
1

Buffering Algorithms for Modular, Decentralized Controlled Material Handling
Systems

S.Sohrt, Z. Seibold, T. Krühn, L.Prössdorf, L. Overmeyer, K. Furmans

ABSTRACT

In this paper we present two conceptually
different methods for buffering packets on
modular, decentralized controlled conveyors.
At first, we give a short overview over current
research projects. Since buffering is closely
related to the storage of goods, we also
address modular, decentralized controlled
storage systems. We then show the general
outline of the first algorithm which works with
static assignment of buffer spaces. This
algorithm assigns a value to every buffer space
to assess its suitability. The suitability is
defined by the likelihood of buffered packets
interfering with the regular transport process.
Packets are buffered on the most suitable
buffer space and not moved until they get
requested. The second algorithm is using
dynamic assignment of buffer spaces. Thus,
buffered packets can still be moved. We
present the emerging behavior of this algorithm
arising from the dynamic reassignment of
buffer spaces. Both algorithms are designed in
such a way that collisions and deadlocks
cannot occur.

1 INTRODUCTION

Conveyors and storage systems face new
challenges: Automated systems are too
inflexible to adapt to the rapidly changing
demands in structure, volume and processes
of today’s material handling processes [1, 2].
Therefore, systems have been developed that
are highly automated, flexible and reusable [2,
3].This is achieved by having a modular design
and a decentralized control.

A decentralized control that reconfigures itself
is necessary to ensure quick response times
for layout changes. Due to the large number of
modules in a system, it is not possible to
program an individual control for each element.
The solution is a decentralized control for the
conveyors modules, thus all modules running
the same program without a central
supervision. Since the control is distributed, the
system becomes less prone to a complete
breakdown: Failure of single modules does not
necessarily affect the function of the whole
system. [3, 4, 5]

In this paper we will show that decentralized
controlled systems are capable of controlling
the transport process while finding suitable
buffer spaces at the same time. Buffering is
different from storing packets, since both the
number of packets and the storage time is
much lower than for storing [6].

This paper is organized as follows: In section
2, we introduce research projects in the field of
decentralized controlled material handling
systems. The Cognitive Conveyor and
GridSorter are presented in more detail as
section 3 describes buffering algorithms for
these systems. Two different approaches to
assign buffer spaces are presented before we
conclude in section 4.

2 MATERIAL HANDLING SYSTEMS WITH
DECENTRALIZED CONTROL

In this paper we will only consider modular
conveyors with a decentralized control that
have proven the mechanical feasibility of their
approach. One key difference between the
different systems is the size of the modules.

The main challenge of all projects is achieve
efficient and deadlock-free system behavior
while keeping the decentralized control
algorithms as simple as possible. It has been
shown that modular conveyors with a
decentralized control are capable of
transporting goods without collisions or
deadlocks. [3, 4, 7]

An example for decentralized controlled
material handling systems is the FlexConveyor
[3, 7] (see Figure 1), a flexible conveying
system built out of multiple, identical modules
that can be easily plugged and unplugged.
One module has at least the size of one
packet. It is optimized for the task of
transporting goods in a user-defined layout. An
item can be introduced into the system at any
source and is transported to its specific
destination. Complex transport tasks of
multiple items with different sources and
destinations can be performed thanks to the
decentralized control and usage of alternative
routes.

2

Figure 1: A conveying network of
FlexConveyor modules [7]

GridStore [8] is a modular and decentralized
controlled storage system. The described
methods have been proven to work on the
FlexConveyor platform. A very high storage
density and a high throughput have been
achieved, which previously have been
considered as conflicting objectives.

KARIS PRO [9] combines the aspects of
conveyors and autonomous guided vehicles.
The vehicles cannot only perform the transport
of single items but are designed to form two
different functional clusters, as shown in Figure
2: As discontinuous cluster, KARIS vehicles
connect to each other in order to transport
huge items. As continuous cluster, several
KARIS vehicles form a conveyor line to realize
high throughput of goods.

Figure 2: Single KARIS vehicle, discontinuous
and continuous cluster

2.1 COGNITIVE CONVEYORS

The goal of the netkoPs research project is to
develop a decentralized control for a modular
conveyor matrix as shown in Figure 3. This
matrix consists of modules that are smaller
than the transported goods. It is capable of
solving material handling tasks such as
conveying, separating and merging [5].

Swiveling roller with

integrated drive

system
Conveyor matrix

Base with

integrated swivel

drive system

Figure 3: Prototype modules and the concept
of a larger module matrix

The modules that form the matrix are not
controlled by a higher-level, centralized control,
but every module has its own control. Since
each transport module is smaller than the
packets, modules must form groups to conduct
the transport process. When several modules
are combined to form a conveyor matrix, it is
mechanically able to solve any transportation
tasks. Each material located on the matrix can
be moved on an individual track. To transport a
packet, a route reservation from source to sink
is necessary. If multiple packets are moving on
the matrix without a previous route reservation,
a deadlock situation can occur.

Base metric

· independent from packet size

· independent from sink

Transport metric

· format: 3x5

· sink: 1

Transport metric

· format: 3x5

· sink: 2

Transport metric

· format: 5x3

· sink: 1

Transport metric

· format: 5x3

· sink: 2

different sinks

d
if
fe

re
n

t
p

a
c
k
e

ts
 s

iz
e

s

... ...

...

...

extends

Figure 4: A new transport metric is generated
for each sink and format.

To plan a route from one point in the matrix to
another, the direction of the best route must be
known in each module. Therefore, each
module determines for all four directions the
estimated virtual cost of moving a
transportation unit in the respective direction.
This procedure extends the distance-vector
algorithm. Due to the two-dimensional

3

spreading of the metric and the small size of
the modules relative to the packets size, the
term field is used to describe the semi-
continuous metric in this work. The metric is
depicted in Figure 4.

2.2 GRIDSORTER

The GridSorter [11] consists of decentralized
controlled conveying modules, for example
FlexConveyors, forming a densely connected
network (see Figure 5). Sources and sinks can
be positioned at any position. In contrast to the
conveyor matrix, the modules have the size of
a packet. The basic functionality of GridSorter
is the sorting of goods. An experimental setup
with a 5x5 grid has been built in order to
demonstrate the functionality (see Figure 6).

Incoming, unsorted

packets

Outgoing, sorted

packets

GridSorter

Figure 5 Schematic representation of

GridSorter

There are three main processes that generate
the system behavior: To detect the topology of
the system every module registers with its
direct neighbors. Hereupon, this connection
information is propagated through the system.
Each module establishes an adjacency matrix
of the complete topology. With this matrix, the
modules are able to compute necessary
information about routes to possible
destinations. The reservation process is
started for every packet and defines the route
of this individual packet to its destination.
During the transport process, the modules
coordinate the movement of the packet.
Thanks to the modular design, further
functionalities such as buffering and
sequencing can be realized by enhancing the
decentralized control algorithm.

Mechanical, electrical and

electronical connection between

neighboring modules

Conveying module with sensors,

actors and control

Figure 6: Technical realization of GridSorter:
The conveying modules and their connections

3 BUFFER ALGORITHMS FOR
DECENTRALIZED CONTROLLED
CONVEYORS

In this chapter we present buffer algorithms for
the Cognitive Conveyor and the GridSorter.
The differences between the two approaches
originate from two factors: First of all, the
underlying routing is fundamentally different.
The modules of the Cognitive Conveyor do not
know the topology of the whole system, but
only a very small local region. Routes are
calculated and reserved by using a metric.
Contrary, the neighboring information of each
module of the GridSorter is propagated
through the complete system. With this
knowledge, the modules coordinate the route
reservation using time windows.

Furthermore, different goals are pursued:
Buffering on the Cognitive Conveyor should be
energy efficient and thus movement of buffered
packets is not permitted. The main objective of
the buffering functionality of GridSorter is to
reach a high buffering capacity. Both
approaches to design the buffer algorithm are
presented in the following two sections.

3.1 STATIC ASSIGNMENT OF BUFFER
SPACES

The buffering of packets is done in two steps.
First a suitable buffer space needs to be found.
Afterwards, the packet is transported to this
space. Since the system is already capable of
transporting packets, the main problem is to
find suitable buffer spaces. Once a space has
been found, the buffer space is treated like a
regular sink and a transport metric is created.
There is one important distinction to make
between sinks and buffer spaces: In contrast to
regular sinks buffer spaces can overlap each
other. Therefore, it is necessary that the

4

modules inform overlapping buffer spaces
once they are in use. We define the following
requirements for buffering on the matrix:

1. The buffering of packets must not lead to a
partial or global deadlock of the system.

2. A criterion must be specified to rate buffer
spaces.

3. Buffered packets should not be moved
once buffered.

In order to meet the first requirement, the
transport system needs to check if there is at
least one buffer space that can be reached by
a packet before entering the system. By having
a criterion to rate buffer spaces, it is possible to
use buffer spaces first that are better suited
than others. The third requirement was
formulated to prevent additional workload on
the system that is created by moving an
already buffered packet to another buffer
space. Nonetheless the system is generally
capable of moving already buffered packets to
another buffer space: In this case the original
buffer space acts as a regular source.

An additional metric is introduced for storing
the suitability of buffer spaces. The new metric
is called buffer metric (shown in Figure 7).

Extends

Base metric

· independent from packet size

· independent from sink

Transport metric

· dependent from

packet size

· dependent from sink

Buffer metric

· dependent from

packet size

· independent from

sink

Figure 7: Relationship between the metrics

The buffer metric can be in three different
states:

1. The module is permanently unsuitable as a
buffer. A reason for this is that the module is
too close to the edge of the matrix or that
buffering a packet on this module would lead to
a deadlock.

2. The module is currently unsuitable as a
buffer. A reason for this that a buffer space is
already occupied by a buffered packet.

3. The module is suitable as a buffer. In this
case it is necessary to calculate a metric value
that is used to rate the buffer space.

In the next chapter we will present a method to
detect if a module is permanently unsuitable
because of a possible deadlock scenario.

3.1.1 Deadlock Avoidance utilizing Reserved
Buffer Spaces

To avoid deadlocks, the system needs to
ensure that only packets can enter the system
when a suitable buffer space is available. This
is not a trivial problem, since communication in
the system is not instantaneous: After a packet
has been buffered on the last available buffer
space, it takes some time until this information
reaches every source. It is therefore necessary
that sources only let packets onto the matrix,
after they made sure that at least one suitable
buffer space is available. This is guaranteed by
the following method: Routes are planned from
the source to the buffer space. The buffer
space is then reserved and this information is
sent back along the planned route to the
source. After this is completed the source
accepts the packet from the preceding system
and transfers it onto the matrix.

Another possible deadlock situation can occur,
when buffered packets fully or partially block
bottlenecks. It is therefore necessary to only
mark modules as possible buffer spaces if it is
guaranteed that a buffered packet will not
obstruct parts of the system. This is achieved
by introducing an initialization phase: During
this phase every source plans routes to every
sink for the biggest known packet size. Every
module that is needed to transport these
packets from any source to any other sink is
marked as permanently unsuitable for
buffering. The algorithm to determine if a buffer
space is suitable is shown in Figure 8.

5

Detect buffer

spaces.

Would using this

buffer space lead to a

deadlock?

Start

[Yes]

Is the buffer space

currently in use?

Mark this

buffer space

as

permanently

unsuitable.

End

Mark this

buffer space

as currently

unsuitable.

Calculate the

rating of the

buffer space.

[Yes]

[No]

[No]

Figure 8: Algorithm to determine the suitability

of a buffer space

After a packet has been buffered it is possible
that it can be blocked by other buffered packet
as shown in Figure 9.

sinksource

buffered

packet

Modules marked as

permanently unsuitable for

buffering.

buffered

packet

buffered

packet

buffered

packet

buffered

packet

buffered

packet

Buffered packets that are blocked by

other buffered packets.

Figure 9: Buffered packets are blocked by
other buffered packets.

The blockage by other buffered packets is
avoided by guaranteeing that every buffered
packet can reach every sink. This is achieved
by reserving routes from the buffered packet to
every sink. If a module is on such a reserved
route, it is marked as currently unsuitable for
buffering. To avoid race conditions between
neighboring buffers paces that can block each
other the routes must be reserved before the

buffer space can be marked as reserved. The
procedure is thus:

1. A preceding system wants to transfer a
packet that needs to be buffered onto the
matrix through a specific source.

2. The source plans a route to a buffer space.

3. The buffer space reserves routes to all
known sinks.

4. The buffer space is reserved.

5. The confirmation of the reservation is sent
back to the source.

6. The source transfers the packet onto the
matrix.

After guaranteeing that a deadlock or a
blockage of the system cannot occur due to
buffered packets, it is necessary to define a
criterion to rate the quality of the buffer spaces.

3.1.2 Criterion-based Choice of Buffer Spaces

The use of some buffer spaces interferes more
with the regular transport process than others.
By introducing a rating it is possible to
differentiate between buffer spaces. Thus it is
possible to use the better suited buffer spaces
first. The chance of interfering with the regular
transport process is increased for every free
side of a buffer packet. The four possible
cases are depicted in Figure 10.

buffered

packet

buffered

packet

buffered

packet

buffered

packet

a) bulge: one free

packet side

b) corner: two free

packet sides

c) edge: three free

packet sides

d) no edge contact: four

free packet sides

Figure 10: Four different buffer scenarios

It therefore makes sense to base the criterion
to rate the buffer spaces on the distance of the
sides of the space to the nearest walls.

3.2 DYNAMIC ASSIGNMENT OF BUFFER
SPACES

The buffering algorithm is started once a
packet without destination enters the system.
Dynamic assignment of buffer spaces means
that buffered packets do not need to stay on

6

the same buffer space once they are in the
system. Contrariwise, they are moved from
one buffer space to another as soon as they
interfere with a planned route of another
packet to its destination. In contrast to the
buffering algorithm described in section 3.1, we
do not use any additional criterion besides
availability to assign buffer spaces.

We postulate the following requirements for
our buffering algorithm:

1. The buffering of packets must not lead to a
partial or global deadlock of the system.

2. We want to achieve efficient system
behavior without using topology information to
rate buffer spaces.

3. Buffered packets are allowed to move on
the grid to clear the way for packets with
destination.

The dynamic assignment of buffer spaces has
the advantage that a high buffer capacity can
be achieved. There are a lot of potential buffer
spaces because the buffered packets do not
permanently block routes. Theoretically, a
system can buffer as many packets as the
number of modules less two. One of the free
modules is used to receive a packet with
destination and the other free module is used
to enable the movement of this packet [11]. Of
course, there is a tradeoff between number of
buffered packets and system throughput.

Because every module can temporarily be a
buffer space, topology information is not
necessary for the assignment of buffer spaces.
With the dynamic assignment of buffer spaces,
buffered packets are moved more frequently.
This could lead – dependent of the specific
buffering task – to higher energy consumption
than with static assignment of buffer spaces.
Also the reservation process gets more
complex as the reservations of all buffered
packets can interfere with each other.

3.2.1 Deadlock Avoidance utilizing Time
Windows

As already mentioned, every module can be a
buffer space. Thus, topology information does
not impact the suitability. Nevertheless, a
criterion has to be defined in order to
guarantee deadlock-free behavior. The next
section will introduces such a criterion.

The reservation process of GridSorter uses
time windows meaning each conveying module
on the chosen route to destination is only
reserved for a specific time window. Thus,
each module does know the currently last
reservation after which it is available open-end.

A packet to be buffered must find a conveying
module where it is allowed to stay infinitely.
The suitability of the conveying module from a
specific moment on is defined as follows:

1. No module is permanently unsuitable as a
buffer as it is not necessary to keep free routes
to every destination.

2. Modules can be temporarily unsuitable as a
buffer space for the following reasons:

2a. The module is not suitable as buffer space
from this moment on because the last
reservation is later than this moment.

2b. The module is not suitable as buffer space
because it is already planned to be a buffer
space for another packet and thus reserved
open-end.

3. The module is suitable as a buffer from this
moment on.

Once a packet without destination is entering
the system, a reservation process is started by
sending the first reservation message. The
module receiving the message checks its
suitability and reacts according the following
rules:

2a. If the module is unsuitable because the last
reservation is later, the reservation message is
forwarded to a neighboring module in a
random direction.

2b. If the module is already used as buffer
space, it accepts the reservation and sends a
new reservation message. This is done to find
a new buffer space for the packet that is
currently occupying the module. Thus, the
incoming packet pushes away the already
buffered packet.

3. If the module is suitable, it confirms the
reservation.

Not only packets to be buffered can push away
other buffered packets, but also packets with a
destination can push them away. Like this, we
want to achieve that these packets reach their
destination as fast as possible.

3.2.2 Emerging Choice of Buffer Spaces

As explained in the previous section,
reservation messages for packets to be
buffered are sent in random directions. No
criterion is used to prefer any direction or to
rate buffer spaces. We expect the following
emerging behavior: Because a buffer space
needs to be available open-end it is more likely
that modules become buffer spaces that are
less used by packets with destination.

7

  


10%

20%

30%

40%

50%

60%

70%

Sources

Sinks

10%

30%

40%

50%

60%

70%

Usage of module

as buffer space

as percentage of

time

20%

Figure 11: Usage of modules as buffer spaces

over time with a coverage of 30% of the layout

with buffered packets

Figure 11 shows a GridSorter layout with four
sources in the north and four destinations in
the south. The assignment of a destination to a
packet is done randomly. Between these
sources there are additional columns with
modules and in the east there is a column that
is not part of any shortest path from the
sources to the destinations.

The layout has 72 conveying modules and 24
packets are buffered permanently. If a buffered
packet is requested and leaves the system, a
new packet to be buffered enters the system.
This corresponds to 30% coverage of the
layout with buffered boxes.

The gray value indicates the usage of the
specific module as a buffer space over time.
We can see that the columns between the
sources and the destinations are less used as
buffer space than the rest of the layout. The
column in the east is used as a buffer space
around 60% of the time. In this specific layout,
the system shows the desired emerging
behavior.

4 CONCLUSION

In this paper we presented two conceptually
different buffering algorithms: One is designed
for the Cognitive Conveyor and the other for
the GridSorter. The main difference between
both algorithms is whether movement of
buffered packets is permitted once they have
reached their buffer space.

The algorithm for the Cognitive Conveyor does
not permit movement of buffered packets.
Therefore, a rating is used to assess the
suitability of possible buffer spaces. The
suitability is defined by the likelihood of
buffered packets interfering with the regular
transport process. In contrary, the movement
of packets is an integral part of the buffer
algorithm for the GridSorter. Buffered packets
are moved to dynamically assigned buffer
spaces in order to clear the way for packets on

the way to their destination. Movement of
buffered packets has the advantage of high
buffer capacity, but it could lead to higher
energy consumption. Collisions and deadlock
scenarios cannot occur in either of the
algorithms.

We have shown that it is possible to realize
high level logistic functionalities without a
centralized control. Modular, decentralized
controlled material handling systems offer the
opportunity to accomplish complex
intralogistics tasks with the same mechanical
modules. We have developed buffer algorithms
because they bridge the gap between storage
and transportation.

We expect modular, decentralized controlled
systems to become more mature. For this
purpose different operational scenarios should
be developed. It makes sense that one
operational scenario is about the combination
of all different systems. The next step is to
analyze the influence of buffering on the
throughput of the system. Furthermore,
buffering is the base for realizing other high
level functionalities like sequencing.

5 ACKNOWLEDGMENT

The research project netkoPs is supported by
the “Bundesministerium für Bildung und
Forschung“ of the German state. The research
project GridSorter is supported by the
„Bundesministerium für Wirtschaft und Energie
aufgrund eines Beschlusses des Deutschen
Bundestages“.

6 REFERENCES

[1] Cox, W. M.; Alm, R.: The Right Stuff:
America’s Move to Mass Customization. In:
Federal Reserve Bank of Dallas, Annual
Report (1998), S. 3–26

[2] Furmans, K.; Schönung, F.; Gue, K. R.:
Plug-and-Work Material Handling Systems. In:
Progress in Material Handling Research
(2010), S. 132–142

[3] Mayer, S.; Furmans, K.: Wissenschaftliche
Berichte des Institutes für Fördertechnik und
Logistiksysteme der Universität Karlsruhe
(TH). Bd. 73: Development of a completely
decentralized control system for modular
continuous conveyors. Universitätsverlag
Karlsruhe, 2009

8

[4] Krühn, T.; Radosavac, M.; Shchekutin, N.;
Overmeyer, L. (2013): Decentralized and
Dynamic Routing for a Cognitive Conveyor,
International Conference on Advanced
Intelligent Mechatronics (AIM), S. 436-441.
Wollongong, Australia: IEEE/ASME

[5] Furmans, K., Gue, K. R., Seibold, Z.:
Optimization of Failure Behavior of a
Decentralized High-Density 2D Storage
System, Dynamics in Logistics, Third
International Conference LDIC 2012,
Proceedings, 2012

[6] Gudehus, T.: Logistik – Grundlagen,
Strategien, Anwendungen. Springer Verlage,
Berlin / Heidelberg, 2010

[7] Mayer, S.; Furmans, K.: Deadlock
prevention in a completely decentralized
controlled materials flow systems. In: Logistics
Research 2 (2010), S. 147–158

[8] Gue, K. R., Furmans, K., Seibold, Z.,
Uludağ, O.: GridStore: A Puzzle-Based
Storage System With Decentralized Control,
Automation Science and Engineering, IEEE
Transactions on (Volume:11 , Issue: 2,
pages: 429 - 438), ISSN: 1545-5955, 2014

[9] Furmans, K., Seibold, Z., Trenkle, A., Stoll,
T.: Future requirements for small-scaled
autonomous transportation systems in
production environments, 7th International
Scientific Symposium on Logistics,
Proceeding, 2014.

[10] Ventz K., Hachicha M. B., Radosavac M.,
Krühn T., Overmeyer L.: Aufbau
hochfunktionaler Intralogistik-Knoten mittels
kleinskaliger Module als Cognitive Conveyor.
Logistics Journal, Vol. 2012.

[11] Seibold, Z.; Stoll, T.; Furmans, K.: Layout-
Optimized Sorting of Goods with Decentralized
Controlled Conveying Modules. Systems
Conference (SysCon), IEEE. 2013

[12] Gue, K.; Kim, B. S.: Puzzle‐based storage
systems. Naval Research Logistics (NRL)
54.5, 556-567. 2007.

Author:

University:

Department:

E-Mail:

Sohrt, Simon;
Krühn, Tobias;
Overmeyer, Ludger

Leibniz Universität
Hannover

Institute for Transport
and Automation
Technology

{simon.sohrt;
tobias.kruehn;
ludger.overmeyer}
@ita.uni-hannover.de

Author:

University:

Department:

E-Mail:

Seibold, Zäzilia;
Prössdorf, Lisa;
Furmans, Kai

Karlsruhe Institute of
Technology

Institute for Material
Handling and Logistics

{zaezilia.seibold;
kai.furmans}
@kit.edu
