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Abstract

Background: The role that environmental factors, such as neighborhood socioeconomics, food, and physical

environment, play in the risk of obesity and chronic diseases is not well quantified. Understanding how spatial

distribution of disease risk factors overlap with that of environmental (contextual) characteristics may inform health

interventions and policies aimed at reducing the environment risk factors. We evaluated the extent to which spatial

clustering of extreme body mass index (BMI) values among a large sample of adults with diabetes was explained

by individual characteristics and contextual factors.

Methods: We quantified spatial clustering of BMI among 15,854 adults with diabetes from the Diabetes Study of

Northern California (DISTANCE) cohort using the Global and Local Moran’s I spatial statistic. As a null model, we

assessed the amount of clustering when BMI values were randomly assigned. To evaluate predictors of spatial

clustering, we estimated two linear models to estimate BMI residuals. First we included individual factors

(demographic and socioeconomic characteristics). Then we added contextual factors (neighborhood deprivation, food

environment) that may be associated with BMI. We assessed the amount of clustering that remained using BMI residuals.

Results: Global Moran’s I indicated significant clustering of extreme BMI values; however, after accounting for individual

socioeconomic and demographic characteristics, there was no longer significant clustering. Twelve percent of the

sample clustered in extreme high or low BMI clusters, whereas, only 2.67% of the sample was clustered when BMI values

were randomly assigned. After accounting for individual characteristics, we found clustering of 3.8% while accounting for

neighborhood characteristics resulted in 6.0% clustering of BMI. After additional adjustment of neighborhood

characteristics, clustering was reduced to 3.4%, effectively accounting for spatial clustering of BMI.

Conclusions: We found substantial clustering of extreme high and low BMI values in Northern California among adults

with diabetes. Individual characteristics explained somewhat more of clustering of the BMI values than did

neighborhood characteristics. These findings, although cross-sectional, may suggest that selection into neighborhoods as

the primary explanation of why individuals with extreme BMI values live close to one another. Further studies are needed

to assess causes of extreme BMI clustering, and to identify any community level role to influence behavior change.
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Introduction
Area level socioeconomic and food environment factors

have been associated in cross-sectional analysis with

body mass index (BMI) [1-3], insulin resistance [4],

and diabetes incidence [5] independent of individual

characteristics. The consistency of cross-sectional associa-

tions of neighborhood factors with diet sensitive disease

risk factors and chronic disease has led to further investiga-

tion of potential causal links that may inform policies

and programs to improve neighborhood access to

health-promoting resources such as healthful food, e.g.

supermarkets, produce vendors, and farmer’s markets.

Although demonstrating a causal link between area-level

socioeconomic deprivation and diabetes incidence is

challenging, a growing body of literature strongly suggests

that living in a relatively less deprived area is associated

with lower diabetes incidence [5-7]. Cox found a greater

incidence of diabetes in deprived neighborhoods sur-

rounded by relatively more deprived neighborhoods

[5]. Furthermore, the strength of the relationship

between deprivation and diabetes incidence was found

to increase over time due to selective immobility [7].

In the US, the Moving to Opportunity for Fair Housing

was a demonstration study that randomly assigned

families housing vouchers to move from high poverty

areas to less deprived neighborhoods [8]. The ten-year

follow up found that living in a less deprived neighbor-

hood was associated with a lower percentage of adults

with severe obesity and high glycosylated hemoglobin

values, even though participants lived in similarly deprived

neighborhoods at the ten year mark [6]. These findings

provide evidence of a socio-spatial association with dia-

betes risk factors and prevalence, suggesting residential

neighborhood context may indeed have a direct influence

on risk factors and incident chronic disease.

Among patients diagnosed with diabetes, weight is

viewed as a modifiable risk factor, and patients who are

obese are encouraged to decrease weight to better

manage and limit disease progression [9]. Weight loss

among adults with diabetes is associated with better

control of blood sugar levels measured by glycosylated

hemoglobin, lower levels of blood pressure, cholesterol,

and triglycerides, and slower progression of other

co-morbidities (such as loss of eyesight, amputation,

and loss of kidney function) [10]. The Look AHEAD

(Action for Health in Diabetes) Trial, an intensive

lifestyle intervention including diet and physical activity,

found significant reductions in weight, systolic and dia-

stolic blood pressure, high-density lipoprotein cholesterol

and triglycerides, and improvement in treadmill fitness

after four years [11]. These improvements persisted after

ten years, however, no difference was seen in the rates of

cardiovascular events, the ultimate outcome of the trial

[12]. Although weight loss or even weight maintenance is

important, several studies have found that once diagnosed

with diabetes, lower weight status (BMI < 25) is associated

with mortality [13].

Identifying and assessing spatial clustering of extreme

health values has been considered a hallmark indication

that contextual (area level) exposures have an impact on

health outcomes. Alternatively, spatial clustering of

health outcomes may be the result of personal choices,

conditions and preferences which result in residential

selection with those with a given health condition living

in the same area. For example, poverty may relegate

some people to one neighborhood while preference for

parks or schools might influence others to live near

these resources. Poverty and personal preference may

therefore be causally linked with an outcome and not

neighborhood attributes. Spatial analysis of health has

increased over the past decade, but most public health

and epidemiology research is still “aspatial” despite

having a focus on place-based influences on health

determinants and outcomes [14]. In this study, we

sought to understand the extent of spatial clustering

of extreme high and low BMI values among a cohort

of adults with diabetes and to identify individual- and

environmental-level indicators that explain spatial

clustering.

Spatial hot spots of adults with diabetes in clusters of

high or low BMI values might be interpreted as sentinel

communities. Such communities could help us understand

what environmental cues promote high and low BMI

clusters—either by drawing individuals into the community

or by assisting individuals to maintain extreme high or low

BMI status. Identifying neighborhoods with high BMI

clusters could help direct the distribution of resources

for obesity prevention and treatment programs among

adults with diabetes, and may “shape an appropriate

intervention program tailored for the residents in a

particular geographic region” [15].

We hypothesized that high or low BMI values in a

cohort of adults with diabetes would cluster geographically.

More specifically, individuals with high (or low) BMI

values would live close to others with a high (or low) BMI,

respectively. We conducted a study among adults with

diabetes from the Diabetes Study of Northern California

(DISTANCE) to evaluate these hypotheses. Our aims were

to: (1) examine the extent to which extreme BMI values

were spatially clustered, and (2) identify significant associ-

ations between area level factors and spatial clustering in a

large cohort of adults with diabetes.

Methods
Study population

The Kaiser Permanente Northern California Diabetes

Registry was established in 1993 within Kaiser Permanente

Northern California, a large, integrated health care delivery
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system serving more than 3 million members. Kaiser

Permanente of Northern California (KPNC) members are

30% of the population of Northern California [16] and have

similar demographic and socioeconomic distributions to

the population from the surrounding geographical region

except for the very extremes of the income distribution;

fewer very rich and fewer very poor [16,17]. The Diabetes

Study of Northern California (DISTANCE) was a survey

follow-up cohort study. The study subjects were an ethnic-

ally stratified, random sample of 40,735 Diabetes Registry

members. 20,188 persons completed the survey from May

2005 through December 2006. Moffet et al. [18] provided

detailed information on the DISTANCE cohort profile. The

analysis sample included respondents who had accurate

address information geocoded to street address and

matched to the census block (n = 18,962) and who had

complete data on BMI and individual variables (n = 15,887).

We removed outliers (BMI <18 & >70) which resulted in

the final sample of 15,854. Participant’s home addresses

were geocoded by Kaiser Permanente at the 2000 census

block (street) level using MapInfo’s MapMarker (Pitney

Bowes, Stamford, CT), and the latitude and longitude of

the census block centroid was used as the participant’s

residential point location. The finest geocode level

made available to the authors was at the census

block. Coincident points (19% of the total sample)

were offset from one another using a random offset

distance that was constricted to a participant’s census

block. The offset is intended to represent a more

realistic dispersion of residential addresses within census

blocks with multiple participants. The majority (96%) of

participant census blocks have an area less than 1 km2

(0.38 mi2) where 78% of those participant census blocks

are under 0.1 km2 (0.038 mi2). The study area covers all

19 counties in the Northern California Kaiser Permanente

service area totaling 70,585 km2 (27,253 mi2).

Geospatial approach

Our initial goal was to examine the extent to which

extreme BMI values displayed positive spatial autocorrel-

ation. There are a variety of methods to measure spatial

autocorrelation which are generally grouped into two

categories: (1) global indicators which measure the over-

all global or population level spatial autocorrelation in a

dataset, and (2) local indicators, also known as Local

Indicators of Spatial Association (LISA), which measure

the spatial autocorrelation of each feature in relation to

each neighboring feature in a dataset. Global Moran’s I

was selected for this study because it measures overall

spatial autocorrelation based on feature attribute values

and is intended for datasets where both high and low

value clusters are assumed to exist. Additionally, Global

Moran’s I is more sensitive to extreme values than simi-

lar indicators such as Geary’s C, while Kulldorff spatial

scan, Ripley’s K, and Cuzick-Edwards k-Nearest Neighbor

indicators do not consider the attribute values of the fea-

tures under analysis, only their spatial location. Global

Moran’s I calculates each feature’s measured index,

expected index, variance, z-score, and p-value and indicates

if the outcome is overall clustered (positive), dispersed or

regular pattern (negative), or randomly distributed over

space (zero) [19]. For a description of the use of spatial

autocorrelation methods and a detailed table summarizing

a selection of spatial clustering methods reported in the

public health literature see Additional file 1 and Additional

file 2 that accompanies this article.

Local Moran’s I was also selected for this study because

it allows for the identification of spatial hotspots of local

areas that represent clusters of unexpectedly high or low

values compared to the global mean [20,21] This

eliminates any potential bias an extremely high or

low value target feature would have in the calculation

of its neighborhood mean and is why Local Moran’s I

was chosen over other local indicators such as Getis-Ord

Gi*. The key difference between Global and Local Moran’s

I is that the global index assesses the general tendency for

high values to be located adjacent to high values and vice

versa across the entire spatial domain to generate one

summarized measure. Clusters of extreme BMIs reflect

outliers in the population that are greater than two

standard deviations from the mean and that are also

spatially autocorrelated. Features are then assigned as

belonging to either a low/low or high/high cluster of

similar feature values based on their value and statistical

significance at a 95% confidence level [22]. In our

case, cohort patients that were identified as a high/

high BMI cluster will themselves have a high BMI, in

comparison to the population average, and will be

surrounded by other cohort patients that have a similarly

high BMI.

Outcomes

We assessed body mass index (BMI = kilograms/meters

squared) and BMI residuals as continuous measures.

BMI was calculated from electronic records using the

first clinical measurement of height and weight recorded

in an outpatient visit within one year before or after the

survey date. For individuals with no measured weight and

height within two years after the survey, self- reported

weight and height from the survey was used (n = 1,226).

To produce BMI residuals, multivariate linear regression

(ordinary least squares) was performed and BMI was

regressed on a set of hypothesized confounders of the

relation between BMI and place of residence. Model 1

included individual demographic and socioeconomic

factors and Model 2 included neighborhood level factors.

BMI residuals represent the portion of BMI not explained

by covariates in a model, and the spatial analysis of
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the BMI residuals can be interpreted as clustering of

unexplained low/low or high/high BMI variation [19].

Model 1 regressed BMI on individual level characteristics

that included race/ethnicity (White non-Latino, African

American, Latino, Asian, or other), marital status (married/

living together, divorced/separated, widowed, never

married, or refused/don’t know/missing), sex, age (30-51,

52-64, ≥65 years), education (no high school degree, high

school/GED/technical school, associate degree, college

graduate, or post graduate education), nativity (number of

years in the US and US born), and income to poverty

ratio, defined as self-reported family income for a given

age and household size divided by the 2005 poverty level

income for the same age and household size; this variable

was categorized as >600% , 301-600%, 101-300%, 0-100%

of poverty level, and “don’t know/refused/missing” [23].

Additionally, we tested if the income to poverty ratio

relationship with BMI varied by race and retained the

interaction term in the model if it was significant at

the α ≤ 0.05 level.

Model 2 regressed BMI on a set of neighborhood level

characteristics that included neighborhood deprivation

index (NDI) as a continuous and categorical quartile

variable, healthful and unhealthful food environment

retail density measures, 2000 census tract population

density per square mile and percent of population white,

distance to nearest Kaiser Permanente healthcare facility,

and 2006 municipal level property and violent crime per

100,000 population rate from the US Federal Bureau of

Investigation Uniform Crime Reports. The neighbor-

hood deprivation index (NDI) [24] was created based on

2000 US Housing and Population Census data for the 19

counties in our study area using principal components

analysis. We used 2006 food retail data from Dun and

Bradstreet’s National Establishment Time-Series (NETS)

database [25] to create measures of healthful and

unhealthful food retail environments. Food retail data

representing the following four categories: supermarkets,

produce vendors, convenience stores, and fast food

restaurants, were extracted from the database based on

Standardized Industrial Codes (SIC). Addresses were

geocoded using ArcGIS (ESRI Inc., Redlands, CA). The

geocoded point data from each of the four food retail

categories were transformed into four distinct continu-

ous raster surfaces representing their respective food

retail densities using a kernel density method based on

Silverman [26] as implemented in ArcGIS v.10.1 (ESRI

Inc., Redlands, CA). Kernel densities of food retail data

have been used in neighborhood-health literature to

characterize the food environment and provide an esti-

mate of the accessibility or exposure of a population to

healthful and unhealthful food outlets [3,27,28].

Model 3 regressed BMI on the above set of individual

and neighborhood level characteristics. Additional models

were tested that included health indicators of Charlson-

Deyo comorbidity score [29], smoking status, and insurance

coverage group (MediCal, Kaiser group or Kaiser individ-

ual), and a final model added spatial location characteristics

including latitude and longitude and latitude and longitude

squared and cubed. Spatial location characteristics

were used in the model in order to control for spatial

autocorrelation. A robust variance estimator was used

to account for correlation at the census block level

[30,31]. The analysis was conducted with Stata 12.0

(StataCorp LP, College Station, TX).

Statistical analysis

Spatial autocorrelation analysis

The degree of clustering of BMI and BMI residual values

from each regression model for the population (n = 15,854)

was conducted using Global and local Moran’s I. Global

Moran’s I was calculated using a Euclidian neighborhood

search radius of 1.6 km (1 mi) where the target feature (e.g.

geocoded address) was weighted at one and the weight of

all neighboring features (e.g. neighboring geocoded

addresses) within this radius decreased by distance

until the 1.6 km threshold was reached. Neighboring

features outside the radius are weighted at 0. The 1.6

km radius approximates a typical neighborhood size

in our study area and has been found to be associated with

health outcomes [32]. See ESRI [22] for a description of

the equation for the Global Moran’s I statistic. Similar to

Global Moran’s I, Local Moran’s I was calculated using a

Euclidian neighborhood search radius of 1.6 km.

We conducted two sensitivity analyses. First, we repeated

the calculation of Local Moran’s I using a 1.6 km radius on

100 sets of randomly assigned cohort BMI values. The

results were summarized to establish the magnitude and

locations of clustering that could exist at random within

our study area and to generate bootstrap confidence

intervals to aid in interpreting the robustness of the

non-randomized Local Moran’s I results. Second, we

conducted a sensitivity analysis using a 3.2 km (2 mi)

radius to test the sensitivity of clustering to our selected

neighborhood radius. Spatial clustering analyses were

conducted with ArcGIS v.10.1 (ESRI, Inc., Redlands, CA).

The point feature low/low and high/high cluster spatial

results of the BMI, BMI residuals, and one randomly

distributed BMI run example were transformed into raster

density surfaces for display. The density surfaces perform

two functions: first to mask individual locations by

smoothing distinct point locations over a larger area and

second, to facilitate the identification of spatial patterns

within the study area with large concentrations of low/low

and high/high clusters. The outcome density surfaces were

created using a neighborhood radius of 3.2 km and a cell

size of 500 m in units of square kilometers. The resulting

density surface depicts a magnitude of the number of
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points (e.g. geocoded addresses) per unit area that are

within the neighborhood radius.

The spatial point results of the cluster analysis for

BMI and BMI residuals were examined for patterns in

the geographic distribution of any remaining clusters. A

visual inspection for geographic locations that had large

numbers of BMI residual clusters (≥50) within a munici-

pality and whose location and cluster type persisted

throughout each Local Moran’s I BMI and BMI residual

model spatial result were noted.

Results
The race-stratified sample was comprised of 27.1% Asians,

23.4% white, 19.1% Hispanics, 17.8% African-Americans,

and 12.7% of other or mixed race. BMI for our sample

population ranged from 18.0 to 68.7 with a mean of 31.1

(SD 6.5) (Table 1).

The Global Moran’s I statistic of 0.05 and a z-score of

7.72 indicated that BMI had a low to moderate level of

global autocorrelation (Table 2). After controlling for

individual level factors, the Global Moran’s I statistic for

BMI residuals decreased to -0.01, indicating a general

random global spatial distribution and suggesting that

individual characteristics (Model 1) accounted for spatial

autocorrelation of observations. Controlling for only

environmental characteristics (Model 2) decreased the

Global Moran’s I statistic to 0.02, and it remained

significant.

The Local Moran’s I statistic, using a 1.6 km (1 mi) radius,

indicated 11.9% of cohort patients are significantly clustered

in either a low/low (6.7%) or a high/high (5.2%) BMI cluster

(Table 3). Patients in a low/low cluster (n = 1,066) had a

mean BMI of 24.2 (range: 18.0 - 29.0, SD: 2.2) and are

represented as rasterized circles in blue, while those in a

high/high cluster (n = 821) had a mean BMI of 43.8 (range:

33.0 - 68.6, SD: 6.6) and are represented in red in Figure 1

(a). The color gradient (light to dark) indicates the relative

density or magnitude (one-to-many) of similar value clus-

ters within a 3.2 km (2 mi) radius. A BMI of 43.8 is class III

obesity and considered severely obese (e.g. >35 BMI) [33],

indicating the cluster analysis is identifying individuals with

clinically meaningful high BMIs. Generally, the western San

Francisco Bay Area has more low/low BMI clusters, while

higher concentrations of high/high BMI clusters are east of

the bay or outside the Bay Area.

After controlling for possible confounders using regres-

sion Models 1, 2, and 3, the BMI residuals were predicted

and again subjected to the Local Moran’s I analysis. The re-

sults of Model 1, controlling for individual characteristics,

reduced the percentage of the sample population that was

spatially clustered by 68%; from 11.9% to 3.8% (Table 3).

Among those clustered, 1.3% were in a low/low and 2.5%

in a high/high BMI residual cluster. Model 2 controlled for

only neighborhood attributes and reduced the percentage

of clustering by roughly half (6.0%). Model 3 controlled for

both individual and neighborhood characteristics, and the

results were similar to that of Model 1. We adjusted for

Table 1 Baseline socio-demographic characteristics of

study population (n = 15,854)

Variable Number Percent

Age (years)

30-51 3,794 23.93

52-64 6,941 43.78

≥ 65 5,119 32.29

Sex

Female 7,799 49.19

Male 8,055 50.81

Race/ethnicity

White non-Latino 3,708 23.39

African American 2,818 17.77

Latino 3,023 19.07

Asian 4,298 27.11

Other* 2,007 12.66

Income to poverty ratio**

> 600% poverty level 2,691 16.97

301-600% 4,526 28.55

101-300% 4,074 25.7

0-100% 1,391 8.77

Missing 3,172 20.01

Marital status

Married 10,941 69.01

Living Together 370 2.33

Divorced/Separated 1,900 11.98

Widowed 1,265 7.98

Never married 1,338 8.44

Missing 40 0.25

Education

No high school degree 2,437 15.37

High school/GED/technical school diploma 6,620 41.76

Associate degree 1,800 11.35

College graduate 3,185 20.09

Post graduate 1,537 9.69

Missing education 275 1.73

Nativity

Born in USA 9,901 62.45

Born outside USA 5,930 37.4

Missing nativity 23 0.14

*Other race/ethnicity category includes Pacific Islander, American

Indian/Native American, and Alaskan Native.

**Poverty level defined as self-reported family income for a given age and

household size divided by the 2005 poverty level income for the same age

and household size.
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additional individual health status indicators (comorbidity,

smoking, insurance type) and spatial location variables

(latitude, longitude, and latitude and longitude squared and

cubed), but the results did not further reduce the amount

of clustering (data not shown).

Figure 2 (a), (b) and (c) shows the spatial distribution

and density of individuals assigned to low/low and

high/high BMI residual clusters from adjusted Models

1, 2, and 3, respectively. Distributions were similar to

the concentrations and locations of BMI clusters in

Figure 1 (a). While the amount of spatial clustering

decreased and some clusters disappeared in the spatial

results of BMI clustering after adjusting, adjusting for

potential confounders generated no new concentrations of

spatial clusters, and the patterns of both low/low and

high/high BMI clusters were similar over space.

The sensitivity analysis drawing 100 runs of randomly

distributed BMI values resulted in 2.67% (95% confidence

intervals: 2.61, 2.72) of patients clustered in either in a

low/low (mean of 0.8%) or high/high (mean of 1.9%) BMI

cluster. Figure 1(b) depicts the density of low/low and

high/high clusters from one randomized BMI cluster

spatial analysis. The second sensitivity analysis that exam-

ined the effect of using a larger distance radius of 3.2 km

(2 mi) for Local Moran’s I resulted in an increase in the

number of cohort members that were found to be clus-

tered; 16.0% of cohort patients were retained in either a

low/low (9.1%) or a high/high (6.9%) BMI cluster (data not

shown). The 3.2 km (2 mi) radius cluster analysis of BMI

residuals resulted in a similar magnitude reduction of the

amount clustered as the 1.6 km (1 mi) radius analysis with

a reduction of 72% to 4.5%, with 2.1% in a low/low BMI

cluster and 2.4% in a high/high BMI cluster.

Upon visual inspection, three areas with concentrations

of ≥50 people persisted. All three areas represented high/

high BMI residual clusters (no area had ≥50 of individuals

in low/low BMI clusters) and clusters were concentrated

within 4.8 km (3 mi) of each other. The number of high/

high clusters from Model 3 in the three highlighted areas

numbered 76 in area 1, 57 in area 2 and 51 in area 3. These

three areas represented roughly 34% (184/547) of the re-

sidual group and indicated that high/high BMI residuals

among clustered cohort members in these locations were

not explained well by our model. The residual clustering

may be due to some factor not captured in our models.

Discussion
This study assessed the presence and extent of clustered

low and high BMI values among adult Kaiser Permanente

members with diabetes in Northern California. Our findings

show a moderately low level of global autocorrelation, but a

substantial percent of local clustering of low/low and high/

high BMI values. In our case, we applied a 1.6 km (1 mi)

radius to determine if local areas have BMI values that are

higher or lower than would be expected based on the global

average or a random expectation for the entire study area

[19]. To directly illustrate this point, we compared

the findings to the amount of clustering that would be ex-

pected if we randomly assigned BMI values to the sample

population 100 times. Comparison of the maps in Figure 1

(observed vs. randomly assigned BMI values) indicates

that low and high BMI clusters had different spatial

patterns for the majority of the study area. For example, a

large number of clusters in the non-randomized BMI

results were not found in the randomized BMI results,

low BMI clusters in the non-randomized BMI results

were reversed and became high BMI clusters in the

randomized BMI results, and the magnitude of BMI

clustering for both low and high BMI clusters chan-

ged between the non-random and random BMI re-

sults. This suggests that neither the underlying population

distribution of the cohort members nor population density

were major factors driving the cluster analysis results.

Table 2 Summary of Global Moran’s I cluster analysis

results (n = 15,854)

Analysis Input Value Moran’s Index z-score p-value

BMI 0.05 7.72 0.00

Confounder Regression Model BMI Residuals

Model 1a −0.01 −0.76 0.45

Model 2b 0.02 2.63 0.01

Model 3a,b −0.01 −1.11 0.27

acontrolled for age, education, race/ethnicity, marital status, sex, nativity,

income to poverty ratio, and an interaction term for income to poverty

ratio*BMI and income to poverty ratio*race/ethnicity.
bcontrolled for food environment, neighborhood deprivation index, percent of

population who were white, population density, distance to Kaiser

Permanente healthcare facility, and property and violent crime rate.

Table 3 Summary of Local Moran’s I cluster analysis

results (n = 15,854)*

Cluster Types

Analysis Input
Value

Low/Low High/High Non-Clustered % Total
Clustering

n (%) n (%) n (%)

BMI 1066 (6.72) 821 (5.18) 13152 (82.96) 11.90

BMI Residuals

Model 1a 201 (1.27) 403 (2.54) 14723 (92.87) 3.81

Model 2b 365 (2.30) 582 (3.67) 14288 (90.12) 5.97

Model 3a,b 186 (1.17) 361 (2.28) 14765 (93.13) 3.45

*Only low/low and high/high clusters for the 1.6 km (1 mi) radius cluster

analysis results are depicted. Sum of low/low, high/high and non-clustered do

not sum to 15,854 or 100% because low/high and high/low clusters are

omitted from table.
acontrolled for age, education, race/ethnicity, marital status, sex, nativity,

income to poverty ratio, and an interaction term for income to poverty

ratio*BMI and income to poverty ratio*race/ethnicity.
bcontrolled for food environment, neighborhood deprivation index, percent of

population who were white, population density, distance to Kaiser

Permanente healthcare facility, and property and violent crime rate.
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We found that after adjusting for individual demographic

and socioeconomic characteristics the Global Moran’s I

was reduced to near zero, suggesting that individual factors

accounted for most of the spatial autocorrelation in the

BMI values and individual factors explained roughly 68% of

the local BMI clustering. Adjusting for only neighborhood

factors reduced the Global Moran’s I by half but it

remained significant. The pattern of spatial clustering was

similar between Models 1 and 2. Although the neighbor-

hood characteristics did not explain as much of the spatial

clustering as did the individual factors, 50% and 68% reduc-

tion might not represent a substantial difference in regards

to spatial clustering of extreme BMI values. Model 3, which

accounted for both individual and neighborhood character-

istics, reduced clustering the greatest amount, suggesting

that the individual and neighborhood factors address spatial

autocorrelation and explained almost all of the extreme

BMI clustering. The residual amount of spatial autocorrel-

ation is similar to what we found when randomizing the

BMI values or what we would expect by chance.

Although the regression models were able to account

for nearly all of the clustering of extreme BMI residual

values, we mapped the remaining observations (<3.45%)

that demonstrated persistent clustering. The remaining

observations with low/low and high/high BMI residual

values had a similar geographic pattern compared to

the spatial pattern for the unadjusted BMI values.

Throughout all the models, three locations within a

4.8 km (3 mi) radius persisted with 50 or more individuals

who had very high BMI values and no locations had 50 or

more individuals with low BMI values.

Our analysis is cross-sectional and therefore cannot

infer causality. While most neighborhood studies employ

cross-sectional designs, longitudinal studies may better

capture the fluidity of the neighborhood environment

and how changes over time affect health outcomes.

Many neighborhoods are fairly stable within the time

frame of a few years, although changes in residence could

also influence neighborhood characteristics. Our findings

that individual characteristics explained much of the vari-

ation in BMI, rendered Global Moran’s I to be non-

significant and reduced the amount of clustering of the

BMI residuals, suggest that individual factors may be the

cause of the clustering. Neighborhood selection, whether

voluntary or involuntary, is believed to be driven by

individual choices, conditions, and preferences in

response to life events such as illness, change in job,

retirement, or other changes in family composition or

social status. These findings support the idea that

additional research may be needed to understand individ-

ual selection factors that may be correlated with health.

Compared with other studies, we had a very large sample

size; however, our cohort of adult Kaiser Permanente

Northern California (KPNC) patients with diabetes may

not be generalizable to the larger population of adults with

diabetes, although it may be generalizable to the larger

Kaiser population of adults with diabetes in Northern

California and also to adults with diabetes who have

health insurance. KPNC members make up 30% of the

population of Northern California and have similar demo-

graphic and socioeconomic distributions to the population

from the surrounding geographical region except for

the very extremes of the income distribution; fewer

very rich and fewer very poor [17]. We did control

for population density to reduce the risk that our

findings were an artifact of high population urban

Figure 1 Spatial clustering of BMI and randomly distributed BMI as a density surface: (a) Density of low/low and high/high clusters for

BMI with major population centers labeled; (b) Density of low/low and high/high clusters from one randomized BMI run.
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centers, street connectivity, and walkability [34,35].

Although we controlled for a number of additional

individual and neighborhood factors, we did not have

a direct measure of the physical activity environment.

A strength of this analysis is that it is a unique

population – adults with diabetes – a chronic condition

where diet and BMI play an important role in disease

management and progression. Our novel approach to

assessing a health outcome at the individual point

location may be beneficial in identifying areas of

greatest clinical and health intervention need. Point

level data helps identify locations within towns, ZIP

codes, or counties, and may help target the highest

risk areas for neighborhood-wide, educational outreach

(e.g., educational billboards).

Conclusions
Our findings indicate a significant level of clustering

of extreme high and low BMI values among adults

with diabetes across Northern California. Individual

demographic and socioeconomic factors accounted for

somewhat more (68% vs 50%) than neighborhood or

contextual factors, this finding suggests that individual

choices, conditions, and preferences may play a strong

role in how individuals select the neighborhoods in which

they live. Although individual demographic and socioeco-

nomic factors explain much of the BMI clustering, these

methods may help identify where people at greatest

risk live. While recent studies have found spatial clus-

tering of cardiometabolic risk factors [36-38], confirma-

tory evidence of the relationship between neighborhood

characteristics and spatial clustering of cardiometabolic

risk factors is still needed in order to identify the role

of community in promoting behavior change [36]. Given

the cross-sectional nature of the data, it is unknown

whether spatially targeting health educational resources or

other interventions to these areas of high clustering would

be a cost-effective public health strategy.

a
controlled for age, education, race/ethnicity, marital status, sex, nativity, income to poverty 

ratio, and an interaction term for income to poverty ratio*BMI and income to poverty 

ratio*race/ethnicity

b
controlled for food environment, neighborhood deprivation index, percent of population who 

were white, population density, distance to Kaiser Permanente healthcare facility, property and 

violent crime rate

a)

c)

b)

Figure 2 Spatial clustering BMI residuals as a density surface: (a) Density of low/low and high/high clusters for BMI residuals from Model 1a.

(b) Density of low/low and high/high clusters for BMI residuals from Model 2b. (c) Density of low/low and high/high clusters for BMI residuals

from Model 3a,b; Locations where ≥50 high/high clusters persist in all cluster analysis runs for BMI and both model residuals are highlighted

inside three dotted line boxes labeled 1 to 3.
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