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Chapter 1

Introduction

In this graduation project I have implemented an argument-based practical rea-
soning system. I will briefly introduce argument-based reasoning and practical
reasoning in Sections 1.1 and 1.2 respectively. The main research question is
stated in Section 1.3, along with the method that will be used to answer it.
Finally, Section 1.4 presents the outline of this thesis.

1.1 Argument-based reasoning

Defeasible reasoning is a way to reason with inconsistent or incomplete belief
bases. Its inferences are not absolutely certain, but can still be made, provided
that there is no information to the contrary that defeats them. So it can happen
that a certain inference can be made from a set of beliefs, but cannot be made
anymore if more information becomes known. Hence defeasible reasoning is
nonmonotonic. Since this is also the way humans reason in their daily lives,
the term commonsense reasoning is often used too. Prakken and Vreeswijk [15]
present an extensive overview of defeasible reasoning systems.

Argument-based reasoning systems are useful formalisations of defeasible
reasoning. They are based on arguments which may contradict each other, for
example because they have conflicting conclusions (rebuttal), or one is an argu-
ment for the inapplicability of an inference step made in the other (undercut).

Arguments can be seen as the defeasible counterpart of proofs in classical
logic, but their status is quite different. Classical logic aims to determine the
truth value of a given proposition, and one proof is sufficient to do that. De-
feasible logic does not search for truth, but rather for having some justification
for a given proposition, or more exactly, having more justification for it than
against it. So whether a proposition is justified is not determined by a single
argument, but by the interaction between multiple arguments for and against
the proposition.

The basics of defeasible argumentation are well understood. Dung [6] has
defined an abstract framework with several semantics that define which argu-
ments are justified (see also Chapter 3, Section 3.2). Proof theories for these
semantics in the form of argument games have been developed by Prakken and
Sartor [14] and Vreeswijk and Prakken [20] (see also Chapter 3, Section 3.3).

Argument-based reasoning systems provide a middle way between classical



2 1. Introduction

(monotonic) reasoning systems and statistical methods such as Bayesian net-
works. Classical logic has the problem that all possible exceptions of a rule
have to be listed, and moreover that they must be known to be false before the
rule can be applied. The problem with Bayesian networks is that the prior and
conditional probabilities of all possible situations have to be estimated, which is
often impossible. Defeasible argumentation systems do not have these problems,
but of course they have their own (for example, because all relevant arguments
must be created and considered, they can become quite time-consuming com-
pared to classical logic, where one proof is sufficient). Which approach is most
appropriate depends on the context of the problem.

1.2 Practical reasoning

Argument-based reasoning is mostly used to reason about knowledge or be-
liefs (epistemic or theoretical reasoning). However, more and more attention is
payed to practical reasoning, that is, reasoning about goals, desires and actions.
Practical reasoning is essential for agents whose actions are not straightforward.
For example, when an agent has multiple options for achieving a goal, he must
choose one action, preferably one that also achieves some other goal or at least
does not prevent too many other goals from being achieved. Or maybe the
agent has multiple goals that it cannot achieve simultaneously. Then he must
determine which action to undertake to achieve the best set of goals.

Practical reasoning is highly dependent on epistemic reasoning, but it has to
deal with its own set of properties and problems, which will be discussed later
in this thesis.

Some existing argument-based practical reasoning systems focus on which
desires can be defeasibly inferred from a belief base, for example Prakken [13, 12]
and Bench-Capon and Prakken [4]. Others decide between actions in a separate
decision process, for example the ASPIC project [1]. Still others embed this
kind of reasoning in a planning system, which generates not only desires but
also plans, for example Pollock [10] and Rahwan and Amgoud [16]. The theories
of ASPIC and Pollock have both been implemented. This project focuses on
the first type of practical reasoning.

1.3 Research question and method

In this project I will implement an argument-based practical reasoning system,
which integrates some existing theories of argument-based practical reasoning.
Implementing a theory is relevant and interesting for two reasons. Firstly, it is
a good method to check whether a theory is correct and fully specified. In an
implementation no aspects can be left unspecified, even when they would seem
obvious to humans. This way it will become clear how complete the theories are,
and what is left to be specified further. If underspecified aspects are found, a
choice must be made how to fill the gap. When a theory has been implemented,
it can be tested against examples, which are often provided with the theory.
Secondly, an implementation can be used as a prototype for real applications,
such as an agent reasoning about his beliefs and desires. This project focuses
on the first goal.
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Three topics concerning argument-based practical reasoning have been cho-
sen to focus on: the combination of epistemic and practical reasoning, the prac-
tical syllogism and accrual of arguments. As a formalisation of these topics some
specific theories are chosen: Prakken’s [13] combination of epistemic and prac-
tical reasoning in the form of e-p-semantics, and Bench-Capon and Prakken’s
[4] formalisation of the practical syllogism and accrual, based on Prakken’s [12]
mechanism for accrual of arguments.

The research question can be stated as follows. Are the theories of e-p-
semantics, the practical syllogism and accrual of arguments, as presented in the
papers mentioned above, correct and completely specified? If not, what changes
and additions are needed to make them better or more complete?

First the relevant literature is studied. The theories will be integrated into
one formalism, based on Dung’s [6] abstract argumentation framework. Then a
phase of system analysis and design follows, resulting in a general layout of the
classes that model the formalism’s concepts and the flow of the program. The
formalism is then implemented in the Java language. If any difficulties arise,
the previous steps may have to be repeated. When the program is ready, it will
be clear which aspects had to be specified further, and which problems have
not been solved. Finally, the program will be used to test the theories against
examples which are mostly taken from the literature.

1.4 Outline of this thesis

The outline of this thesis is as follows. In Chapter 2 the theories of practical
reasoning that will be implemented are discussed. Then Chapter 3 presents the
exact formalism that will be used in the implementation, in which these theories
are combined. An overview of the program is given in Chapter 4. Chapter 5
discusses the most interesting algorithms of the program in detail. In Chapter 6
the behaviour of the program is illustrated using examples from the literature,
and compared to the original discussion of the same examples. Finally, Chapter
7 concludes this thesis with a discussion of related research, results and further
work.



Chapter 2

Theories of practical

reasoning

Many theories of practical reasoning using defeasible argumentation can be
found in the literature, covering a wide range of subjects. In this project the fo-
cus lies on three subjects. The first is the combination of epistemic and practical
reasoning, for which Prakken’s [13] e-p-semantics will be used. The second is
the practical syllogism, which will be based on the system presented by Bench-
Capon and Prakken [4]. The third subject is accrual of arguments, as formalised
by Prakken [12] and Bench-Capon and Prakken [4].

This chapter discusses the three subjects and the chosen theories. In Section
2.1 e-p-semantics is introduced, the practical syllogism is presented in Section
2.2, and Section 2.3 discusses accrual of arguments.

2.1 Combining epistemic and practical reason-

ing

Prakken [13] presents an argument-based semantics for combined epistemic and
practical reasoning, called e-p-semantics. He claims that in certain contexts,
reasoning about beliefs is sceptical while reasoning about action is credulous.
In the case of beliefs, choosing (randomly) between two propositions that one has
equal reason to believe but cannot believe simultaneously seems not rational. In
the case of actions, however, choosing between two alternatives that are equally
well argumented but exclude each other is perfectly rational.

Prakken illustrates this with an example about John, a university lecturer
who needs to finish a paper but also has to go to a remote town Faraway to
give a talk. He knows of two ways to get to Faraway, by car and by bus. But
because of his car sickness he will not be able to write his paper in either case.
Then he cannot fulfill both of his desires at the same time, so he must choose
one of them. This can be formalised as credulous reasoning. Then Bob tells
John that there is a railway connection to Faraway, enabling him to finish his
paper while travelling, so fulfilling both goals. But Mary says that there will
be a railway strike, which Bob does not believe. John trusts Bob and Mary
equally, so he can only credulously, not sceptically, believe that there will be a
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train to Faraway. Then it will be rational for him not to act on this belief.
So it is assumed that a rational agent only considers action alternatives that

are based on sceptical beliefs, and makes a credulous choice between them. The
formalisation of this idea uses Dung’s [6] abstract approach to defeasible argu-
mentation. It is based on grounded semantics for sceptical epistemic reasoning
and preferred semantics for credulous practical reasoning. One reason for this
is that sceptical grounded and credulous preferred semantics have elegant proof
theories in the form of argument games; the G-game for grounded sceptical
semantics [14] and the P-game for preferred credulous semantics [20].

It is assumed that the logical language that is used can be divided into two
disjoint sublanguages, one of epistemic formulas and one of practical formulas.
Furthermore, an inference is called epistemic if all its premises and its conclusion
are epistemic formulas, and it is called practical if its conclusion is a practical
formula. All inferences in an argument must either be epistemic or practical
(so no inference with an epistemic conclusion can have a practical formula as
a premise). An argument is called epistemic if all its inferences are epistemic,
otherwise it is called practical. An argumentation system is said to be an e-
p-argumentation system if its set of arguments consists of two disjoint sets of
epistemic and practical arguments.

Now the semantics of combined sceptical epistemic and credulous practical
reasoning is defined as follows. Let H = (A,D) be an e-p-argumentation system
with grounded extension GH. Let Hg = (Ag,Dg) be obtained from H by re-
moving from A all arguments that are defeated by an epistemic argument that
is not defeated by an argument in GH, and restricting D to Ag. Then S is an
e-p-extension of H if S is a preferred extension of Hg.

However, first determining the grounded extension of all belief arguments,
adding all justified beliefs to the belief base and then constructing the preferred
extensions of the new theory is not the right approach. Reasoning about beliefs
and planning is interleaved; practical reasoning determines which beliefs are
relevant, as is stated by Pollock [11] as follows:

‘...interleaving planning and epistemic reasoning, and performing the
epistemic reasoning in a way that is directed by or focused by the
practical considerations involved in the planning [is important]. The
epistemic reasoner must be interest-driven in the sense that it tries to
answer particular queries that are passed to it by practical cognition.
These will be factual queries of relevance to the planning problem,
and will arise in the course of planning. We cannot assume that the
planner comes to the planning problem equipped with precisely the
knowledge it needs to solve the planning problem (and without the
ability to do further reasoning) without ignoring essential aspects of
planning and cognition.’

Therefore, to prove whether a given action can be accepted credulously while
relying only on sceptically accepted beliefs, without determining entire exten-
sions, Prakken proposes a new argument game for his semantics: the GP-game.
It combines the G-game for epistemic arguments and the P-game for practi-
cal arguments. But in contrast to these games, a distinction is made between
a player and its dialectical role. If player pro moves an epistemic argument
that defeats a practical argument moved by player con, then he in fact attacks
an epistemic subargument of con’s practical argument and has to show that
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it is not in the grounded extension. So pro acts as the opponent in the sub-
game about the epistemic subargument. The exact rules of the GP-game are
presented in the next chapter.

2.2 The practical syllogism

Abduction is a kind of ‘backwards’ inference. It is often used in diagnosis
(finding the cause of an observation). For example, if someone knows that a
causes b and that b is the case, he might want to infer a (if a is the only or the
best explanation of b). It is also a very natural way to reason about actions.
For example, if action a causes state b, and I have the goal to be in state b,
then it is rational for me to wish to do a (if I am capable of doing a, if a has
no unwanted side-effects, and if there is no better alternative for achieving b).
This kind of rule is called the practical syllogism, and it can be traced back to
Aristotle. However, its application is not straightforward, as can be seen from
the conditions.

Bench-Capon and Prakken [4] present a formalisation of reasoning with the
practical syllogism. They try to handle the issues related to the practical syllo-
gism, such as its abductive nature, and hence the need to consider alternative
actions and possible negative side effects, with an argumentation system that
is based on Dung’s [6] abstract framework of defeasible argumentation. It is in-
stantiated with a tree-style structure of arguments, and incorporates Prakken’s
[12] accrual mechanism of arguments. This accrual mechanism will be attended
to in the next section; this section only focuses on the practical syllogism.

The language is assumed to be a propositional modal logic with a single
modality D standing for desire. The propositional part of the language can be
divided into controllable and uncontrollable formulas. The logic of D is of type
KD, which validates ¬(Dφ ∧ D¬φ). Occurrences of D cannot be nested and
defaults cannot contain the modality D.

On top of this language, defeasible conditionals or defaults are defined: φ⇒
ψ where ψ is a single propositional literal and φ is a conjunction of propositional
literals. Defaults occur in three forms: a ∧ r ⇒ p (realising a in circumstance
r achieves p), a ⇒ p (realising a achieves p), and r ⇒ r′ (one circumstance
typically implies another circumstance).

Next to a defeasible modus ponens rule, two new inference rules are intro-
duced: the positive practical syllogism (from a ∧ r ⇒ p, Dp and r, infer Da)
and the negative practical syllogism (from a ∧ r ⇒ ¬p, Dp and r, infer ¬Da).

The negative practical syllogism formalises the need to consider possible
negative side effects. The need to consider alternative ways to achieve the same
goal is formalised by a new way of defeat. An argument can defeat another
argument if they both apply the positive practical syllogism to the same desire
premise but their conclusions are different action desires. The exact definition
will be given in the next chapter.

2.3 Accrual of arguments

Consider a case in which one has two arguments for performing action a, and
one argument for not performing a. The last argument is stronger than the first
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two arguments individually, but taken together, the first two are stronger. In
that case one would want to accrue the first two arguments in the argumentation
system. Another application of accrual in practical reasoning is the accrual of
positive (wanted) effects of a particular action on the one hand, and negative
(unwanted) effects on the other hand.

Bench-Capon and Prakken [4] describe a system for practical reasoning
which makes use of Prakken’s [12] accrual mechanism. In their system they
apply accrual to the practical syllogism (abductive reasoning), but in general
accrual can be applied to any kind of defeasible reasoning.

Prakken [12] takes as starting point of any formalisation of accrual that
adding more reasons can make one’s case stronger. He defines three principles
that are meant to constrain formalisations of this idea.

1. Accruals are sometimes weaker than their elements. Also: in general
the strength of an accrual cannot be calculated from the strengths of its
elements.

2. An accrual makes its elements inapplicable (this restriction is not needed
if accruals are never weaker than their elements).

3. Flawed reasons or arguments may not accrue.

Prakken [12] discusses the knowledge representation approach to this idea.
In probabilistic networks accrual is enforced, because they are antecedent-com-
plete. In nonmonotonic logic antecedent-completeness is not wanted, because
it is meant to deal with incomplete information. But it is possible to combine
statements about the presence or absence of reasons in the antecedent of a condi-
tional, or to state exceptions to default rules. In this case accrual boils down to
defining strength relations between conflicting rules. However, Prakken argues
that an inference approach, in which accrual is modelled as an inference rule,
has certain advantages to the knowledge representation approach. First, in the
knowledge representation approach more rules need to be formulated, although
these could be generated automatically. Second, the knowledge representation
approach requires that each reason can be expressed with the same kind of con-
ditional operator, while in reality reasons of different types may accrue. And
third, in the knowledge representation approach undercutters of individual rea-
sons must be represented as undercutters of all accruals in which the reason
takes part, which seems not natural.

Prakken’s inference system can be summarized with the following changes
and additions to a system like that of Bench-Capon and Prakken [4] as described
in the previous section. The existing defeasible inference rules are altered such
that the conclusion is labelled with the premises (the premises themselves must
be unlabelled); a new defeasible inference rule called accrual is introduced which
takes any set of labelled versions of a certain formula and produces the un-
labelled version; rebuttal is only allowed between arguments with unlabelled
conclusions, and an undercutter’s conclusion must be unlabelled; and an under-
cutter scheme called accrual undercut is formulated to the effect that an accrual
undercutter A undercuts an accrual B if B’s elements are a proper subset of A’s
elements. It follows that in any argument the application of labelling inference
rules strictly alternates with the application of accrual.

This system satisfies the three principles defined above. It does not make
any assumptions on the (relative) strength of accruals, so the first principle is
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trivially satisfied. The second principle is satisfied by the accrual undercutter
and the restriction on the defeat relations. The third principle is also satisfied,
since an accrual that has left out a flawed reason will be undercut by the maximal
accrual, but is reinstated by the defeater of the flawed reason.

One difficulty relating to accrual is the definition of strength of accrued ar-
guments. Whereas the strength of simple arguments can be straightforwardly
computed from the strengths of their premises (for example with the weakest
link principle), the definition of the strength of an accrual is less straightforward.
The idea behind accrual is that having multiple arguments for a conclusion can
make one’s case stronger than the individual arguments. But in some cases an
accrual may be weaker than its constituting arguments (Prakken’s first princi-
ple). So in general the strength of an accrual cannot be calculated from the
strengths of its elements. Prakken leaves the strength of an accrual unspecified,
but in the implementation that is not possible; the strength is needed to deter-
mine whether a rebutting or alternative argument is strong enough to defeat its
target.

Bench-Capon and Prakken [4] define a preference ordering on arguments
based on the goals that are reached and prevented if the argument’s final desire
is carried out. (Actually, this is a simplification which applies under the as-
sumption that each goal’s only promoted value is the goal itself. Since no other
values will be modelled here, this assumption is safe.) If the desire conclusion
is positive, the goals reached are all positive practical formulas occurring in the
argument whose epistemic versions can be derived from the premises and the
epistemic version of the conclusion of the argument. The goals prevented are
all positive practical formulas occurring in a rebutting argument whose negated
epistemic versions can be derived from the premises of that rebutting argu-
ment and the epistemic version of the conclusion of the argument. If the desire
conclusion is negative, the goals reached/prevented are the union of the goals
reached/prevented of all maximal proper subarguments for which the set of
goals reached/prevented is defined. So every argument has an associated pair
of a set of reached goals and a set of prevented goals. There exists a partial
preorder on such pairs, and the ordering of arguments is the same.

However, it is problematic to use this definition in practice for the following
reasons.

• The ordering only applies to practical arguments, since epistemic argu-
ments do not contain any practical formulas. However, accrual also applies
to epistemic arguments.

• The ordering of arguments does not take into account the relative strengths
of rules and facts from the belief base. In itself this is not a problem,
but when accrual is incorporated into a system that does rely on these
strengths, like the one that will be used here, the two will have to be
combined somehow.

• For some arguments, the set of prevented goals is defined outside the ar-
gument: its definition is based on the rebutting arguments. This means
that the strength of an individual argument cannot be determined inde-
pendently from other arguments.

• The ordering on pairs of sets of reached and prevented goals, and hence
the argument ordering, is only partial, so not all practical arguments can
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be compared on their strength. In itself this is not a problem, but it is
if the ordering of arguments is modelled using a numeric strength, whose
ordering is complete.

• The ordering must be defined somewhere. It is not dependent on the or-
dering of individual goals. However, it is not directly clear which goals
must be considered; not only goals from the goal base can be reached or
prevented, but also derived goals. To determine these, either the argu-
ments must be generated first and then ordered by the user (which is not
quite ‘automatic reasoning’), or all possible combinations of possible goals
must be derived from the belief base and given a strength by the user
before arguments are created, but this may result in far too many goals
(in a proposition-based language the set of goals will at least be finite; in
a predicate language with variables this will be impossible).

Because these problems cannot easily be solved, only some simple ad hoc
mechanisms to compute accrual strength will be used, thereby unfortunatley
violating Prakken’s first principle of accrual. They will be presented in the next
chapter.



Chapter 3

The formalism

This chapter presents a structured and detailed overview of the formalism on
which the implementation is based. This formalism incorporates the theories
of Chapter 2, and Dung’s [6] grounded and preferred semantics. Section 3.1 is
about arguments; it covers the language that the arguments are based upon, the
structure of arguments, inference schemes, strength of arguments and conflicts
between arguments. Certain choices have been made where the theories were
underspecified (for example the exact definition of the grammar and the strength
of arguments). Section 3.2 recapitulates Dung’s abstract argumentation frame-
work and three types of semantics for it: grounded semantics, preferred seman-
tics and e-p-semantics. This section shows how e-p-semantics fits into Dung’s
framework. Finally, Section 3.3 is about argument games as they are used in
the implementation; it defines the general properties and three specific argument
games: the G-game for grounded semantics, the P-game for preferred credulous
semantics, and the GP-game for e-p-semantics. Examples that illustrate the
formalism can be found in Chapter 6.

3.1 Arguments

3.1.1 The language

The logic that the arguments are based upon is a propositional modal logic. It
has a single modality D, standing for desire, which cannot be nested and is of
type KD (insofar as this applies to formulas where D is not nested; this boils
down to the DKD inference scheme defined in Section 3.1.3). A belief base
consists of facts (beliefs) and rules (defeasible conditionals). The grammar is
specified below. Note that the term ‘formula’ is used in a stricter sense than
usual; here, conjuncts, disjuncts and implications are not formulas, but only
literals preceded by an optional negation and modal operator D.

beliefBase ::= ( fact | rule )+

fact ::= formula ( strength )? "."

formula ::= ( ( "~" )? "D" )? literal

literal ::= ( "~" )? atom

atom ::= ["a"-"z"] ( ["a"-"z","A"-"Z","0"-"9"] )*

strength ::= ( "0." ( ["0"-"9"] )+ ) | "1"



3. The formalism 11

rule ::= ( ruleName ":" )? formula "<-" formula ( "," formula )*

( strength )? "."

ruleName ::= atom

query ::= formula "."

Formulas, facts and rules can be of either of two types: epistemic or practical.
A formula is epistemic if it does not contain an occurrence of the modal operator
D, and practical if it does. A fact’s type is the same as the type of its consequent
(its single formula). A rule is epistemic if its consequent (the formula left of the
arrow) and all its antecedents (the formulas right of the arrow) are epistemic,
and practical if its consequent is practical. Facts with an epistemic consequent
and one or more practical antecedents are disallowed.

Facts and rules have an associated strength between 0 and 1. If the strength
is not specified, it is assumed to be 1 by default.

This language fulfills Prakken’s [13] requirement that the language can be
divided into two disjoint sublanguages for epistemic and practical formulas. It
also contains Bench-Capon and Prakken’s [4] modal operator D. The distinction
between controllable and uncontrollable literals is not enforced explicitly, but if
the distinction is made implicitly in a consistent way, no uncontrollable literals
will be desired.

3.1.2 The structure of arguments

Arguments are trees of chained defeasible inferences. This formalism does not
model strict inferences. This means that every argument could in principle
be defeated by another argument. Every argument has a conclusion (except
accrual undercutter arguments, see below), which is the conclusion of its top
inference, and zero or more subarguments, whose conclusions are the premises
of the top inference. Inferences are instantiations of inference schemes, which
are listed below in Section 3.1.3. No circular arguments are allowed; if an
argument’s conclusion is φ, this formula φ may not occur anywhere else in the
argument (except when the top inference is accrual, see below). Because of this,
and because the belief base is finite, only a finite number of arguments can be
constructed.

Like formulas, arguments have a type (epistemic or practical). An argu-
ment is epistemic if its conclusion and all its subarguments are epistemic. An
argument is practical if its conclusion is practical. Arguments with a practical
subargument and an epistemic conclusion do not exist. This is the same as
Prakken’s [13] definition of epistemic and practical arguments.

3.1.3 Inference schemes

All inferences that can be made are instantiations of the following inference
schemes.

From fact is a dummy inference scheme where the conclusion is a fact in the
belief base. This inference scheme and the next are ‘dummy’ because
they conclude nothing new; they are only needed to transform Fact or
Rule objects into Formula objects in the implementation (see Chapter 4,
Section 4.3). An argument with this inference has no subarguments.
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φ strength "." ∈ belief base

φ
ff

From rule is a dummy inference scheme where the conclusion is a rule in the
belief base. An argument with this inference has no subarguments.

rule name ":" φ "<-" ψ1 "," . . . "," ψn strength "." ∈ belief base

φ "<-" ψ1 "," . . . "," ψn
fr

Rule application is an inference scheme where the conclusion is the conse-
quent of a rule in the belief base. The premises (conclusions of subargu-
ments) are the rule itself and its antecedents.

φ "<-" ψ1 "," . . . "," ψn ψ1 . . . ψn

φ
ra

DKD is an inference scheme formalisation of the assumption that the logic of
the modal operator D is of type KD. This means that for any atom φ,
~D~φ can be inferred from Dφ, and ~Dφ can be inferred from D~φ (but not
the other way round). An argument with this inference has exactly one
subargument.

"D"φ

"~D~"φ
dkd

"D~"φ

"~D"φ
dkd

Positive practical syllogism is an abductive inference scheme. The conclu-
sion is the practical version of one of the antecedents of a rule in the belief
base. Premises are the rule, the practical version of its consequent, and
all other antecedents.

ψ "<-" φ1 "," . . . "," φn "D"ψ φ1 . . . φi−1 φi+1 . . . φn

"D"φi
pps

Negative practical syllogism is an abductive inference scheme. The conclu-
sion is the negated practical version of one of the antecedents of a rule in
the belief base. Premises are the rule, the practical version of the negation
of its consequent, and all other antecedents.

"~"ψ "<-" φ1 "," . . . "," φn "D"ψ φ1 . . . φi−1 φi+1 . . . φn

"~D"φi
nps

Accrual is an inference scheme whose premises and conclusion are all the same
formula. Instead of labelling and delabelling formulas, as Prakken [12] and
Bench-Capon and Prakken [4] do, it is demanded that the premises are all
conclusions of arguments that do not have accrual as their top inference
scheme, which is equivalent. A restriction is added that all subarguments
must have different top inferences (an explanation for this is given at the
end of this section).

φ . . . φ

φ
accr
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Accrual undercutter is an inference scheme that resembles accrual, but does
not have a formula as conclusion. As with accrual, it is demanded that
the premises are all conclusions of arguments that do not have accrual as
their top inference scheme, and that all subarguments have different top
inferences.

φ . . . φ
au

All leaves of an argument tree are either from fact or from rule inferences,
because they are the only ones without subarguments. The term ‘simple argu-
ment’ is used to denote any argument whose top inference scheme is not accrual,
as opposed to ‘accrual argument’.

The accrual and accrual undercutter inference schemes are only used if the
use of accrual is turned on. The positive and negative practical syllogism in-
ference schemes are only used if the use of the practical syllogism is turned on.
If this is the case, rule application may only be used on epistemic rules. This
has the same effect as Bench-Capon and Prakken’s [4] requirement that defaults
(rules) may not contain the modality D.

Refinement of the accrual inference scheme

One might think that accrual can be applied to all possible combinations of
simple arguments with the same conclusion. This is also allowed in Prakken’s
[12] system. However, this will result in more arguments than are needed. The
problem is best illustrated with an example. Consider the following argument:

a<-b
fr

a<-b
accr

b
ff

.

.

.

b
ra

b
accr

a ra

a<-b
fr

a<-b
accr

b
ff

b
accr

a ra

a accr

It is an accrual with two elements. However, the two elements are similar:
they have the same top inference. The only difference between them is that
one of the subarguments of the second element is a smaller accrual than the
corresponding subargument of the first element. Accruing them together makes
no sense; the same information is contained in the argument that uses the
bigger accrual. In Prakken’s [12] original theory this problem can be solved by
demanding that accruing elements have different labels (each conclusion of a
non-accrual argument is labelled with its premises, so arguments with the same
inference have the same label). In the implementation, this problem is solved by
ensuring that an accrual argument does not contain two subarguments with the
same top inference. To avoid unwanted accrual undercut (see Section 3.1.5), the
same restricion must be applied to the accrual undercutter inference scheme.

3.1.4 Strength of arguments

Every argument has a strength, which, in the case of simple arguments, de-
pends in some way on the strengths of its subarguments, and ultimately on the
strengths of the facts and rules from the belief base that it uses. Two possi-
ble principles to determine the strength of an argument are the weakest link
principle [9] and the last link principle [14].
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Weakest link An argument is as strong as its weakest subargument, or as
strong as the fact or rule that it is based upon if it has no subarguments.

Last link An argument is as strong as the rule that was last used in an infer-
ence, or as strong as the fact that is based upon if it contains no rule.

As discussed in Section 2.3, the computation of the strength of accrual ar-
guments is less straightforward. Only three simple ad hoc mechanisms will be
used.

All equal All accrual arguments have the same strength (1). The strengths of
subarguments are ignored.

Strongest link The strength of an accrual argument is the strength of the
strongest of its elements (direct subarguments). The strengths of these
subarguments, which are themselves not accruals, are determined by the
strength mechanism that is used for simple arguments.

Number of promoted desires The strength of an accrual argument depends
on the number of desires that are promoted by the argument. Only desires
from the belief base are counted, derived desires are not. If p is the number
of promoted desires of an accrual argument, its strength is p/(p+1). This
definition was chosen because it is simple, the strength stays within the
range [0,1], and the more desires are promoted, the higher the strength.

3.1.5 Conflicts between arguments

There are three types of conflict between arguments: rebuttal, alternative and
undercut. The only type of undercut that is used is accrual undercut. Other
approaches often incorporate another form of undercut, which is not a general
undercutter scheme like accrual undercut, but a user-defined undercutter for
one particular inference. For this, the language would have to be extended so
that inferences can be expressed too. Since this is not straightforward and this
type of undercut is not essential for the project, this has not been done yet.

Definition 1 (Rebuttal). An argument A rebuts an argument B if the conclu-
sion of A is the negation of the conclusion of B. If the use of accrual is turned
on, both A’s and B’s top inference scheme must be accrual.

Definition 2 (Alternative). If accrual is not used, an argument A is an alter-
native to an argument B if both A’s and B’s top inference scheme is the positive
practical syllogism, their conclusions are different and they have one practical
premise in common.

If accrual is used, an argument A is an alternative to an argument B if they
have different positive practical formulas as conclusions, both arguments’ top
inference is an accrual, the top inference scheme of all elements of these accruals
is the positive practical syllogism (pps), and at least one pps subargument of A
has a practical premise that is also a premise of a pps subargument of B.

Definition 3 (Accrual undercut). An argument A accrual-undercuts an argu-
ment B if A’s top inference scheme is the accrual undercutter, B’s top inference
scheme is accrual, and B’s subarguments are a proper subset of A’s subargu-
ments.
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Now, defeat between arguments is defined as follows:

Definition 4 (Defeat). An argument A defeats an argument B if

• A rebuts B and A is as least as strong as B; or

• A accrual-undercuts B; or

• A is an alternative to B and A is as least as strong as B; or

• A defeats a subargument of B.

Note that epistemic arguments cannot be defeated by practical arguments,
since rebuttal, alternative and accrual undercut only occur between arguments
of the same type, and epistemic arguments never have practical subarguments.

3.2 Dung’s abstract argumentation framework

Dung [6] defines a general, abstract framework for the semantics of defeasible
argumentation systems. It is abstract because it leaves the internal structure of
arguments unspecified. The framework only supposes the existence of a set of
arguments with a binary defeat relation defined on it.

Definition 5 (Argumentation framework). An argumentation framework AF
is a pair 〈A,defeat〉 where A is a set of arguments, and defeat is a binary
relation on A: defeat ⊆ A×A.

Now several semantics are defined. Every semantics defines one or more
sets of arguments (subsets of A), so-called extensions, which can be seen infor-
mally as sets of ‘justifiable’ arguments. Two well-known semantics are grounded
semantics and preferred semantics. An argument is said to be justified with re-
spect to a semantics if it is a member of all extensions of that semantics. In
grounded semantics, an argument is said to be defensible if it is not justified,
but not defeated by a justified argument. In preferred semantics, an argument
is defensible if it is a member of some, but not all extensions. Sceptical reason-
ing is concerned with determining whether an argument is justified, credulous
reasoning with determining whether an argument is at least defensible.

The grounded and preferred extensions are defined below, but first the no-
tions of a conflict-free set and an acceptable argument are defined.

Definition 6 (Conflict-free set). A set S of arguments is conflict-free if there
are no arguments A and B in S such that A defeats B.

Definition 7 (Acceptable argument). An argument A is acceptable with respect
to a set S of arguments if every argument B ∈ A that defeats A is defeated by
an argument in S.

3.2.1 Grounded semantics

Every argumentation framework has exactly one grounded extension. Dung
defines it in terms of the argumentation framework’s characteristic function.
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Definition 8 (Characteristic function). The characteristic function FAF of an
argumentation framework AF = 〈A,defeat〉 is defined as follows:

FAF : P(A) → P(A),
FAF (S) = {A|A is acceptable with respect to S}.

Definition 9 (Grounded extension). The grounded extension of an argumen-
tation framework AF is the least fixed point of FAF .

The grounded extension can be found incrementally:

Proposition 10. Consider the following sequence of arguments.

• F 0 = ∅

• F i+1 = {A ∈ Args|A is acceptable with respect to F i}

Let Fω = ∪∞
i=0(F

i). Then all arguments in Fω are in the grounded extension.

That is, all arguments that are not defeated are justified, all arguments
whose defeaters are all defeated themselves by such a justified argument are
justified, and so on. If there is no undefeated argument, the grounded extension
is empty.

If there are no arguments with infinitely many defeaters, which is the case
here, Definition 9 and Fω are equivalent.

3.2.2 Preferred semantics

An argumentation framework can have multiple preferred extensions. Dung
defines them in terms of an admissible set.

Definition 11 (Admissible set). A set S of arguments is admissible if it is
conflict-free and every argument in S is acceptable with respect to S.

Definition 12 (Preferred extension). A preferred extension of an argumenta-
tion framework AF is a maximal (with respect to set inclusion) admissible set
of AF .

3.2.3 E-p-semantics

Prakken’s [13] semantics of combined sceptical epistemic and credulous practical
reasoning, e-p-semantics, is based on grounded and preferred semantics. It is
defined as follows.

Definition 13 (E-p-argumentation framework). An e-p-argumentation frame-
work is an argumentation framework whose set of arguments consists of two
disjoint sets of epistemic and practical arguments.

Definition 14 (E-p-extension). Let AF = 〈A,defeat〉 be an e-p-argumentation
framework with grounded extension GAF . Let AFg = 〈Ag,defeatg〉 be obtained
from AF by removing from A all arguments that are defeated by an epistemic
argument that is not defeated by an argument in GAF and restricting defeat to
Ag. Then S is an e-p-extension of AF if S is a preferred extension of AFg.
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3.3 Argument games

Semantics of defeasible argumentation systems define what the extensions of an
argumentation framework are; they are declarative. Argument games, on the
other hand, provide a procedural approach. That is, given an argumentation
framework and an argument, an argument game can determine whether that
argument is a member of some extension. Two well-known argument games
are the G-game for grounded semantics and the P-game for preferred credulous
semantics. For e-p-semantics, there is an argument game called the GP-game,
which is based on the G-game and the P-game.

3.3.1 General properties

An argument game is a sequence of moves. Two players, pro and con, move
in turn. In the first move, pro puts forward the main argument of the game.
In every following move, an argument is put forward that defeats the argument
of an earlier move made by the other player (the target of this move). Every
type of argument game has its own additional rules. If one of the players has no
legal moves left, the other player wins the game. If pro can win the game no
matter what moves con chooses to make, then the argument of the first move
is in an extension associated with the type of game that is played and vice versa
(soundness and completeness of the game). This was proven for the G-game and
grounded semantics by [14], for the P-game and preferred credulous semantics
by [20], and for the GP-game and e-p-semantics by [13].

Below are the formal definitions of moves and argument games.

Definition 15 (Move). A move has six properties:

• an identifier

• a player: pro or con

• a role: the role of the player of this move, p or o

• an argument put forward in this move

• a target: the move to which this move replies (sometimes indicated by its
identifier)

• whether this move has been backtracked

A move m is said to defeat a move n if the argument put forward in m
defeats the argument put forward in n.

Definition 16 (Argument game). An argument game is a sequence of moves
obeying the following rules:

• The first move is made by player pro with role p

• pro and con move in turn

• All moves (except the first) have a previous move in the game made by the
other player as their target

• All moves (except the first) defeat their target
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• Two moves with the same target cannot have the same argument

• The target of a move is the most recent move of the other player that it
can legally target

• If the target of a move by p is not the directly preceding move, all moves
between the target and this move are marked as backtracked

• A player wins the game iff the other player has no legal moves left

The games that are presented here are slightly different versions of the orig-
inal games. The major difference is that players are now allowed to backtrack,
but only if it is necessary (if they cannot target the directly preceding move),
and then only to the nearest possible point. Moreover, every time p backtracks
the game tree is marked as such from the point where the unsuccessful move
(the move with the same target as the current move) was made. Moves that
are marked as backtracked are treated as if they were removed from the game;
the only thing that must be remembered of them is that the unsuccessful move
must not be made again. This backtracking facility is essential for the reasoning
algorithm in the implementation.

An argument game can be displayed as a tree, where all nodes are moves.
The root is the first move by pro, and child nodes have their parent as target.
Each path through the tree from the root to a leaf node is called a line of dispute.

To make some games shorter, the following rule is added:

• If a player repeats his own argument in the same line of dispute, this line of
dispute is ended (the other player may not target this move, only backtrack
if he can)

This rule does not change the outcome of a game. If without this rule the
other player has a reply to the last move, he will have the same reply to the
move whose argument it repeats, so one of the replies is redundant. The only
exception is when the other player has already moved his reply targeting the
move whose argument was repeated. However, this situation can only occur if
both participants in the game are allowed to repeat their arguments in the same
line of dispute, which is never the case in the three specific argument games that
are used here.

Note also that all games are finite, since the set of arguments is finite, two
moves with the same target cannot have the same argument, and in the three
specific argument games that are used always at least one participant is not
allowed to repeat his arguments in the same line of dispute.

3.3.2 The G-game

The G-game for grounded semantics is defined as follows:

Definition 17 (G-game). A G-game is an argument game that additionally
obeys the following rules:

• Player pro always has role p

• Player con always has role o



3. The formalism 19

• A player with role p does not repeat any arguments (his own or the other
player’s) in the same line of dispute

Proposition 18. This game is sound and complete with respect to grounded
semantics in the sense that pro wins a game for argument A if and only if A
is a member of the grounded extension.

In the original G-game [14] backtracking is not allowed, and soundness and
completeness are defined in the sense of having a winning strategy, as opposed
to winning a single game. Because of these differences, the original proofs of
soundness and completeness have been adapted to this new definition of the
G-game.

Proof of soundness. Suppose pro has won the game for A. It will be shown
that all arguments of pro’s non-backtracked moves, in particular A, are in Fω

and hence in the grounded extension. If pro won, then con has no legal moves
left, so con has already moved every defeater of every previous non-backtracked
move of pro. Every non-backtracked branch in the game tree ends with a move
of pro, since pro has never run out of legal moves, and if he backtracked, that
branch was marked as such. Since there are no defeaters of the non-backtracked
leaves, these arguments of pro are acceptable with respect to the empty set,
so in F 1 and hence in the grounded extension. Consider now the targets of
the targets of the leaf arguments. If they have just the one defeater, or if all
defeaters are defeated directly by a leaf argument, they are in F 2. Unless pro
won in one move (in which case his argument A is undefeated and hence in the
grounded extension), there is always at least one such argument, namely the
target of the target of the leaf argument of the longest branch. This line of
reasoning can be repeated until the root argument A is reached, so A is in Fω

and hence in the grounded extension.

Proof of completeness. Suppose argument A is a member of the grounded ex-
tension. Then A is acceptable with respect to the grounded extension, so every
defeater of A is defeated by an argument in the grounded extension. So pro
can reply to every move of con that targets A with an argument from the
grounded extension. If he does so, then this line of reasoning can be repeated
until pro moves an undefeated argument which con cannot target (recall that
the set of arguments A is always finite). If pro only moves arguments from the
grounded extension, which he can, he wins without backtracking. So the only
case in which pro might not be able to end a line of dispute, is if he moves an
argument that is not in the grounded extension. But in that case he can always
backtrack, since we have seen that he can always reply to a move with at least
one argument from the grounded extension (which he did not play before if he
replied with another argument first).

3.3.3 The P-game

The P-game for preferred credulous semantics is defined as follows:

Definition 19 (P-game). A P-game is an argument game that additionally
obeys the following rules:

• Player pro always has role p
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• Player con always has role o

• A player with role p does not repeat the other player’s arguments from
non-backtracked moves

• A player with role o does not repeat his own arguments in the same line
of dispute

• If a player with role o repeats an argument from a non-backtracked move
of the other player (a so-called eo ipso move), this line of dispute is ended
(the other player may not target this move, only backtrack if he can)

Proposition 20. This game is sound and complete with respect to preferred
credulous semantics in the sense that pro wins a game for argument A if and
only if A is a member of some preferred extension.

Although the P-game is more like its original version than the G-game,
there are still some differences. In the original P-game [20] pro is not allowed
to backtrack after an eo ipso move, and soundness and completeness are defined
in the sense of having a winning strategy, as opposed to winning a single game.
Because of these differences, the original proofs of soundness and completeness
have been adapted to this new definition of the P-game.

Proof of soundness. Suppose pro has won the game for A. Let A′ denote all
non-backtracked arguments that pro moved in this game (in particular, A ∈
A′). It will be shown that A′ is an admissible set, and hence a subset of a
preferred extension. If A′ is not conflict-free, one of the arguments in A′ is
defeated by another argument in A′ and con would have done an eo ipso move,
after which either con would have won, which is not the case, or pro would
have backtracked, which is also not the case. So A′ is conflict-free. If A′ is
not admissible, then some argument in A′ is defeated by an argument B that
is not defeated by an argument in A′. In that case, con would have used B as
a winning argument, which is also not the case. Hence A′ is admissible, and a
subset of a preferred extension, so A is in a preferred extension.

Proof of completeness. Suppose argument A is a member of a preferred exten-
sion A′. Then A is acceptable with respect to A′, so every defeater of A is
defeated by an argument in A′. So pro can reply to every move of con that
targets A with an argument from A′. If he does so, then this line of reasoning
can be repeated until con has moved all defeaters of all arguments in A′ (re-
call that the set of arguments A is always finite) and runs out of legal moves
because he may not repeat himself (con always has role o). If pro only moves
arguments from A′, which he can, he wins without backtracking. So the only
case in which pro might not be able to end a line of dispute, is if he moves an
argument that is not in A′. But in that case he can always backtrack, since we
have seen that he can always reply to a move with at least one argument from
A′ (which he did not play before if he replied with another argument first).

3.3.4 The GP-game

The GP-game for e-p-semantics is defined as follows:
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Definition 21 (GP-game). A GP-game is an argument game that additionally
obeys the following rules:

• A player with role p does not repeat any epistemic arguments (his own or
the other player’s) in the same line of dispute

• A player with role p does not repeat the other player’s practical arguments
from non-backtracked moves

• A player with role o does not repeat his own practical arguments in the
same line of dispute

• If a player with role o repeats a practical argument of the other player from
a non-backtracked move (a so-called eo ipso move), this line of dispute is
ended (the other player may not target this move, only backtrack if he can)

• If an epistemic argument is put forward in a move and a practical argu-
ment was put forward in the target of this move, then the role of this move
is o; otherwise it is o if it was p in the target and p if it was o in the
target

Every branch in a GP-game consists of a possibly empty sequence of moves
with practical arguments followed by a possibly empty sequence of moves with
epistemic arguments. All moves with practical arguments together are a P-
game. If there are no moves with practical arguments, the whole GP-game is
a G-game. Otherwise all sequences of moves with epistemic arguments whose
first moves have the same target, preceded by that target, are a G-game about
that target, except that the roles of the players may have switched.

Proposition 22. This game is sound and complete with respect to e-p-seman-
tics in the sense that pro wins a game for argument A if and only if A is a
member of some e-p-extension.

The proof for this is based on the proofs for the soundness and completeness
of the G-game and the P-game.



Chapter 4

The Epistemic and

Practical Reasoner

This chapter presents the general layout of the Epistemic and Practical Rea-
soner. An overview of the program is given in Section 4.1. Section 4.2 presents
the user interface. The data structure of a belief base and its elements is dis-
cussed in Section 4.3. Finally, Section 4.4 covers the output of the program.

The algorithms for argument and game construction will be discussed in
detail in Chapter 5. For more details on the code, the reader is referred to the
API documentation. For the user manual of the program, see appendix A.

4.1 Overview

The Epistemic and Practical Reasoner is written in Java 6. Figure 4.1 contains
a UML class diagram of the program. This diagram is not exhaustive, but
illustrates the core layout of the program. The general flow of the program is
as follows. The program starts with the main method of the GUI class, which
creates a graphical user interface (see Section 4.2). The user enters or loads
a belief base into the editor, enters a query, selects the options he wants, and
presses the query button. Clicking the query button starts the Controller. The
Controller calls a Parser (which was created from a grammar file with JavaCC
[8], a parser generator for use with Java applications) that in turn tries to parse
the query into a Formula object, and the facts and rules in the belief base from
the editor into Fact and Rule objects, which are then added to a BeliefBase
object (see Section 4.3). If this fails, an exception is thrown which is passed
back through the Controller to the GUI to notify the user. If the Parser succeeds,
it returns a filled BeliefBase and a query Formula to the Controller. Next the
Controller starts a Reasoner object, which in turn tries to construct an argument
game for the given query with the given semantics. A game is implemented
as a TreeMap containing Move objects that are stored under their indentifier.
During the construction of the game, ArgumentCreator creates Arguments and
stores them in ArgumentArrayLists (for details on these algorithms, see Chapter
5). When the game has been constructed, the Reasoner determines the winner
and returns the result to the Controller. Finally, the Controller invokes an
OutputWriter, which generates XML and Dot output (see Section 4.4) that is
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passed to the GUI and displayed to the user.

The program is a standalone application, but it can also be embedded in
another Java program by implementing the UI interface and calling the Con-
roller.start method.

4.2 User interface

The graphical user interface (GUI) is a standard application window. It has a
menu and three tabs, one for input and two for output. The input tab contains
a belief base editor, a field where a query can be entered, a button to start the
query algorithm, and a log. With the menu, a text file can be loaded into the
belief base editor, and the belief base, the log and the output can be saved to
files. Also, several query options can be selected in the menu: the semantics to
use, whether to use the practical syllogism, whether to use accrual, the strength
mechanism to use and the accrual strength mechanism to use. Finally the log
level can be set and the documentation can be accessed. The two output tabs
display the generated XML file and graph image, respectively. Figures 4.2 and
4.3 show the input tab and graph tab of the graphical user interface with the
example from Section 6.1.1.

The Java package java.util.logging provides for the logging mechanism that
is used here. There is one Logger object for the entire program. At various
points in the code, log messages are sent to the Logger. Whether the message
actually gets logged depends on the level of the message and the level of the
Logger. If the message level is as least as high as the log level, the message gets
logged and will be displayed in the log of the GUI. The log level can be set by
the user in the GUI menu; it defaults to info level.

4.3 Belief base data structure

The facts and rules that are parsed from the belief base are modelled as instances
of the classes Fact and Rule, which are both subclasses of the abstract class
AbstractRule. Their consequents and a Rule’s antecedents are instances of the
class Formula. A Formula object has a Literal, a Type, and may be negated. A
Literal object has an atom string and may be negated.

Two Formula or Literal objects that have the same values for all fields can-
not exist. To ensure this, a Formula or Literal object can only be obtained
by calling one of the static methods Formula.getFormula or Literal.getLiteral.
These methods check whether the desired object already exists; if so, this object
is returned, and only if this is not the case, a new object is created. This feature
is needed because Formulas are used as keys in HashMaps by BeliefBase and
ArgumentCreator; keys are compared with the equals method, which by default
only returns true if the parameter object is the same as the object on which the
method is applied: object1.equals(object2) iff object1 == object2. It is possible
to override this method, but that is tricky and it is discouraged unless it is the
only option. Therefore this other solution to the problem has been applied.

Every time the Parser has parsed a fact or rule, a Fact or Rule object is
created and added to a BeliefBase. When a Fact is added, it is stored under
its consequent Formula in a HashMap called factBase. The adding of a Rule is
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Figure 4.1: Class diagram
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Figure 4.1 (continued)
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Figure 4.2: User interface, input tab

Figure 4.3: User interface, graph tab
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more complicated. If the Rule already has a rule name, it is stored under that
name in a HashMap called ruleBase. If not, it is stored temporarily in a queue.
Later, the finish method will assign it a rule name and store the Rule in the
ruleBase. Moreover, when a Rule is added, all inferences that can be made with
it are modelled as instances of the class Inference. Inferences that can be made
with a rule are instantiations of one of the inference schemes rule application,
positive practical syllogism, and negative practical syllogism. The Inferences
that are made are stored in a HashMap called inferenceBase; it contains lists of
Inferences with the same conclusion stored under that conclusion. The factBase,
ruleBase and inferenceBase will be used by ArgumentCreator when Arguments
are being constructed.

Besides storing Facts, Rules and Inferences, BeliefBase checks that no fact
or rule name occurs more than once in the belief base, otherwise it throws an
exception.

4.4 Output

Besides the log, which displays the result of a query and the game that was
played, the program generates two kinds of output: an XML file and a graph
image.

The XML output conforms to an extension of the AIF Schema, as devel-
oped by ASPIC [3]. This schema is a reification of the Argument Interchange
Format proposed by Chesñevar et al. [5]. They propose to represent an argu-
ment network as a directed graph that consists of two kinds of nodes and edges
between them. I-nodes are information nodes and relate to content, S-nodes
are scheme application nodes. Multiple types of schemes can be defined, for
example inference schemes, preference schemes and conflict schemes.

The ASPIC AIF Schema defines an XML language in which such an argu-
ment network can be described. I extended this schema to include some extra
features of the program1. In the context node the provider, the input, and the
result of the query are specified. Within the input, a distinction is made be-
tween the belief base, the query, and the chosen values of the query parameters.
I-nodes, which essentially contain the formulas that are part of the generated
arguments, are extended to contain a strength. A new S-node type, extending
the original S-node type, is defined to accommodate moves. S-nodes that repre-
sent a move have elements moveID, player, role and backtracked. The argument
and target of a move node are related to it with edges.

The graph image is a visualisation of the data in the XML file for human
readability. It is created by Graphviz [7] from the Dot output that is generated
by OutputWriter.

1This extended XML Schema can be found in epr/xml/EPR.AIF.xsd.



Chapter 5

Algorithms

In this chapter the more interesting algorithms of the Epistemic and Practical
Reasoner are discussed in detail. Section 5.1 starts with the construction of ar-
guments. Then the construction of argument games will be discussed in Section
5.2.

5.1 Construction of arguments

5.1.1 Global approach

Arguments are created by the class ArgumentCreator and stored in Argument-
ArrayLists. An ArgumentArrayList contains all arguments that can be con-
structed for a given conclusion from a given belief base. An ArgumentArrayList
can be acquired by calling the static method ArgumentCreator.getArgument-
ArrayList and passing it the desired conclusion. If an ArgumentArrayList for
this conclusion already exists, this ArgumentArrayList is returned (each Ar-
gumentArrayList, and each Argument, is only created once). Else a new Ar-
gumentArrayList for this conclusion is created and filled. All Arguments for
a given conclusion are always created simultaneously. If accrual is used, the
accrual undercutters corresponding to the accrual arguments (which are argu-
ments with the same subarguments but without a conclusion) are created at
the same time and stored in an ArrayList, which can be retrieved by calling
ArgumentCreator.getAccrualUndercutters.

Each argument is constructed top down and recursively, from the conclusion
to the premises. Given a desired conclusion, the belief base is searched for an
inference with this conclusion. Then arguments are tried to be constructed for
every premise of the found inference. This goes on recursively until a fact or
rule from the belief base is reached in every branch of the argument tree. If
this process is successful, an argument is created. For accrual arguments, the
procedure is a little more complicated.

5.1.2 Algorithm

The exact algorithm is listed in Listing 5.1. This is the fill method of the Ar-
gumentCreator class, a private method that is called by ArgumentCreator.get-
ArgumentArrayList if the wanted ArgumentArrayList is not created yet.
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Listing 5.1: ArgumentCreator.fill
1 private static void fill(ArgumentArrayList list, ArrayList<Argument> undercutterList)
2 throws Exception {
3 Formula conclusion = list.getConclusion();
4 ArrayList<ArrayList<Argument>> elements = new ArrayList<ArrayList<Argument>>();
5 ArrayList<Argument> listOrWrapper = list;
6 //FROM FACT
7 Fact fact = beliefBase.getFactBase().get(conclusion);
8 if (fact != null) {
9 if (accrual) {listOrWrapper = new ArrayList<Argument>();}

10 listOrWrapper.add(new Argument(fact));
11 if (accrual) {elements.add(listOrWrapper);}
12 }
13 //FROM RULE
14 Rule rule = beliefBase.getRuleBase().get(conclusion);
15 if (rule != null) {
16 if (accrual) {listOrWrapper = new ArrayList<Argument>();}
17 listOrWrapper.add(new Argument(rule));
18 if (accrual) {elements.add(listOrWrapper);}
19 }
20 //D KD
21 if (conclusion.getType() == Type.PRACTICAL && conclusion.isNegated() == true) {
22 Formula premise = Formula.getFormula(conclusion.getLiteral().getNegation(),
23 Type.PRACTICAL,false);
24 ArgumentArrayList premiseArgumentArrayList =
25 ArgumentCreator.getArgumentArrayList(premise);
26 if (!premiseArgumentArrayList.isEmpty()) {
27 if (accrual) {listOrWrapper = new ArrayList<Argument>();}
28 for (Argument subargument : premiseArgumentArrayList) {
29 ArrayList<Argument> subarguments = new ArrayList<Argument>();
30 subarguments.add(subargument);
31 listOrWrapper.add(new Argument(conclusion,InferenceScheme.D KD,subarguments,null));
32 }
33 if (accrual) {elements.add(listOrWrapper);}
34 }
35 }
36 //RULE APPLICATION, POSITIVE PRACTICAL SYLLOGISM,
37 //NEGATIVE PRACTICAL SYLLOGISM
38 ArrayList<Inference> inferenceList = beliefBase.getInferenceBase().get(conclusion);
39 if (inferenceList != null) {
40 inferenceIteration: for (Inference inference : inferenceList) {
41 ArrayList<ArgumentArrayList> subArgumentArrayLists =
42 new ArrayList<ArgumentArrayList>();
43 for (Formula premise : inference.getPremises()) {
44 ArgumentArrayList premiseArgumentArrayList =
45 ArgumentCreator.getArgumentArrayList(premise);
46 if (premiseArgumentArrayList.isEmpty()) {
47 continue inferenceIteration;
48 } else {
49 subArgumentArrayLists.add(premiseArgumentArrayList);
50 }
51 }
52 subArgumentArrayLists.add(ArgumentCreator.getArgumentArrayList(
53 inference.getRule().getRuleName()));
54 if (accrual) {listOrWrapper = new ArrayList<Argument>();}
55 makeSubargumentCombinations(listOrWrapper,conclusion,inference.getInferenceScheme(),
56 subArgumentArrayLists,inference.getRule(),new ArrayList<Argument>(),0);
57 if (accrual) {elements.add(listOrWrapper);}
58 }
59 }
60 //ACCRUAL, ACCRUAL UNDERCUTTER
61 if (accrual) {
62 ArrayList<ArrayList<Argument>> combinations = makeAccrualCombinations(elements);
63 for (ArrayList<Argument> subargs : combinations) {
64 list.add(new Argument(conclusion, InferenceScheme.ACCRUAL, subargs, null));
65 undercutterList.add(new Argument(subargs));
66 }
67 }
68 }
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The parameters of the fill method are the ArgumentArrayList that is to
be filled and the corresponding accrual undercutter list. First some variables
are declared. The variable conclusion in line 3 is the conclusion for which
arguments are tried to be constructed. The variable elements in line 4 will
store lists of possible elements of accrual arguments if accrual is used. The
variable listOrWrapper in line 5 is a list to which the generated arguments will
be added. If accrual is not used, this list is the ArgumentArrayList that is
being filled. If accrual is used, listOrWrapper is a different wrapper ArrayList
for every different inference, and will be stored in elements; the arguments in
the wrappers in elements will be combined into accrual arguments and at the
end of this method these will be added to the ArgumentArrayList that is being
filled.

Now the algorithm will search for possible inferences with the desired con-
clusion. In lines 7 to 12, it is checked whether the conclusion can be derived
directly from a fact in the belief base. If so, an argument with inference scheme
from fact is added. Lines 14 to 19 do the same with inference scheme from rule.
If the conclusion is of the right type to be the conclusion of inference scheme
DKD, all possible arguments with this inference scheme are added in lines 21
to 35. In lines 38 to 59, for every Inference with the right conclusion in the
inferenceBase of the BeliefBase (recall from Chapter 4, Section 4.3 that this
contains inferences with schemes rule application, positive practical syllogism
and negative practical syllogism), the ArgumentArrayLists of the premises and
the rule (which is strictly speaking also a premise) are collected. If one of them
is empty (if there are no arguments for some premise), the Inference is skipped.
Otherwise all possible combinations of subarguments are made by the method
makeSubargumentCombinations (not listed), and the corresponding arguments
are added. If accrual is not used, all arguments have now been added to the
ArgumentArrayList, and the method is finished.

If accrual is used, the arguments generated so far will become the elements
(subarguments) of accrual arguments. Recall that no two subarguments of an
accrual may have the same top inference (see Chapter 3, Section 3.1.3). This
is the reason that in the variable elements all arguments with the same infer-
ence are stored together in a wrapper. The method makeAccrualCombinations
(not listed) makes all possible combinations of subarguments with zero or one
occurrence of every inference. The arguments (both with top inference scheme
accrual and with top inference scheme accrual undercutter) that can be made
with these lists of subarguments are added in lines 61 to 67.

5.2 Construction of argument games

5.2.1 Global approach

Argument games are created by the playGame method of the Reasoner class.
Basically, the algorithm is a recursive iteration over lists of replies. A Reply
object contains an argument, and it has an attack type and a target argument.
For each argument, a list of replies (containing its attackers) can be obtained
by calling its getReplies method. An attack type can be rebuttal, alternative,
undercut, or the dummy type start, which is used for the first move. Before the
first call to playGame, the ArgumentArrayList for the query is turned into a list
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of replies with attack type start (except when it is empty, in that case no game
can be played because there are no arguments for the query). Then playGame
is started with player pro, the list of start replies, and target 0. The first move
contains the argument of one of the start replies. For every next move, the
player is switched, and a reply is considered to the last move that has replies
left that were not tried before. If the argument of the reply can be used as a
legal move according to the rules of the specific game that is played, that move
is added to the game. Otherwise the next possible reply is considered, until one
of the players has no possible replies left, in which case the game is ended.

5.2.2 Algorithm

The playGame method of the Reasoner class is listed in Listing 5.2. The method
starts in line 3 by iterating over the replies. Until line 46, the rules of the specific
argument game that is played are applied; if the argument of the reply that is
currently considered cannot be used in a legal move, the reply is skipped and
the next one will be considered.

If the given player was the last player to move, it is not his turn and the
game is stopped (lines 4 to 6). The first move has role p (lines 10-11). In the
GP-game, if an epistemic argument is put forward in this move and a practical
argument was put forward in the target of this move, then the role of this move
is o; otherwise it is o if it was p in the target and p if it was o in the target
(lines 12-15). By default, roles alternate (lines 16-18). In the G-game and in
the epistemic part of the GP-game, a player with role p may not repeat any
arguments in the same line of dispute (lines 19-24). In the P-game and in the
practical part of the GP-game, a player with role p may not repeat the other
player’s arguments (lines 25-29), and a player with role o may not repeat his
own arguments in the same line of dispute (lines 30-33). Moves must defeat
their target; if the attack type is rebuttal or alternative, the argument must be
at least as strong as the target argument (lines 34-40). If the target of a move
by p is not the directly preceding move, all moves between the target and this
move are marked as backtracked (lines 41-46).

If the argument of the current reply satisfies all requirements, a new move
containing this argument is added to the game (lines 47-50). In the P-game
and in the practical part of the GP-game, if a player with role o repeats an
argument of the other player (a so-called eo ipso move), this line of dispute is
ended (lines 51-56). If a player repeats his own argument in the same line of
dispute, this line of dispute is ended (lines 57-59). If the line of dispute is not
ended, playGame is called again, now with the other player and a list of replies
to the argument that was just moved. Since this recursive call is made inside
the iteration over replies, games are created depth-first.
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Listing 5.2: Reasoner.playGame
1 private void playGame(Player player, ArrayList<Reply> replyList, int targetMove)
2 throws Exception {
3 replyLoop: for (Reply reply : replyList) {
4 if (isLastPlayer(player)) {
5 return;
6 }
7 Argument argument = reply.getArgument();
8 AttackType attackType = reply.getAttackType();
9 Role role;

10 if (targetMove == 0) {
11 role = Role.P;
12 } else if (semantics == Semantics.E P &&
13 game.get(targetMove).getArgument().getType() == Type.PRACTICAL &&
14 argument.getType() == Type.EPISTEMIC) {
15 role = Role.O;
16 } else {
17 role = game.get(targetMove).getRole().getOtherRole();
18 }
19 if (semantics == Semantics.GROUNDED ||
20 (semantics == Semantics.E P && argument.getType() == Type.EPISTEMIC)) {
21 if (role == Role.P && playedBeforeInThisLine(argument, targetMove)) {
22 continue replyLoop;
23 }
24 }
25 if (semantics == Semantics.PREFERRED CREDULOUS ||
26 (semantics == Semantics.E P && argument.getType() == Type.PRACTICAL)) {
27 if (role == Role.P && playedBefore(argument, player.getOtherPlayer())) {
28 continue replyLoop;
29 }
30 if (role == Role.O && playedBeforeInThisLine(argument, targetMove, player)) {
31 continue replyLoop;
32 }
33 }
34 if (attackType == AttackType.REBUTTAL ||
35 attackType == AttackType.ALTERNATIVE) {
36 double strengthNeeded = reply.getTarget().getStrength();
37 if (argument.getStrength() < strengthNeeded) {
38 continue replyLoop;
39 }
40 }
41 int thisMoveID = moveID;
42 if (role == Role.P && thisMoveID != targetMove+1) {
43 for (int i = targetMove+1; i < thisMoveID; i++) {
44 game.get(i).backtrack();
45 }
46 }
47 Move move = new Move(thisMoveID,player,role,argument,targetMove,reply.getTarget(),
48 attackType);
49 game.put(thisMoveID,move);
50 moveID++;
51 if (semantics == Semantics.PREFERRED CREDULOUS ||
52 (semantics == Semantics.E P && argument.getType() == Type.PRACTICAL)) {
53 if (role == Role.O && playedBefore(argument, player.getOtherPlayer())) {
54 return;
55 }
56 }
57 if (playedBeforeInThisLine(argument, targetMove, player)) {
58 return;
59 }
60 Player otherPlayer = player.getOtherPlayer();
61 ArrayList<Reply> nextReplyList = argument.getReplies();
62 playGame(otherPlayer,nextReplyList,thisMoveID);
63 }
64 }
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Examples

This chapter discusses some examples, mostly taken from the literature, and
describes the behaviour of the program compared to the original examples.
This also illustrates one benefit of implementation, since any difference between
the original examples and the behaviour of the program may indicate a flaw in
the original example or theory. Section 6.1 deals with examples that illustrate
e-p-semantics, Section 6.2 with examples that illustrate the practical syllogism
and accrual1.

6.1 E-p-semantics

The following examples are taken from Prakken’s paper on e-p-semantics [13],
section 5. For each example, first the original example is presented and then
the program’s treatment of the same example is presented and discussed.

6.1.1 Example 1

The first three examples use an inference scheme like rule application. This is
the belief base: p⇒ Dq, r ⇒ ¬Dq, s⇒ p, t⇒ ¬p, s, r, t.

According to Prakken the following GP-games can be played for Dq:

pro1[p]: s, s⇒ p, p⇒ Dq, so Dq
con1[o]: r, r ⇒ ¬Dq, so ¬Dq
pro2[p]: repeats pro1

pro1[p]: s, s⇒ p, p⇒ Dq, so Dq
con′

1[o]: t, t⇒ ¬p, so ¬p
pro′

2[p]: s, s⇒ p, so p
con′

2[o]: repeats con′
1

con lost the first game with only p-arguments but won the second game
with a g-argument, so pro has no winning strategy for Dq. However, he has
one for ¬Dq:

1All examples of this chapter can be found in the folder epr/examples.
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pro′
1[p]: r, r ⇒ ¬Dq, so ¬Dq

con′′
1 [o]: s, s⇒ p, p⇒ Dq, so Dq

pro′′
2 [p]: repeats pro′

1

Prakken concludes that the only action alternative with justified support
is for ¬Dq. This agrees with the semantics: the e-arguments pro′

2 and con′
1

defeat each other so they are not in the grounded extension of AF . Then they
are not in Ag so the p-argument pro1, which has pro′

2 as a subargument, is
also not in Ag. So AF has a unique e-p-extension, containing con1 = pro′

2.
The program uses the following belief base (see also Figure 4.2):

Dq<-p 0.8. p<-s 0.8. s. t.

~Dq<-r 0.8. ~p<-t 0.8. r.

With query Dq the following game is played:

1. pro/p: s, p<-s, Dq<-p, so Dq

2. con/o →1: r, ~Dq<-r, so ~Dq

3. pro/p →2: repeats 1
4. con/o →1: t, ~p<-t, so ~p

5. pro/p →3: s, p<-s, so p

4. con/o →4: repeats 4

This game combines the two games that were played in the original example.
The first three moves are exactly the same as in the first game. Then con
backtracks, he plays his good move from the second game and wins. Note that
con only backtracked because of the extra rule to keep games shorter, otherwise
he would have targeted the third move. Prakken does not use this rule, so it
appears that the first game of the original example was not terminated, and
pro did not win at all.

With query ~Dq the following game is played (see also Figure 4.3):

1. pro/p: r, ~Dq<-r, so ~Dq

2. con/o →1: s, p<-s, Dq<-p, so Dq

3. pro/p →2: repeats 1

This game is exactly the same as in the original example.

6.1.2 Example 2

The second example uses the same belief base as the first, extended with fact
p. Now pro also has a winning strategy for Dq, since Prakken assumes that
purely factual arguments cannot be defeated, so con cannot now win as in the
second game above:

pro1[p]: s, s⇒ p, p⇒ Dq, so Dq
con′′′

1 [o]: t, t⇒ ¬p, so ¬p
pro′′′

2 [p]: p

Prakken observes that a choice must still be made what to do since the trivial
winning strategy for ¬Dq still stands. Again this agrees with the semantics:
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pro1’s subargument pro′
2 is now in the grounded extension of AF so pro1 is

in Ag. Since pro1 defeats its only defeater in Ag, which is con1, there are now
two e-p-extensions, one containing pro1 and the other containing con1.

For the program, the belief base is also extended with fact p. With query
Dq the following game is played:

1. pro/p: p, Dq<-p, so Dq

2. con/o →1: r, ~Dq<-r, so ~Dq

3. pro/p →2: repeats 1

The first move of this game contains a different argument than in the original
example; it uses the fact p as a subargument instead of an argument with the
fact s and the rule p<-s. This is due to the fact that the algorithm searches
first for facts, and then for other inferences. Both arguments are generated, but
the one that was generated second is not used in the game because pro has
already won and does not need it. Because this other argument is used, con
cannot defeat it with the argument for ~p, since it is not strong enough.

6.1.3 Example 3

The third example illustrates a role switch. This is the belief base: p ⇒ Dq,
r ⇒ ¬Dq, s⇒ r, t⇒ ¬r, p, s, t.

pro has a winning strategy which includes a role switch:

pro1[p]: p, p⇒ Dq, so Dq
con1[o]: s, s⇒ r, r ⇒ ¬Dq, so ¬Dq
pro2[o]: t, t⇒ ¬r, so ¬r
con2[p]: s, s⇒ r, so r
pro3[o]: repeats pro2

Since con now has role p in the game on r, con is not allowed to repeat
con2 and loses.

The program uses the following belief base:

Dq<-p 0.7. r<-s 0.8. p. t.

~Dq<-r 0.8. ~r<-t 0.8. s.

With query Dq the following game is played:

1. pro/p: p, Dq<-p, so Dq

2. con/o →1: s, r<-s, ~Dq<-r, so ~Dq

3. pro/o →2: t, ~r<-t, so ~r

4. con/p →3: s, r<-s, so r

5. pro/o →4: repeats 3

This game is exactly the same as the one in the original example. Note that
the argument of the first move is less strong than the argument of the second
move. If this were not the case, pro could have repeated the first argument in
the third move and would have won the game without a role switch.



36 6. Examples

6.1.4 Example 4

The next two examples use an inference scheme like the practical syllogism.
This is the belief base: a1 ∧ s ⇒ p, a2 ⇒ p, r ⇒ s, a1 ⇒ ¬p, a2 ⇒ ¬q, r, Dp,
Dq.

pro has a winning strategy for an argument for Da1:

pro1[p]: r, r ⇒ s, so s; also a1 ∧ s⇒ p and Dp, so Da1

con1[o]: a2 ⇒ p and Dp, so Da2

pro2[p]: a2 ⇒ ¬q and Dq, so ¬Da2

con2[o]: a1 ⇒ ¬p and Dp, so ¬Da1

pro3[p]: repeats pro1

In a similar way there is a winning strategy for Da2 so Prakken concludes
that there are two e-p-extensions, one with arguments for Da1 and ¬Da2 and
one with arguments for Da2 and ¬Da1. Note also that AFg = AF so these are
also preferred extensions of AF .

The program uses the following belief base:

p<-a1,s. ~p<-a1. Dp.

p<-a2. ~q<-a2. Dq.

s<-r. r.

With query Da1 the following game is played:

1. pro/p: r, s<-r, Dp, p<-a1,s, so Da1

2. con/o →1: Dp, ~p<-a1, so ~Da1

3. pro/p →2: repeats 1
4. con/o →1: Dp, p<-a2, so Da2

5. pro/p →4: Dq, ~q<-a2, so ~Da2

With query ~Da1 the following game is played:

1. pro/p: Dp, ~p<-a1, so ~Da1

2. con/o →1: r, s<-r, Dp, p<-a1,s, so Da1

3. pro/p →2: repeats 1

With query Da2 the following game is played:

1. pro/p: Dp, p<-a2, so Da2

2. con/o →1: Dq, ~q<-a2, so ~Da2

3. pro/p →2: repeats 1
4. con/o →1: r, s<-r, Dp, p<-a1,s, so Da1

5. pro/p →4: Dp, ~p<-a1, so ~Da1

With query ~Da2 the following game is played:

1. pro/p: Dq, ~q<-a2, so ~Da2

2. con/o →1: Dp, p<-a2, so Da2

3. pro/p →2: repeats 1
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The first of these games resembles the game from the original example. The
only difference is the order in which con moves the two defeaters of the first
argument.

In this case there are indeed two e-p-extensions, one containing arguments
for Da1 and ~Da2 and one containing arguments for Da2 and ~Da1. But there is
a third e-p-extension that contains the arguments for ~Da1 and ~Da2.

6.1.5 Example 5

This example uses the same belief base as the fourth, extended with rule t⇒ ¬s
and fact t. Then in the argument game for Da1 con can win by attacking pro1

with an e-argument for ¬s, defeating its subargument for s (but also defeated by
it). Prakken concludes that the arguments for s and ¬s are both not in Ag, so
pro1 is also not in Ag so there is a unique e-p-extension, containing arguments
for Da2 and ¬Da1.

The program does exactly what is said in the original example: con adds
a move that attacks the argument for Da1 with an argument for ~s. Then pro
moves an argument for s, but con repeats his move and wins. Thus pro has no
winning strategy for Da1 anymore. However, he still has winning strategies for
Da2, ~Da1 and ~Da2. Only the arguments for Da2 and ~Da2 defeat each other,
so there is not one e-p-extension, but two: one containing the arguments for
Da2 and ~Da1, and one containing the arguments for ~Da1 and ~Da2.

6.2 The practical syllogism and accrual

6.2.1 Simple example

This example illustrates alternative defeat and accrual undercut. This is the
belief base:

b<-a. b<-d. Db.

c<-a. Dc.

Three accrual arguments can be made for Da, and one accrual undercutter:

A:

Db
ff

Db
accr

r1:b<-a
fr

r1:b<-a
accr

Da
pps

Dc
ff

Dc
accr

r2:c<-a
FR

r2:c<-a
accr

Da
pps

Da
accr

B:

Db
ff

Db
accr

r1:b<-a
fr

r1:b<-a
accr

Da
pps

Da
accr C:

Dc
ff

Dc
accr

r2:c<-a
fr

r2:c<-a
accr

Da
pps

Da
accr

D:

Db
ff

Db
accr

r1:b<-a
fr

r1:b<-a
accr

Da
pps

Dc
ff

Dc
accr

r2:c<-a
fr

r2:c<-a
accr

Da
pps

au

The accrual arguments that have Db as a premise (A and B) are defeated
by an alternative argument:
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E:

Db
ff

Db
accr

r3:b<-d
fr

r3:b<-d
accr

Dd
pps

Dd
accr

The following game is played for query Da (with grounded semantics):

1. pro/p: A
2. con/o →1: E (alternative)
3. pro/p →2: B (alternative)
4. con/o →3: E (alternative)
5. pro/p: B
6. con/o →5: E (alternative)
7. pro/p →6: A (alternative)
8. con/o →7: E (alternative)
9. pro/p: C
10. con/o →9: D (accrual undercut)

This game has three lines of dispute. In the first two lines, which only
differ in the order of the moves, con attacks with an alternative argument. In
the third line he uses the accrual undercutter. Note that this only happens
because grounded semantics is used; with preferred credulous or e-p-semantics
pro would have repeated argument A in the third move and won.

Since in the implementation an accrual can never be weaker than its el-
ements, accrual undercut is never strictly necessary (it does not change the
outcome of any games). However, this example shows that the mechanism does
work allright.

6.2.2 Jogging example

This example is an adapted version of Prakken’s [12] jogging example. It is
about a jogger John who wants to stay fit. Jogging fulfills this desire, but it is
also hot and raining outside, and John does not want to be hot or wet. The
example can be formalised as follows as follows:

fit<-jogging. Dfit.

wet<-jogging,rain. D~wet. rain.

hot<-jogging,heat. D~hot. heat.

With e-p-semantics, the practical syllogism turned on, accrual turned on,
and the number of promoted desires as accrual strength mechanism, pro wins
the game for query ~Djogging in one move with the following argument, which
fulfills two desires (D~wet and D~hot):

D~wet
ff

D~wet
accr

rain
ff

rain
accr

r2:wet<-jogging,rain
fr

r2:wet<-jogging,rain
accr

~Djogging
nps

D~hot
ff

D~hot
accr

heat
ff

heat
accr

r3:hot<-jogging,heat
fr

r3:hot<-jogging,heat
accr

~Djogging
nps

~Djogging
accr

There is a rebutting argument, but it is not strong enough to defeat the first
argument, because it only fulfills one desire (Dfit):
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Dfit
ff

Dfit
accr

r1:fit<-jogging
fr

r1:fit<-jogging
accr

Djogging
pps

Djogging
accr

However, in the original example, the accrual of the two arguments for not
wanting to go jogging was supposed to be weaker than each of its elements, so
that if it was only hot or only raining, John would not want to go jogging, but if it
is both hot and raining, John would want to go jogging anyway. Unfortunately,
this implementation cannot handle that.

6.2.3 Judge example

This example is taken from Bench-Capon and Prakken’s paper on the practical
syllogism and accrual [4]. It is about a judge who must determine the best
way to punish (pu) a criminal found guilty. He has three options: imprison-
ment (pr), a fine (fi) and community service (cs). Besides punishment there
are three more goals at stake, deterring the general public (de), rehabilitating
the offender (re) and protecting society from crime (pt). The judge must ensure
that the offender is punished, and so pu will be the most important goal, but
the method of punishment chosen will depend on the other goals that can be
achieved by the various methods of punishing the offender. The judge believes
that imprisonment promotes both deterrence and protection of society, while it
demotes rehabilitation of the offender. He believes that a fine promotes deter-
rence but has no effect on rehabilitation or the protection of society since the
offender would remain free, and he believes that community service has a pos-
itive effect on rehabilitation of the offender but a negative effect on deterrence
since this punishment is not feared.

This gives the following belief base:

pu<-pr. de<-pr. de<-fi. Dpu. Dre.

pu<-fi. pt<-pr. ~de<-cs. Dpt.

pu<-cs. ~re<-pr. re<-cs. Dde.

The interesting queries are Dpr, ~Dpr, Dfi, Dcs, and ~Dcs. Arguments can
be created for all queries, but the outcome of a game depends on the accrual
strength mechanism that is used. If all equal or strongest link is used, pro
wins all games, which can be quite long (up to 125 moves for query Dfi). If
the number of promoted desires is used, games are shorter (at most 16 moves),
and pro only wins the games for queries Dpr and ~Dcs, since that way the
largest number of desires is fulfilled. However, ideally both the promoted and
the demoted values would be taken into account, like in the original example.
Unfortunately, this implementation cannot do that.



Chapter 7

Discussion and conclusion

7.1 Related research

Within the ASPIC project [2], much work has been done on modelling and
implementing argument-based epistemic and practical reasoning. ASPIC Deliv-
erable 2.6 [1] presents two general argumentation systems. The first one is used
for epistemic inference. South has implemented this in a Java program called
the ASPIC Inference Engine. This program is based on Vreeswijk’s Argumen-
tation System [18], which is a prototype implementation of his algorithm that
computes minimally grounded and admissible defence sets in argument systems
[19]. The Inference Engine allows the user to enter (defeasible) knowledge in a
Prolog-like predicate language and to pose a query. The algorithm then tries
to construct arguments for and against the query statement and returns their
status according to grounded or preferred credulous semantics. The second
argumentation system of ASPIC is one for decision making, and contains the
epistemic inference system. This second system has also been implemented, as
the ASPIC Decision Component, which uses the Inference Engine.

Like the Epistemic and Practical Reasoner, the ASPIC Decision Component
is an implementation of argument-based practical reasoning. There are how-
ever many differences. Whereas the Epistemic and Practical Reasoner takes
one query and determines its status, the ASPIC Decision Component takes a
set of possible decisions and recommends some of them, depending on which
decision criteria are used. So epistemic and practical reasoning are disjoint, not
interleaved as in the Epistemic and Practical Reasoner. The language differs
too. ASPIC uses a predicate language without any modal operators, while the
language of Epistemic and Practical Reasoner is propositional with a modality
D standing for desire. Another difference is that the ASPIC Decision Compo-
nent only uses grounded or preferred credulous semantics, not e-p-semantics.
The ASPIC approach does use some form of the practical syllogism, but since
practical arguments are not evaluated according to the semantics of the argu-
ment framework, but by separate decision criteria, rebuttal between positive and
negative practical syllogism arguments and alternative defeat are not modelled.
Accrual of arguments is not modelled at all.

Another approach to argument-based practical reasoning is developed by
Pollock [10]. He uses practical reasoning not only to adopt goals, but also to
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construct plans. Pollock models plans as ordered sets of goals, subgoals and
actions with causal links between actions and (sub)goals. This system has been
implemented in the OSCAR architecture for defeasible reasoning [9]. Arguments
for plans interact in different ways than arguments for goal or desire adoption,
so Pollocks system cannot easily be compared to the Epistemic and Practical
Reasoner.

Finally, South et al. [17] have implemented a reasoner that can determine the
status of an argument according to grounded or preferred credulous semantics
by playing a G-game or a P-game. However, this system does not generate any
arguments. Instead, a complete argumentation framework in the sense of Dung
[6], with a set of arguments and a defeat relation, must be provided by another
application.

7.2 Results

The goal of this implementation was to see whether the implemented theories
are correct and completely specified, and if not, what changes and additions
are needed to make them better or more complete. This section presents an
overview per topic of the various aspects of that topic. It will be discussed which
problems arose, how some of these problems were solved, and which problems
remain.

7.2.1 E-p-semantics

Like Dung’s [6] abstract argumentation framework, Prakken’s [13] e-p-argumen-
tation framework is abstract. The internal structure of arguments is unspec-
ified; the only requirement is that the set of arguments can be split into a
set of epistemic arguments and a set of practical arguments, based on a dis-
tinction between epistemic and practical formulas. Prakken does not specify
how this distinction should be made, but in his examples he defines formulas
with occurrences of a modal operator D standing for desire as practical, and all
other formulas as epistemic. Since such a modal operator is required anyway by
Bench-Capon and Prakken’s [4] theory, this definition was adopted here too.

As for the internal structure of arguments, a choice has been made to model
them as trees of chained defeasible inferences. Basic inference schemes are from
fact, from rule and rule application, and practical syllogism and accrual schemes
have been added to accommodate the other topics. This again agrees with
Prakken’s examples: all examples can be modelled in the implemented formal-
ism.

The e-p-semantics and the GP-game are fully specified. A backtracking
facility was added to the GP-game to ensure that playing just one game is
sufficient to answer a query, instead of needing to find a winning strategy. This
was also done for the G-game and the P-game, and since the many similarities
between these games and the GP-game, this was quite straightforward.

Some errors were found in Prakken’s examples (see Chapter 6, Section 6.1),
but these are minor and do not affect the correctness of the theory.
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7.2.2 The practical syllogism

A first requirement of Bench-Capon and Prakken’s [4] system for practical rea-
soning with the practical syllogism is the modal operator D. Since the use of
this operator is quite restricted (it cannot be nested), it could easily be added
to the language. The adoption of the modal operator also provides an easy way
to distinguish between epistemic and practical formulas, as was mentioned in
Section 7.2.1. The operator D is of type KD insofar as this applies to formulas
where D is not nested. This was modelled as an inference scheme (DKD), which
works well. Also, defaults (rules) may not contain the modality D. This was
modelled as a restriction that the rule application inference scheme may not be
used on practical rules. Since other theories do not have this restriction (for
example, Prakken [13] uses rule application on practical rules in his examples),
it is only enforced when the use of the practical syllogism is turned on.

The positive and negative versions of the practical syllogism are fully spec-
ified by Bench-Capon and Prakken and were implemented as the inference
schemes positive practical syllogism and negative practical syllogism.

Bench-Capon and Prakken only defined alternative defeat for use with ac-
crual, while the practical syllogism can also be used in systems that do not use
accrual. However, the idea behind alternative defeat was very clear, so it was
not hard to make an appropriate alternative definition without accrual.

7.2.3 Accrual of arguments

The accrual and accrual undercutter inference schemes are fully specified by
Prakken [12], and were implemented as such. Prakken also requires that all
conclusions of inferences of other types are labelled with the premises of the
applied inference, and that the accrual inference scheme takes any set of labelled
versions of a certain formula and produces the unlabelled version. This has been
implemented in a different, but equivalent way: all subarguments of an accrual
(or accrual undercutter) argument must have a top inference scheme that is not
accrual.

A difference between the theory and the implementation is that in the im-
plementation, accrual undercutters do not have a conclusion. This is due to the
fact that the language that is used cannot express inferences. This is not very
elegant, but it has no consequences for the working of the program.

One point was found upon which the accrual mechanism could be made
more efficient: by adding the restriction that accrual cannot be applied to two
elements with the same label or top inference (see Chapter 3, Section 3.1.3). If
this restriction is used, less arguments can be created, but it has no influence
on the result of a query.

The definition of accrual strength turned out to be a major problem (see
the discussion in Sections 2.3 and 6.2). Prakken [12] states that in general, the
strength of an accrual cannot be computed from the strengths of its elements,
but he gives no indication as to how accrual strength could be defined. Bench-
Capon and Prakken do give a start of a definition, but do not complete it. To
implement accrual strength in a satisfactory way, the way strength is modelled
in the current implementation would have to be radically altered. A solution to
this problem requires more research.

Furthermore, because so many accrual arguments can be created, argument
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games can become very long. This is inherent to the theory and can become
a problem if accrual is to be used in real applications. However, since many
accrual arguments are similar to each other, some improvement may be gained
if argument games are altered to take the internal structure of arguments into
account. Further research is needed for this.

7.2.4 Conclusion

No errors were encountered in any of the implemented theories. However, some
theories were underspecified. Prakken’s theory of e-p-semantics [13] is only
underspecified with respect to the internal structure of arguments, and this is
explicitly meant to be so. The only thing that was not specified in Bench-Capon
and Prakken’s theory of the practical syllogism [4] was a definition of alternative
defeat without accrual, and this was added without problem. Of the three topics,
accrual turned out to be the most problematic. Defining accrual strength may
be possible, but this requires more research, and it was not implemented in
a satisfactory way. However, implementation did turn up a way to make the
accrual system more efficient.

These results can be used in several ways. It shows that the theories of e-p-
semantics and the practical syllogism are fully specified (with just one addition
in the case of the practical syllogism) and could be used in real applications
such as automatic reasoning systems. It also shows that the research of accrual
of arguments has not yet reached this stage, and that further research on this
topic has to focus on defining preferences on sets of promoted and demoted
goals, upon which a definition of accrual strength can be based.

7.3 Further work

As was discussed before, more research is needed to accommodate accrual
strength. This requires a radical change in the way strength is modelled in
the current implementation. Also, games with accrual arguments may become
more efficient if the algorithm takes the internal structure of (often similar)
accrual arguments into account.

Another addition to the program that would be nice is a more elaborate
notion of undercut. Other approaches often incorporate a form of undercut
which is not a general undercutter scheme like accrual undercut, but a user-
defined undercutter for one particular inference. As mentioned in Chapter 3,
Section 3.1.5, this would require the language to be extended so that inferences
can be expressed in it. If this is done, accrual undercutters can have conclusions
too, which would be more elegant than the current situation.

Furthermore, it would be nice to make an extension to a first-order predicate
language, so that beliefs can be represented in a less restricted way.

Finally, the theories that have been implemented and the topics that they
model are only a part of argument-based practical reasoning. The current im-
plementation could be extended with approaches to other topics of argument-
based practical reasoning, as long as they can be combined with the currently
implemented ones.



Appendix A

User manual

Getting started

1. Download the zip file containing the program from
http://www.wietskevisser.nl/research/epr.

2. Unzip this file and save the contents.

3. Doubleclick the jar file; the GUI will open.

Making a query

You can either load an existing belief base into the editor (File > Open), or enter
one yourself. Example belief bases can be found in the folder epr/examples.
A query must always be entered by hand. Both the belief base and the query
should adhere to the syntax specified below. All white space and comments
(starting with ‘//’ and ending with a newline character) are ignored.

beliefBase ::= ( fact | rule )+

fact ::= formula ( strength )? "."

formula ::= ( ( "~" )? "D" )? literal

literal ::= ( "~" )? atom

atom ::= ["a"-"z"] ( ["a"-"z","A"-"Z","0"-"9"] )*

strength ::= ( "0." ( ["0"-"9"] )+ ) | "1"

rule ::= ( ruleName ":" )? formula "<-" formula ( "," formula )*

( strength )? "."

ruleName ::= atom

query ::= formula "."

Now you can select the query options (semantics, practical syllogism, accrual,
strength and accrual strength) and the log level you want in the menu and press
the query button. The results or any errors will be shown in the log.

Documentation

The API documentation (Javadoc) can be accessed through the GUI (Help >
Javadoc) or directly in the folder epr/javadoc (open index.html). The Schema
definitions that are used for the XML output can be found in the folder epr/xml.
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