web graph compression, can be traced back to

the LINK database [2]; more recently, it led to the development of the WebGraph framework [3],

which still provides some of the best practical compression/speed tradeoffs.

Most web graph compression algorithms strongly rely on properties that are satisfied by the

typical web graphs; in particular, the key properties that are exploited to compress the graph

adjacency structure are locality and similarity. Locality means that most links from page x point

to pages of the same host1 as x (and often share with x a long path prefix); similarity means that

pages that are from the same host tend to have many links in common (this property is becoming

more and more frequent with the widespread use of templates and generated content).

The fact that most compression algorithms make use of these (and similar) properties ex-

plains why such algorithms are so sensible to the way nodes are ordered. A technique that works

incredibly well, and was adopted already in the LINK database [2], consists in sorting nodes lex-

icographically by URL (the first node is the one that corresponds to the lexicographically first

URL, and so on). In this way, successor lists contain by locality URLs that are assigned close

numbers, and gap encoding2, a standard technique borrowed by inverted-index construction,

makes it possible to store each successor using a small number of bits. This solution is usually

considered good enough for all practical purposes, and has the extra advantage that even the

URL list can be compressed very efficiently via prefix omission [6]. Analogous techniques,

which use additional information beside the web graph itself, are called extrinsic.

It is natural to wonder if there is an alternative way of finding a “good ordering” of the nodes

that allow one to obtain the same (or maybe better) compression rate without having to rely on

URLs; this is especially urgent for social networks, where nodes do not correspond themselves

to URLs.3 A general way to approach this problem may be the following: take the graph with

some ordering of its n nodes, and let A be the corresponding adjacency matrix; now, based on

A, find some permutation π of its rows and columns such that, when applied to A, produces

a new matrix A′ in which two rows that are close to each other (i.e., appear consecutively, or

almost consecutively) are similar (i.e., they contain 1’s more or less in the same positions).

Finding a good permutation π is an interesting problem in its own account; in [2], the authors

propose to choose the permutation π that would sort the rows of A in lexicographic ordering.

This is an instance of a more general approach: fix some total ordering ≺ on the set of n-bit

vectors (e.g., the lexicographic ordering), and let π be the permutation4 that sorts the rows of A

according to ≺. Observe that the rows of A′ are not ≺-ordered, because the permutation π is

applied to both rows and columns. These approaches are called intrinsic, as they do not rely on

1According to the RFC 1738, the host is the string between the second and the third slash in an absolute URL.
2Instead of storing x0, x1, x2, . . . we store, using a variable-length bit encoding, x0, x1 − x0, x2 − x1, . . . .
3We note that the same approach has been shown to be fruitful in the compression of inverted indices; see, for

instance [7, 8, 9, 10].
4In this description we are ignoring the problem that π is not unique if A contains the same row many times.
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external information (such as the URLs of each node).5

Another possible solution to the same problem, already briefly mentioned in [2], consists in

letting ≺ be a Gray ordering, that is, an ordering where adjacent vectors differ by exactly one

bit. Although this solution may sound promising, one should carefully determine an efficient

algorithm that finds the sorting permutation π with respect to (some) Gray ordering.

In this paper we explore experimentally, using the WebGraph framework, the improvements

in compression due to permutations. Besides the classical permutations described above, we

propose two new permutations based on the Gray ordering: however, we restrict the permuta-

tion to rows of the same host. Moreover, for the first time we provide experimental data on

the transposed graph (i.e., the graph obtained reversing the direction of all arcs), showing that

intrinsic permutations provide a dramatic increase in compression, contrarily to what happens

in the standard case.

Some of the methods described in the paper are totally intrinsic and can thus be applied to

any graph; other techniques, although not fully intrinsic, can be adapted to work also without any

additional information on the nodes. It is hence natural to wonder whether they can be fruitfully

exploited on other social networks. Social network compression has been recently discussed

in [4], where the authors proposed two intrinsic ordering heuristics based on shingles, and also

study a compression scheme called backlink (BL) compression that improves on the WebGraph

format, adding the idea of reciprocity. In the experimental part of this paper, we show how

our methods behave when applied to non-web social networks; our results (still based on the

WebGraph framework) are promising, and they produce compression rates that are comparable

to those shown in [4], while providing fast access.

Before discussing our approach and results, though, we believe that it is worth to take some

time to discuss the current state-of-the-art in web graph compression: this is the content of the

next section.

2 Web graph compression: a primer

As briefly explained in the introduction, when large graphs (and, more generally, large amount

of data) are to be processed and their size is such that they cannot fit in main memory directly,

two opposing approaches can be adopted. One possibility is to assume that the graph is never

actually loaded into memory, but it is rather read (possibly more than once) in a streaming

fashion from external storage using a small amount of memory. The second is to rely on some

graph compression techniques that allow one to reduce the graph space usage enough to be able

to load it in memory.

As a first, general remark, let us distinguish between compressed data structures and com-

pression schemes: the latter is evaluated only on the basis of its space efficiency (how much

space the compressed data occupy), whereas the former requires that accessing the data can

be done efficiently and without (fully) decompressing it. There is of course an information-

theoretical lower bound on the performance of compression schemes (and, a fortiori, of com-

pressed data structures), given by a simple counting argument: any compression scheme for

5Of course, it is possible to devise intrinsic methods that do not necessarily depend on some ordering; see, for

instance, [11].
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objects of a universe � cannot use less than log2 |�| bits on the average; in some cases, it is ac-

tually possible to design compression schemes that achieve this lower bound, and are henceforth

space-optimal, at least in the average case. For directed labelled graphs, the adjacency matrix is

optimal (as there are 2n2
directed labelled graphs). Turán [12], in one of the early papers on the

subject, described a representation for planar graphs and posed the problem of encoding general

unlabelled graphs (i.e., graphs that should be considered up to automorphisms); a solution was

found a few years later by Naor [13]. Albeit interesting, this kind of results is of limited prac-

tical impact for two reasons: no efficient method is usually provided to access the data without

decompressing it entirely, and moreover in real applications the empirical distribution of the

objects is far from being uniform—in many cases, a scheme that works poorly in the worst or

average case can be preferable if it is able to compress efficiently typical instances.

On the other hand, compressed data structures are in a sense the empirical counterpart of

succinct data structures (introduced by Jacobson [14]), which store data using a number of bits

equal to the information-theoretical lower bound, providing access time asymptotically equiv-

alent to a standard data structure; in particular, a compressed data structure for a graph must

provide very fast amortised random access to an arc (link), say in the order of few hundreds

of nanoseconds. More precisely, the kind of compressed data structures for graphs that are the

topic of our discussion should feature the following (somewhat loose) properties:

• they should mandatorily exhibit good compression ratios (possibly below the information-

theoretical lower bound) at least for the kind of graphs one wants to deal with (in our case:

web graphs, social networks and alike);

• they should possibly guarantee good compression on the average, not far from the lower

bound;

• they should be endowed with access primitives that are almost as efficient as those of a

non-compressed graph structure;

• they can be coordinate-free: by this we mean that the data structure yields approximately

the same compression rate independently of the specific permutation of the graph it is fed

with.

Which specific access primitives are provided depend on the way compression is achieved as

well as on its intended usage. Broadly speaking, we can distinguish between sequential access

(scan through all the arcs, with guarantees that the arcs going out of each node are provided con-

secutively), random access (given x , provide the list of successors of x) or direct access (given x

and y, tell whether there is an arc from x to y or not). In some cases, random or direct access to

the transposed graph might also be made available. Note that we are not interested in dynamic

data structures: we are assuming that the graphs under consideration are static and immutable;

this implies, in particular, that we are disregarding the time taken for construction (compression)

but we are assuming that compression can be performed using a reasonable amount of time and

space, precisely because there is no other way to modify the graph than to reconstruct everything

from scratch. Unfortunately, compression time and space is not usually reported in papers about

web graph compression. The rationale behind this choice is that since such graphs will be stored

once and read many times, construction time is not very relevant. On the other hand, apart for
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the considerations above, it is necessary that the compression techniques be very scalable, as the

web graph is growing every day. The lack of experiments beyond, say, 100 million nodes may

be a sign that the technique described does not really scale up.

The features of the links of a web graph that are usually quoted as locality and similarity

(described in the introduction) were originally exploited by the LINK database [2]; given that

the nodes are sorted lexicographically by URL, locality guarantees that most links are between

nodes close to each other in the order, and similarity suggests that nearby nodes have similar

successor lists. The authors of the LINK database write each successor list as a sequence of gaps

(the smallest successor of node x is written as a difference from x , and each of the remaining

successors, in increasing order, is written as a difference from the previous one): locality implies

that the gaps written this way are small and using some suitable universal code for the integers

they can be written compactly; in [2], a nybble code is used to write gaps (binary values are

written as sequences of 3-bit groups, plus one continuation bit): the reason behind this choice is

that, although nybble codes are outperformed by Huffman, they are much faster to decompress.

As [15] explain a posteriori, the choice of nybble codes is optimal (at least for gaps between

successors) among all the universal codes of the same family (the so called k-bit variable length

code, where k = 3 for nybble codes): indeed, empirical analysis performed by [15] on Web

graphs shows that such gaps exhibit a Power Law distribution with exponent around 4/3, and

the optimal k for this exponent is6 3.

Besides their clever usage of locality, [2] also analyse the idea of storing similar successor

list by reference: if a list of successors is sufficiently similar to one of those that appeared

immediately before it, only the symmetric difference between the two successor sets is written:

a bit list records which successors of the referenced list are actually used. The idea of using

similarity was also explored independently in [16], which also presents some negative results

about the complexity of finding the “best possible” node to copy from, and suggests a number of

possible practical improvements over the bit list idea, in particular that of run-length encoding

such a list, which is similar to the inclusion-exclusion blocks used by WebGraph [3].

The results of [2] were obtained on large datasets on which they obtain a compression rate

of about 5.5 bits/link: this value includes the offset data structure that allows for random access,

but it is not clear from the paper how much one can gain in space if only sequential access is

required. Sequential and random access require about 220 and 300 ns/link, respectively (on a

Compaq with 2 Ghz CPUs).

Apart for [2], there was a flurry of activities about the same problem in the early 2000s,

some of which delivered ideas that were later used in other frameworks. In 2002, [17] consid-

ered two solutions, both based on the idea of grouping the successor lists into blocks and then

compressing each block separately, either by gzipping it or by writing each successor as a differ-

ence from the source (once more, exploiting locality albeit in a slightly different way); they did

not use a standard universal code for writing the differences, but rather employed three different

encodings depending on the size of the integer to be written. The best compression result they

obtain is about 13 bits/link, with access time of about 5.1 µs/link (on a Compaq with 800 MHz

6In the same work, they show that the first gap, i.e., the (absolute value of the) difference between the source

and the smallest successor, has also a Power Law distribution but with a different exponent (7/6 instead of 4/3) that

would suggest using a 6-bit variable length code, instead.
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Pentium III). Observe that [17] decided to release the dataset on which their experiments were

run: they were the first ones to do so, to the best of our knowledge7.

The authors of [15] tried to learn from the lessons of [2] and [17], and also introduced new

ideas: in particular, they observe that often successors are consecutive to each other and pro-

pose a run-length encoding to store such sequences (a technique similar to interval compression

of [3]): with their machinery they achieve about 9.7 bits/link, with a random access time of

about 3.5 µs/link (on a Solaris UltraSPARC-II with a 360 MHz CPU).

An independent and orthogonal approach to web graph compression (or, more generally, to

graph compression altogether) tries to consider the problem from a structural viewpoint. In its

simplest form, this solution may consist in classifying the arcs of the graphs into two or more

classes and in compressing them differently; an early example of this approach is attempted

in [18], that distinguishes between global frequent links (interhost links towards pages with large

indegree, that are Huffman-coded), global absolute links (the other interhost links, stored using

a Golomb code) and local links (that are, in turn, classified into “frequent” and “distant” links).

Their approach requires about 13.9 bits/link with a random access time of about 0.26 ms/link

(they do not give details about the hardware on which their experiments were run, though). A

similar technique was discussed in [19], where the nodes are first partitioned into groups (called

supernodes), and both the quotient graph thereby obtained and each component graph are stored

separately: with their approach, they occupy about 5.1 bits/link, with sequential and random

access require about 300 and 700 ns/link, respectively (on a 933 MHz Pentium III).

2.1 WebGraph

In this paper we refer to the BV compression scheme provided by the WebGraph framework [3].

It is a compression scheme that combines several ideas from the literature and some new insights

in a carefully engineered algorithm:

• successor lists are compressed by referencing previous successor lists, if this is advanta-

geous, and the list of arcs copied by a previous successor list is represented by inclusion-

exclusion blocks;

• consecutive successors are represented by intervals;

• the residual successors are gap-encoded using ζ codes [20], a kind of instantaneous code

devised explicitly for power laws with small exponent.

WebGraph provides an implementation of the BV compression scheme in Java (full source is

available). Moreover, the LAW (Laboratory for Web Algorithmics8) provides freely several

7It is worth to spend some words, here, about the intrinsic difficulty to compare different compression techniques

proposed and discussed in the literature: datasets on which the experiments are performed are most often not made

available; the code is also most of the times not distributed, and even when it is, its usability is limited (e.g., because

only the executable is provided, and/or because the documentation is extremely terse or completely absent). More-

over, papers often do not describe the code in full details, making a re-implementation almost impossible or useless.

Finally, a comparison of time performances is made even more difficult by the relative impossibility to compare

structures offering different access to the graph, and by the fact that they are anyway experimented on hardware with

different computational power.
8http://law.dsi.unimi.it/
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datasets in BV format: in what follows, when we name a graph, we will use its name in the

LAW repository.

Clearly, the compression rate is strongly dependent on the ordering of the nodes: actually,

on a randomly permuted graph, BV simply encodes the successor lists by gaps. We also remark

that WebGraph is an extremely configurable system, in which, for instance, it is possible to

choose a different instantaneous code for each component of the compression algorithm. By

hardwiring our currently best choices we could gain some constant speed-up factor.

Another important design choice of WebGraph, which imposes a constant-time slow-down,

is its lazy implementation. When the successor list of a node is computed, a small amount of

memory is allocated to keep track of inclusion-exclusion blocks and intervals: the successors

originated by the various aspects of the compression algorithm are represented by iterators,

which are aggregated in a tree; at each node, the results are merged on the fly. As a result,

random access does not require to allocate memory for the entire list of successors of a node.

2.2 Recent advances

In this section we gather more recent papers that have presented significant advances in com-

pressed data structures for graphs. Most of the papers provide comparisons results against We-

bGraph, that is considered a de facto standard in web-graph compression, and use datasets from

the LAW repository.

An important remark is to be made about pointers: most, if not all, the structures we discuss

provide both sequential and random access. The bits per link reported are those related to the

data required for sequential access. For random access, however, some more data must be

loaded into memory: usually, a list of pointers into the bitstream representing the graph. This

list is monotone, so it can be represented using Elias–Fano coding [21, 22], requiring around

2 + log ℓ bits per pointer, where ℓ is the average number of bits per node. Since the overall

space usage is of lower order with respect to the rest of the data (in practice, it is usually less

than 10 bits/node), and it is a “common evil”, it is often not reported in the literature. This

lack of report creates some confusion, as it happens that, in benchmarks, variants that do not

compress the pointers are used to achieve maximum speed: at that point, however, the impact

of pointers on memory is very significant (i.e., it can cause double space usage).

Separable graphs. Blandford, Blelloch and Kash [11] have proposed a general-purpose com-

pressed data structure that works for separable graphs (intuitively, a graph is separable if it

can be split into small, approximately equally sized disconnected pieces by removing a small

number of edges). The representation does not seem to depend on the initial ordering; the com-

pression rate and access time are good, but experiments are provided only for very small data

sets, and the software is not available.

Pattern compression. Asano, Miyawaki and Nishizeki [23] use different techniques to en-

code intra and inter-host links, and for intra-host compression they adopt six different kinds of

patterns that are used to cover the local adjacency matrix. No code is made available, and ex-

periments are performed just on small graphs. The random access time is in the order or several
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µs/link, so by our standards it is not classifiable as a compressed data structure9.

Compression by community detection. Buehrer and Chellapilla [24] propose to identify

communities (i.e., complete bipartite graphs) and to replace them with virtual nodes. They

provide a scanning algorithm that can identify a significant number of such communities in a

web graph, so that the final number of bits per link is better than WebGraph’s (although in most

cases it is worse than what we show in Table 3); experiments are performed on large graphs,

too. No detailed data are provided on decompression time, though, albeit it is argued in [25] that

many useful algorithms can be run directly on virtual nodes. Since the software is not available,

we have not been able to determine whether the compression scheme is dependent on the initial

ordering, or to ascertain whether their solution can be classified as a compressed data structure.

Grammar compression. Claude and Navarro [26] propose a very interesting compression

scheme based on a general-purpose grammar-based compression method, Re-Pair [27]. Re-

Pair codes the most frequent pair of symbols with a new symbol and records compactly the

corresponding expansion rule. The resulting scheme provides sometimes a better space/time

improvement over WebGraph, and it is general-purpose, but it is not as scalable because of the

large amount of memory required and of the long time required to compress a graph. Also in

this case the authors claim that the method is coordinate-free, but experiments show that it is

dependent on the initial ordering (on a random permutation of the LAW dataset uk-2002 we

obtained 7.61 instead of 4.22 bits/link, and compression required days rather than hours).10 On

LiveJournal, Re-Pair compression provides an unsatisfactory 18.37 bits/link.

k2-trees. Brisaboa, Ladra and Navarro [28] propose another approach based on representing

the adjacency matrix of the graph using a k2-ary tree that records at each level which children

contain at least a one. The tree is represented compactly using the vast array of knowledge

about succinct data structures gathered in the last decade. There is a very important feature of

this approach: the same structure can be used both to obtain the successor list and to obtain

the predecessor list (apparently, also direct access would be easy to implement). The structure

is about one order of magnitude slower than other approaches, but if both successors and pre-

decessors are needed the compression results are unbeatable. Of course, the initial ordering is

essential (they use URL ordering), so also this approach is in principle amenable at improve-

ments by permuting the underlying graph. Experiment are provided only for graphs up to 20

million nodes, and the software is not available. Since the method relies heavily on the 1’s of

the matrix being concentrated in relatively few locations, it is likely that this approach has less

success with social networks.

9Experiments compare the sequential access speed with that provided by WebGraph, but clearly the author have

mistakenly used the direct-access interface of WebGraph to perform a sequential scan, instead of employing an

iterator (that scans the graph sequentially). Consequently, for high compression they show unrealistic data.
10Since Re-Pair compression is not coordinate-free, it could in principle benefit from the permutations suggested in

this paper. However, some preliminary experiments showed no improvement or even a worsening of the compression

rate using the permutations described in this paper.
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Compression by breadth-first visit. Apostolico and Drovandi [29] propose an innovative

and very interesting method based on a breadth-first visit followed by a clever compression

scheme that exploits naturally both locality and similarity: successors are compressed either by

reference to the previous successor for the same node, or by reference to the successor of the

previous list that is in the same ordinal position. Moreover, blocks of identical successors are

recorded just once. The authors provide an implementation of their algorithm (but no source

code). Compression rates are excellent (in many cases, the best available), and access is very

fast. The downside is that one is forced to store the graph using a specific numbering of the

nodes. This problem can be obviated by storing the forward and reverse permutation, and remap

each successor list on the fly, possibly sorting it. This approach, however, worsens significantly

both space usage and access time. Thus, rather than with standard WebGraph, this technique is

best compared with the compression rates of this paper, as the point of this paper is precisely

choosing a permutation to maximise compression.11

The authors claim that the method is coordinate-free, and indeed some experiments with ran-

dom permutations show that the method has relatively low dependence on the initial ordering

(uk at level 8 requires 2.028 bits/link, whereas a random permutation requires 2.324 bits/link),

something which is unique among the methods we review. Preliminary experiments suggest

that the proposed encoding method is strongly oriented towards graphs with tight clusters: the

outcome on some social networks discussed in this paper is unsatisfactory (e.g., 15 bits/link on

LiveJournal), and also results on transposed graphs are not very competitive (the best compres-

sion on the transpose of the dataset uk of this paper is 1.348 bits/link).

Two observations must be done about this method. First of all, successors are not returned

in increasing order. Second, to provide random access, additional data must be loaded into

memory. These data include not only a set of pointers into the compressed data, but also a set

of node identifiers. Thus, the “common evil” elimination that we discussed at the start of this

section does not apply in this case. Moreover, in the current implementation data are not kept

in succinct form, a choice that provides very high-speed access, but at the same time increases

by a large amount the space allocated in main memory. To keep differences to a minimum, we

compare results oriented to random access (e.g., Table 4 and 5) to the “level 8” compression of

the Apostolico–Drovandi scheme, which in the current implementation uses 8 bits per node—a

value comparable by that used by WebGraph for pointers alone.

3 Notation and Gray Code Basics

Von Neumann’s notation. In the following we will use von Neumann’s definition of natural

numbers

x = { 0, 1, . . . , x − 1 },

which leads to a simple notation for sets of integers. We allow some ambiguity when writing

exponentials: 2n denotes the vectors of n bits, or, equivalently, the power set of n (interpreting

the vectors as characteristic functions n → 2). Since 2n ambiguously denotes also the set X =

{ 0, 1, . . . , 2n − 1 } we assume the natural correspondence between the latter set in increasing

11Comparison with the Apostolico–Drovandi method did not appear in the preliminary version of this paper [1] as

at that time [29] was not yet published.
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x x̄

000 000

001 001

010 011

011 010

100 110

101 111

110 101

111 100

Table 1: The natural Gray code on 3 bits: in the right-hand column, any two successive vectors

differ in exactly one bit.

order and the strings of n bits in lexicographic ordering. The mapping from strings to X is

obviously given by base-2 evaluation.

In the following, if x ∈ 2n , we use x0, x1, . . . to denote the bits of its binary expansion (x0

being its least-significant bit). In other words, interpreting x as a characteristic function n→ 2,

we let

xk = x(k).

Gray codes and Gray orderings. An n-bit Gray code is an arrangement (i.e., a total ordering)

of 2n such that any two successive vectors12 differ by exactly one bit; Gray codes, named after

the physicist Frank Gray, find countless applications in computer science, physics and mathe-

matics (we refer the interested reader to [30] for more information on this topic). The ordering

imposed by a Gray code on 2n is called a Gray ordering.

Even though there are many Gray codes, and thus many Gray orderings, one that is very

simple to describe is the following:

Definition 1 ([30, Section 7.2.1.1]) For every x ∈ 2n , let x̄ ∈ 2n be defined by

x̄n−1 = xn−1,

x̄k = xk+1 ⊕ xk for k < n − 1,

where ⊕ is the exclusive or. Then, x 7→ x̄ is a bijection, and the ordering ≺ defined by

x̄ ≺ ȳ iff x < y

is a Gray ordering, called the natural Gray ordering.

Table 1 shows the natural Gray code on 3 bits. Now, let us write x 7→ x̂ for the inverse

of x 7→ x̄ ; starting from Definition 1 one can easily see that x̂ can be recursively obtained as

follows

x̂n−1 = xn−1,

x̂k = xk ⊕ x̂k+1.

12We say that a′ is the successor of a with respect to the ordering < iff a < a′ and a ≤ b ≤ a′ implies either

a = b or b = a′.
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This observation gives a nice and simple way to compute x̂ from x : indeed, let x ↓ k be

the number of 1’s in x preceding position k (i.e., the number of 1’s in bits that are at least as

significant as the k-th). Then

x̂k = x ↓ k mod 2. (1)

4 On Gray orderings and graphs

An obvious application of Gray ordering to graphs is that of permuting node labels so that the

resulting adjacency matrix changes “slowly” from row to row. Indeed, intuitively if we permute

the rows of the adjacency matrix following a Gray ordering rows with a small number of changes

should appear nearby. (This intuition is only partially justified—e.g., in Table 1 the first and last

word of the second column differ by just one bit, yet they are as far apart as possible). Of

course, to maintain correctly the graph we also need to permute columns in the same way: but

this process will not change the number of differences between adjacent rows.

Indeed, already some of the first investigation of web graph compression experimented with

Gray orderings [2]13. However, the authors reported a very small improvement in compression

with respect to URL ordering; this fact, coupled with the obvious advantages of the latter, pushed

the authors to discard Gray ordering altogether. The main question we try to answer in this

paper is whether this small difference is actually an absolute property or it is an artifact strongly

depending on the compression algorithms used, and whether it also applies to transposed graphs.

To this purpose, we first develop a very simple algorithm that makes it possible to decide the

Gray code ordering inspecting the successor lists in parallel.

When manipulating web graphs using the WebGraph framework, successors are returned

under the form of an iterator providing an increasing sequence of integers. This makes it possible

to compare the position in the Gray ordering of two rows of the adjacency matrix by iterating

in parallel over the adjacency lists of two nodes. While the lists coincide, we skip, and keep a

variable recording the parity of the number of arcs seen so far (note that the value of formula (1)

depends only on the parity of x ↓ k). As soon as the lists differ, we can use formula (1) to

compute the first different bit of the ranks of the adjacency rows in the Gray ordering: assuming

the first list returns j and the second list returns k (for sake of simplicity, we assume that the

end-of-list is marked by∞), we have the following scenario:

• if the parity is odd, the order of the lists is the order of j and k;

• if the parity is even, the order of the lists is the order of j and k reversed.

This can be easily seen as j < k implies that the first difference in the rows of the adjacency

matrix is at position j , where the first list has a one whereas the second list has a zero. If the

parity is odd, this means that the rank of the first list has a zero in position j , whereas the rank

of the second list has a one. The situation is reversed if the parity is even. Algorithm 1 describes

formally this process.

Once this simple consideration is made, it is trivial to implement Gray code (or lexico-

graphic) graph permutation using WebGraph’s facilities. The idea is that of using a standard

13Note that in the paper the codes are incorrectly spelt as “Grey”.
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Algorithm 1 The procedure for deciding the Gray natural order of two rows of the adjacency

matrix, represented by means of iterators i and j that return the position of the next nonzero

element. Note that end-of-list is denoted by ∞ and that we used Iverson’s notation: [a < b]

has value one if a < b, zero otherwise. The meaning of the return value is negative, null

or positive depending on whether iterator i corresponds to a vector that precedes, is equal or

follows (respectively) the vector corresponding to iterator j according to the Gray natural order.

0 p← false;

1 forever begin

2 a← next(i);

3 b← next( j);

4 if a = ∞ and b = ∞ then return 0;

5 if a 6= b then begin

6 if p ⊕ [a < b] then return 1

7 else return −1

8 end;

9 p← ¬p

10 end;

comparison-based sorting algorithm that compares lists of successors exploiting the considera-

tions above.14 As a result, we can compute the Gray permutation of the uk graph (see Table 2)

in about one hour on an Opteron at 2.8 GHz.

Note that from a complexity viewpoint this approach is far from optimal. Indeed, a simple

way to permute words in Gray code ordering is to apply a modified radix sort in which, at each

recursive call, we have a parity bit that tells us whether 0 ≺ 1 or 1 ≺ 0. We apply a standard

radix sort algorithm, dividing words in two blocks depending on the first bit, and then recurse

on each block: however, when we recurse on the block of words starting with one, we invert the

parity bit.

Now, this approach is theoretically optimal if the size of the input is given by the number of

entries in the adjacency matrix. However, the adjacency matrix of a web graph is very sparse,

and never represented explicitly.

Alternatively, we could develop a radix sort that picks up successors from successor lists

(for all nodes) and deduces implicitly the zeroes and the ones of the adjacency matrix. Albeit

in principle such an algorithm would iterate optimally (i.e., it would extract from each iterator

the minimum number of elements that are necessary to compute the ordering), it would require

to build at the same time the iterators for all nodes—a task that would require a preposterous

amount of core memory.

14In this case, the lazy architecture used by WebGraph turns out to be very effective, as the comparison ends very

quickly for most pairs of successor lists, without the need to decompress them fully.
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Name Year Nodes Edges

cnr 2000 325 557 3 216 152

webbase 2001 118 142 155 1 019 903 190

it 2004 41 291 594 1 150 725 436

eu 2005 862 664 19 235 140

uk 2007 105 896 555 3 738 733 648

Table 2: Basic properties of graphs used as dataset.

5 Experimental results

In this section, we present a number of experiments performed on web graphs and social graphs;

the experiments show the impact of ordering on the compression performance of BV, and pro-

vide a positive evidence that Gray code ordering and its variants yield good compression ratios

in all cases. As suggested in Section 2, we compare our results against the Apostolico–Drovandi

compression method [29].

5.1 Experiments on web graphs

We ran a number of experiments on web graphs of different sizes (ranging from 300K nodes up

to almost 120M nodes) and collected at different times, and on their transposed version. The

graphs used are described in Table 2, and they are all publicly available, as well as the code used

in the experiments.

We started with the standard URL ordering of nodes and permuted the nodes in different

ways, taking note of the number of bits/link occupied if the graph is compressed in WebGraph

format. Six node orderings were considered:

• URL: URL ordering (to avoid confusion, we use “URL ordering” instead of “URL lexi-

cographic ordering”);

• lex: lexicographic row ordering;

• Gray: Gray ordering;

• lhbhGray: loose host-by-host Gray ordering (i.e., keep URLs from the same host adjacent,

and order them using Gray ordering);

• shbhGray: strict host-by-host Gray ordering (like before, but Gray ordering is applied

considering only local links, i.e., links to URLs of the same host).

We remark that we devised the latter two orderings trying to combine external and internal

information.

Figure 1 shows how the adjacency matrix changes when re-ordering is applied. To obtain

this figure, we actually divided the matrix into smaller 100×100-square submatrices, computed

the fraction of 1’s found in each submatrix, and plotted a square using a grayscale that maps 0

to white and that becomes exponentially darker (1 is black).

13



Figure 1: The picture shows the adjacency matrix of the cnr graph (325 557 nodes), when

nodes are ordered as follows (left-to-right, top-to-bottom): lexicographically by URL, lexico-

graphically by row, Gray ordering, loose host-by-host Gray ordering, strict host-by-host Gray

ordering, randomly.
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WebGraph compression depends not only on the graph to be compressed and the ordering of

its nodes, but also on a number of other parameters that control its behaviour. Two parameters

that happen to be important for our experiments are:

• Window size: when compressing a certain matrix row, WebGraph compares it with a

number of previous rows, and tries to compress it differentially with respect to (i.e., as a

difference from) each such row, choosing at the end the row that gave the best compression

(or none, if representing the row non-differentially gives better compression); the number

of rows considered in this process is called the window size. Of course, larger window

sizes produce slower compression, but usually guarantee better compression.

• Maximum reference count: compressing a row x differentially with respect to some pre-

vious row y < x makes it necessary, at access time, to decompress row y before de-

compressing row x ; if also y is compressed differentially with respect to some other row

z < x , z must be decompressed first, and so on, producing what we call a reference chain.

This recursive process must be somehow limited, or access becomes extremely inefficient

(and may even overflow the recursion stack). The (maximum) reference count is the max-

imum length of a reference chain (we simply avoid to compress a row differentially with

respect to one that already has a maximum-length reference chain); the default reference

count is 3, but this value may be pushed up to∞ (meaning that we just don’t care of cre-

ating too long chains: this makes sense if we plan to access the graph only sequentially,

in which case we just need to keep the last w uncompressed rows, where w is the window

size used for compression).

The Apostolico–Drovandi compression scheme, instead, needs a single parameter, the level,

which determines the number of nodes stored in a compression block. Larger blocks imply

better compression, but slower access (see [29] for details).

Tables 3 and 4 show the number of bits/link occupied by the various graphs using ∞ and

3, respectively, as reference count (the window size was fixed at 8), and level 10000 and 8,

respectively. Not surprisingly, the number of bits/link for the random permutation, that we

present here only for comparison, is very large.

5.2 Experiments on social graphs

To see whether the results obtained on web graphs hold on when non-web social networks are

used, we took into consideration three datasets:

• DBLP15 is a bibliography service from which a scientific collaboration network can be ex-

tracted: in this network each node represents a scientist and we interpret the co-authorship

relation as a social tie, indicating that two scientists are connected if they have worked to-

gether on an article. We refer to this symmetric graph as the DBLP social network: as of

now, it contains 326 186 scientists and 1 615 400 co-authorship relations. This particular

social network has been studied in the past (e.g., see [31]), and it has been shown that it

shares many properties of a typical social network, including the small-world property.

15http://www.informatik.uni-_trier.de/~ley/db/
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Graph URL lex Gray shbhGray lhbhGray Random [29]

cnr
2.823 2.981 2.983 2.845 2.843 17.986 1.907

2.654 2.185 2.192 2.176 2.177 15.084 2.055

webbase
3.059 3.410 3.416 2.907 2.895 30.937 2.883

2.876 2.753 2.740 2.589 2.598 28.236 2.756

it
1.969 1.733 1.723 1.541 1.545 26.430 1.515

1.737 1.206 1.207 1.206 1.209 21.717 1.412

eu
4.331 3.944 3.938 3.600 3.715 19.859 2.850

3.903 2.832 2.833 2.761 2.795 16.445 2.543

uk
1.906 1.513 1.509 1.332 1.367 27.576 1.440

1.662 1.042 1.040 1.007 1.014 21.682 1.348

Table 3: Compression rate summary, window size set to 8, and (maximum) reference count set

to∞. The level for the Apostolico–Drovandi method is set to 10000. Every table cell contains

the data for the graph and its transpose.

Graph URL lex Gray shbhGray lhbhGray Random [29]

cnr
3.551 3.833 3.844 3.654 3.659 18.008 2.788

2.839 2.489 2.495 2.472 2.474 15.084 2.408

webbase
3.732 4.404 4.409 3.680 3.688 30.937 3.770

3.092 3.132 3.105 2.902 2.916 28.236 3.163

it
2.763 2.626 2.618 2.334 2.353 26.430 2.180

1.852 1.407 1.393 1.378 1.379 21.717 1.586

eu
5.130 4.935 4.927 4.438 4.599 19.872 3.543

4.002 3.063 3.072 2.993 3.019 16.445 2.902

uk
2.659 2.394 2.396 2.101 2.163 27.576 2.028

1.761 1.222 1.205 1.162 1.170 21.682 1.493

Table 4: Compression rate summary, window size set to 8, and (maximum) reference count set

to 3. The level for the Apostolico–Drovandi method is set to 8. Every table cell contains the

data for the graph and its transpose.
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• One of the most popular social graphs is the graph of movie actors, also known as the

Hollywood graph, where two actors are joined by an edge whenever they appeared in a

movie together. We used the Internet Movie Database16 to build a symmetric graph with

1 139 905 nodes (actors and actresses) and 113 891 327 arcs.

• LiveJournal17 is a virtual community social site started in 1999; in this social network

friendship is nonsymmetric—a user x can register y among his friends without asking y

permission. We considered the same 2008 snapshot of LiveJournal used in [4] for their

experiments18, consisting of 5 363 260 nodes and 100 060 170 directed friendship arcs.

It is easy to reproduce on these graphs the intrinsic orderings used for web graphs presented

in the previous section (lex, Random, Gray), but it is more difficult to provide the mixed or-

derings (lhbhGray and shbhGray) because there is no notion of “host” to refer to. Of course,

one may use some external information (like in [4], where the authors used for LiveJournal the

geographic information deduced from zip codes). Here we prefer to stick to intrinsic informa-

tion only, and use a clustering algorithm to simulate the notion of host: more precisely, we fix a

parameter k (the number of clusters) and use the graph clustering tool METIS [32] to partition

the graphs into k clusters, interpreting each cluster as a “host”.

This approach introduces yet another parameter, and finding the optimal number of clusters

becomes an issue that can be solved either a priori by finding the value k∗ of k optimising the

structure of clusters themselves, or a posteriori by looking at the compression ratio produced

at the end. Note that, in principle, k∗ may depend not only on the graph, but also on other

compression parameters (e.g., the window size or the maximum reference count), and it may be

different depending on whether we are considering lhbh or shbh. In our experiments, though,

there is no apparent dependence on other data, and k∗ seems to depend only on the graph:

Figure 2 shows the compression ratio (bits/link) for the social graphs as a function of k, both

for the case of lhbh and shbh, and with window size set to 8 and reference count set to 3 or∞.

We considered various values of k ranging from k = 8 to k = 16384. As the reader can see,

independently of all other parameters, the optimal k among those that we tested is k∗ = 4 096

for DBLP, k∗ = 32 for the Hollywood graph and k∗ = 16384 or even larger for LiveJournal and

its transpose.

Tables 5 and 6 present the compression ratio for the three datasets according to the different

intrinsic ordering considered, using the optimal values k∗ described above for lhbh and shbh.

5.3 Discussion

Our experiments highlight a number of very interesting points.

• The effectiveness of intrinsic methods depends on the graph. As we discussed, the fact

that lex or Gray ordering should improve compression is intuitive, but has little formal

justification. Indeed, on some graphs we have a visible decrease in compression.

16http://www.imdb.com/
17http://www.livejournal.com/
18The dataset was kindly provided by the authors of [4].
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Figure 2: For each of the social graphs under consideration (left-to-right, top-to-bottom: DBLP,

Hollywood, LiveJournal and transposed LiveJournal), we show the number of bits/link as a

function of k (the number of clusters), for loose/strict host-by-host Gray ordering and with

reference count set to 3/∞ (window size was set to 8).

Graphs lex Gray shbhGray lhbhGray Random [29]

dblp 8.480 8.536 6.779 6.890 22.256 7.393

hollywood 6.293 6.291 5.505 5.685 16.247 7.644

livejournal 14.414 14.333 11.206 11.319 23.568 15.036

livejournal (tr.) 14.055 13.976 11.040 11.176 23.402 14.717

Table 5: Compression rate summary, window size set to 8, and (maximum) reference count set

to 3. The level for the Apostolico–Drovandi method is set to 8.
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Graphs lex Gray shbhGray lhbhGray Random [29]

dblp 8.097 8.131 6.660 6.762 22.256 6.723

hollywood 6.045 6.062 5.333 5.518 16.247 7.478

livejournal 14.143 14.055 11.072 11.195 23.568 14.843

livejournal (tr.) 13.836 13.749 10.924 11.069 23.402 14.672

Table 6: Compression rate summary, window size set to 8, and (maximum) reference count set

to∞. The level for the Apostolico–Drovandi method is set to 10000.

• Intrinsic methods are extremely effective on transposed graphs. Our data for standard

web graphs confirm what has been previously reported [2], but our new data for trans-

posed graphs show that here the situation is reversed: intrinsic methods improve very

significantly the compression of transposed web graphs. With infinite reference chains,

the transpose of uk requires just one bit per link. This is a phenomenon that clearly needs

a combinatorial explanation.

We modified WebGraph so that we could get access to detailed statistics about which

compression technique is responsible for the increase in compression. Moving from URL

to Gray ordering, the number of copied arcs of the uk graph (arcs that are not recorded

explicitly, but rather represented differentially) jumps from ≈ 2 G to ≈ 3 G. Thus, more

than 80 % of the arcs of the graph is not represented explicitly. Another visible effect is

that of shifting the distribution of gaps—very small values (say, below 10) are much more

frequent, which also increases compression.

We believe that such a major improvement in the transpose depends on the repetition in

patterns of predecessors being much more frequent than in patterns of successors. For

instance, all pages of level k are often pointed to by pages of level k + 1 (e.g., general

topics of a site). This makes the predecessor list of level-k pages large and very similar.

The same phenomenon does not happen for successors because usually at level k the

pointers at level k+ 1 are distinct. Moreover, URL ordering does not gather level k pages

nearby—rather, it sorts URLs so that a level k page is followed by all its subpages. On the

contrary, manual inspection of the URL permutation induced by strict host-by-host Gray

ordering shows that pages on the same level of the hierarchy are grouped together.

• Mixed methods work better. Essentially in all cases, our new orderings outperform old

methods.

• The Apostolico–Drovandi method [29] is extremely effective, but not on transposed

graphs and social networks. The compression rates on large graphs are slightly bet-

ter than those obtained using our best permutation (except for uk at high compression),

but significantly worse on most transposed graphs. In particular, on the transpose of uk

(our largest dataset) we reach 1 bit/link, whereas the Apostolico–Drovandi method gives

1.348 bits/link. The results on social networks are always much worse than our best per-

mutation, a phenomenon suggesting that their method is oriented towards networks with

tight, almost disconnected clusters (i.e., web sites).
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• Social graphs exhibit different compression but similar behaviour. Our experiments

on social graphs show that they react to node ordering much in the same way as web

graphs, although the resulting compression ratio is worse and anyway extremely depen-

dent on the graph considered, as already noted in [4]. It is interesting to note that our

best result on LiveJournal is 11.072 bit/link, that is only 16% more than the 9.559 bit/link

obtained in [4] for the same graph using the more sophisticated compression scheme BL,

which however is just a compression scheme, and not a data structure.

6 Conclusions

We have presented some experiments about the effect of permutations on the compression of

web graphs and social networks. Albeit our results are clearly preliminary, they highlight a

number of issues that have not been tackled in the literature. First of all, we have provided

two new permutations that significantly and uniformly increase WebGraph’s compression rates.

Second, we have shown that transposed graphs behave in a radically different manner when

permuted with our techniques, giving rise to extreme compression rates. Third, we have shown

that our methods are also effective for compressing social networks, although the outcome is

less dramatic, which hints at significant structural differences.
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