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ABSTRACT 

In this paper we present two conceptually 
different methods for buffering packets on 
modular, decentralized controlled conveyors. 
At first, we give a short overview over current 
research projects. Since buffering is closely 
related to the storage of goods, we also 
address modular, decentralized controlled 
storage systems. We then show the general 
outline of the first algorithm which works with 
static assignment of buffer spaces. This 
algorithm assigns a value to every buffer space 
to assess its suitability. The suitability is 
defined by the likelihood of buffered packets 
interfering with the regular transport process. 
Packets are buffered on the most suitable 
buffer space and not moved until they get 
requested. The second algorithm is using 
dynamic assignment of buffer spaces. Thus, 
buffered packets can still be moved. We 
present the emerging behavior of this algorithm 
arising from the dynamic reassignment of 
buffer spaces. Both algorithms are designed in 
such a way that collisions and deadlocks 
cannot occur.  

1 INTRODUCTION 

Conveyors and storage systems face new 
challenges: Automated systems are too 
inflexible to adapt to the rapidly changing 
demands in structure, volume and processes 
of today’s material handling processes [1, 2]. 
Therefore, systems have been developed that 
are highly automated, flexible and reusable [2, 
3].This is achieved by having a modular design 
and a decentralized control.  

A decentralized control that reconfigures itself 
is necessary to ensure quick response times 
for layout changes. Due to the large number of 
modules in a system, it is not possible to 
program an individual control for each element. 
The solution is a decentralized control for the 
conveyors modules, thus all modules running 
the same program without a central 
supervision. Since the control is distributed, the 
system becomes less prone to a complete 
breakdown: Failure of single modules does not 
necessarily affect the function of the whole 
system. [3, 4, 5] 

In this paper we will show that decentralized 
controlled systems are capable of controlling 
the transport process while finding suitable 
buffer spaces at the same time. Buffering is 
different from storing packets, since both the 
number of packets and the storage time is 
much lower than for storing [6]. 

This paper is organized as follows: In section 
2, we introduce research projects in the field of 
decentralized controlled material handling 
systems. The Cognitive Conveyor and 
GridSorter are presented in more detail as 
section 3 describes buffering algorithms for 
these systems. Two different approaches to 
assign buffer spaces are presented before we 
conclude in section 4.  

2 MATERIAL HANDLING SYSTEMS WITH 
DECENTRALIZED CONTROL 

In this paper we will only consider modular 
conveyors with a decentralized control that 
have proven the mechanical feasibility of their 
approach. One key difference between the 
different systems is the size of the modules.  

The main challenge of all projects is achieve 
efficient and deadlock-free system behavior 
while keeping the decentralized control 
algorithms as simple as possible. It has been 
shown that modular conveyors with a 
decentralized control are capable of 
transporting goods without collisions or 
deadlocks. [3, 4, 7] 

An example for decentralized controlled 
material handling systems is the FlexConveyor 
[3, 7] (see Figure 1), a flexible conveying 
system built out of multiple, identical modules 
that can be easily plugged and unplugged. 
One module has at least the size of one 
packet. It is optimized for the task of 
transporting goods in a user-defined layout. An 
item can be introduced into the system at any 
source and is transported to its specific 
destination. Complex transport tasks of 
multiple items with different sources and 
destinations can be performed thanks to the 
decentralized control and usage of alternative 
routes. 
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Figure 1: A conveying network of 
FlexConveyor modules [7] 

GridStore [8] is a modular and decentralized 
controlled storage system. The described 
methods have been proven to work on the 
FlexConveyor platform. A very high storage 
density and a high throughput have been 
achieved, which previously have been 
considered as conflicting objectives. 

KARIS PRO [9] combines the aspects of 
conveyors and autonomous guided vehicles. 
The vehicles cannot only perform the transport 
of single items but are designed to form two 
different functional clusters, as shown in Figure 
2: As discontinuous cluster, KARIS vehicles 
connect to each other in order to transport 
huge items. As continuous cluster, several 
KARIS vehicles form a conveyor line to realize 
high throughput of goods. 

 

Figure 2: Single KARIS vehicle, discontinuous 
and continuous cluster  

2.1 COGNITIVE CONVEYORS 

The goal of the netkoPs research project is to 
develop a decentralized control for a modular 
conveyor matrix as shown in Figure 3. This 
matrix consists of modules that are smaller 
than the transported goods. It is capable of 
solving material handling tasks such as 
conveying, separating and merging [5].  
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Figure 3: Prototype modules and the concept 
of a larger module matrix 

The modules that form the matrix are not 
controlled by a higher-level, centralized control, 
but every module has its own control. Since 
each transport module is smaller than the 
packets, modules must form groups to conduct 
the transport process. When several modules 
are combined to form a conveyor matrix, it is 
mechanically able to solve any transportation 
tasks. Each material located on the matrix can 
be moved on an individual track. To transport a 
packet, a route reservation from source to sink 
is necessary. If multiple packets are moving on 
the matrix without a previous route reservation, 
a deadlock situation can occur.  
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Figure 4: A new transport metric is generated 
for each sink and format. 

To plan a route from one point in the matrix to 
another, the direction of the best route must be 
known in each module. Therefore, each 
module determines for all four directions the 
estimated virtual cost of moving a 
transportation unit in the respective direction. 
This procedure extends the distance-vector 
algorithm. Due to the two-dimensional 
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spreading of the metric and the small size of 
the modules relative to the packets size, the 
term field is used to describe the semi-
continuous metric in this work. The metric is 
depicted in Figure 4.  

2.2 GRIDSORTER 

The GridSorter [11] consists of decentralized 
controlled conveying modules, for example 
FlexConveyors, forming a densely connected 
network (see Figure 5). Sources and sinks can 
be positioned at any position. In contrast to the 
conveyor matrix, the modules have the size of 
a packet. The basic functionality of GridSorter 
is the sorting of goods. An experimental setup 
with a 5x5 grid has been built in order to 
demonstrate the functionality (see Figure 6). 

Incoming, unsorted 

packets

Outgoing, sorted 

packets

GridSorter

Figure 5 Schematic representation of 

GridSorter 

There are three main processes that generate 
the system behavior: To detect the topology of 
the system every module registers with its 
direct neighbors. Hereupon, this connection 
information is propagated through the system. 
Each module establishes an adjacency matrix 
of the complete topology. With this matrix, the 
modules are able to compute necessary 
information about routes to possible 
destinations. The reservation process is 
started for every packet and defines the route 
of this individual packet to its destination. 
During the transport process, the modules 
coordinate the movement of the packet. 
Thanks to the modular design, further 
functionalities such as buffering and 
sequencing can be realized by enhancing the 
decentralized control algorithm. 
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neighboring modules

Conveying module with sensors, 

actors and control

 

Figure 6: Technical realization of GridSorter: 
The conveying modules and their connections 

3 BUFFER ALGORITHMS FOR 
DECENTRALIZED CONTROLLED 
CONVEYORS 

In this chapter we present buffer algorithms for 
the Cognitive Conveyor and the GridSorter. 
The differences between the two approaches 
originate from two factors: First of all, the 
underlying routing is fundamentally different. 
The modules of the Cognitive Conveyor do not 
know the topology of the whole system, but 
only a very small local region. Routes are 
calculated and reserved by using a metric. 
Contrary, the neighboring information of each 
module of the GridSorter is propagated 
through the complete system.  With this 
knowledge, the modules coordinate the route 
reservation using time windows.  

Furthermore, different goals are pursued: 
Buffering on the Cognitive Conveyor should be 
energy efficient and thus movement of buffered 
packets is not permitted. The main objective of 
the buffering functionality of GridSorter is to 
reach a high buffering capacity. Both 
approaches to design the buffer algorithm are 
presented in the following two sections. 

3.1 STATIC ASSIGNMENT OF BUFFER 
SPACES 

The buffering of packets is done in two steps. 
First a suitable buffer space needs to be found. 
Afterwards, the packet is transported to this 
space. Since the system is already capable of 
transporting packets, the main problem is to 
find suitable buffer spaces. Once a space has 
been found, the buffer space is treated like a 
regular sink and a transport metric is created. 
There is one important distinction to make 
between sinks and buffer spaces: In contrast to 
regular sinks buffer spaces can overlap each 
other. Therefore, it is necessary that the 
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modules inform overlapping buffer spaces 
once they are in use. We define the following 
requirements for buffering on the matrix: 

1. The buffering of packets must not lead to a 
partial or global deadlock of the system. 

2. A criterion must be specified to rate buffer 
spaces.  

3. Buffered packets should not be moved 
once buffered. 

In order to meet the first requirement, the 
transport system needs to check if there is at 
least one buffer space that can be reached by 
a packet before entering the system. By having 
a criterion to rate buffer spaces, it is possible to 
use buffer spaces first that are better suited 
than others. The third requirement was 
formulated to prevent additional workload on 
the system that is created by moving an 
already buffered packet to another buffer 
space. Nonetheless the system is generally 
capable of moving already buffered packets to 
another buffer space: In this case the original 
buffer space acts as a regular source.  

An additional metric is introduced for storing 
the suitability of buffer spaces. The new metric 
is called buffer metric (shown in Figure 7).  

Extends

Base metric

· independent from packet size

· independent from sink

Transport metric

· dependent from 

packet size

· dependent from sink

Buffer metric

· dependent from 

packet size

· independent from 

sink
 

Figure 7: Relationship between the metrics 

The buffer metric can be in three different 
states:  

1. The module is permanently unsuitable as a 
buffer. A reason for this is that the module is 
too close to the edge of the matrix or that 
buffering a packet on this module would lead to 
a deadlock.  

2. The module is currently unsuitable as a 
buffer. A reason for this that a buffer space is 
already occupied by a buffered packet.  

3. The module is suitable as a buffer. In this 
case it is necessary to calculate a metric value 
that is used to rate the buffer space.  

In the next chapter we will present a method to 
detect if a module is permanently unsuitable 
because of a possible deadlock scenario.  

3.1.1 Deadlock Avoidance utilizing Reserved 
Buffer Spaces 

To avoid deadlocks, the system needs to 
ensure that only packets can enter the system 
when a suitable buffer space is available. This 
is not a trivial problem, since communication in 
the system is not instantaneous: After a packet 
has been buffered on the last available buffer 
space, it takes some time until this information 
reaches every source. It is therefore necessary 
that sources only let packets onto the matrix, 
after they made sure that at least one suitable 
buffer space is available. This is guaranteed by 
the following method: Routes are planned from 
the source to the buffer space. The buffer 
space is then reserved and this information is 
sent back along the planned route to the 
source. After this is completed the source 
accepts the packet from the preceding system 
and transfers it onto the matrix.  

Another possible deadlock situation can occur, 
when buffered packets fully or partially block 
bottlenecks. It is therefore necessary to only 
mark modules as possible buffer spaces if it is 
guaranteed that a buffered packet will not 
obstruct parts of the system. This is achieved 
by introducing an initialization phase: During 
this phase every source plans routes to every 
sink for the biggest known packet size. Every 
module that is needed to transport these 
packets from any source to any other sink is 
marked as permanently unsuitable for 
buffering. The algorithm to determine if a buffer 
space is suitable is shown in Figure 8.  
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Figure 8: Algorithm to determine the suitability 

of a buffer space 

After a packet has been buffered it is possible 
that it can be blocked by other buffered packet 
as shown in Figure 9.  
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Figure 9: Buffered packets are blocked by 
other buffered packets.  

The blockage by other buffered packets is 
avoided by guaranteeing that every buffered 
packet can reach every sink. This is achieved 
by reserving routes from the buffered packet to 
every sink. If a module is on such a reserved 
route, it is marked as currently unsuitable for 
buffering. To avoid race conditions between 
neighboring buffers paces that can block each 
other the routes must be reserved before the 

buffer space can be marked as reserved. The 
procedure is thus: 

1. A preceding system wants to transfer a 
packet that needs to be buffered onto the 
matrix through a specific source.  

2. The source plans a route to a buffer space.  

3. The buffer space reserves routes to all 
known sinks.  

4. The buffer space is reserved.  

5. The confirmation of the reservation is sent 
back to the source.  

6. The source transfers the packet onto the 
matrix.   

After guaranteeing that a deadlock or a 
blockage of the system cannot occur due to 
buffered packets, it is necessary to define a 
criterion to rate the quality of the buffer spaces.  

3.1.2 Criterion-based Choice of Buffer Spaces  

The use of some buffer spaces interferes more 
with the regular transport process than others. 
By introducing a rating it is possible to 
differentiate between buffer spaces. Thus it is 
possible to use the better suited buffer spaces 
first. The chance of interfering with the regular 
transport process is increased for every free 
side of a buffer packet. The four possible 
cases are depicted in Figure 10. 

buffered

packet

buffered

packet
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buffered

packet
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b) corner: two free 
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c) edge: three free 
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Figure 10: Four different buffer scenarios 

It therefore makes sense to base the criterion 
to rate the buffer spaces on the distance of the 
sides of the space to the nearest walls.  

3.2 DYNAMIC ASSIGNMENT OF BUFFER 
SPACES 

The buffering algorithm is started once a 
packet without destination enters the system. 
Dynamic assignment of buffer spaces means 
that buffered packets do not need to stay on 
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the same buffer space once they are in the 
system. Contrariwise, they are moved from 
one buffer space to another as soon as they 
interfere with a planned route of another 
packet to its destination. In contrast to the 
buffering algorithm described in section 3.1, we 
do not use any additional criterion besides 
availability to assign buffer spaces.  

We postulate the following requirements for 
our buffering algorithm:  

1. The buffering of packets must not lead to a 
partial or global deadlock of the system. 

2. We want to achieve efficient system 
behavior without using topology information to 
rate buffer spaces. 

3. Buffered packets are allowed to move on 
the grid to clear the way for packets with 
destination. 

The dynamic assignment of buffer spaces has 
the advantage that a high buffer capacity can 
be achieved. There are a lot of potential buffer 
spaces because the buffered packets do not 
permanently block routes. Theoretically, a 
system can buffer as many packets as the 
number of modules less two. One of the free 
modules is used to receive a packet with 
destination and the other free module is used 
to enable the movement of this packet [11]. Of 
course, there is a tradeoff between number of 
buffered packets and system throughput. 

Because every module can temporarily be a 
buffer space, topology information is not 
necessary for the assignment of buffer spaces. 
With the dynamic assignment of buffer spaces, 
buffered packets are moved more frequently. 
This could lead – dependent of the specific 
buffering task – to higher energy consumption 
than with static assignment of buffer spaces.  
Also the reservation process gets more 
complex as the reservations of all buffered 
packets can interfere with each other. 

3.2.1 Deadlock Avoidance utilizing Time 
Windows 

As already mentioned, every module can be a 
buffer space. Thus, topology information does 
not impact the suitability. Nevertheless, a 
criterion has to be defined in order to 
guarantee deadlock-free behavior. The next 
section will introduces such a criterion. 

The reservation process of GridSorter uses 
time windows meaning each conveying module 
on the chosen route to destination is only 
reserved for a specific time window. Thus, 
each module does know the currently last 
reservation after which it is available open-end. 

A packet to be buffered must find a conveying 
module where it is allowed to stay infinitely. 
The suitability of the conveying module from a 
specific moment on is defined as follows: 

1. No module is permanently unsuitable as a 
buffer as it is not necessary to keep free routes 
to every destination. 

2. Modules can be temporarily unsuitable as a 
buffer space for the following reasons:  

2a. The module is not suitable as buffer space 
from this moment on because the last 
reservation is later than this moment. 

2b. The module is not suitable as buffer space 
because it is already planned to be a buffer 
space for another packet and thus reserved 
open-end. 

3. The module is suitable as a buffer from this 
moment on. 

Once a packet without destination is entering 
the system, a reservation process is started by 
sending the first reservation message. The 
module receiving the message checks its 
suitability and reacts according the following 
rules: 

2a. If the module is unsuitable because the last 
reservation is later, the reservation message is 
forwarded to a neighboring module in a 
random direction. 

2b. If the module is already used as buffer 
space, it accepts the reservation and sends a 
new reservation message. This is done to find 
a new buffer space for the packet that is 
currently occupying the module. Thus, the 
incoming packet pushes away the already 
buffered packet.  

3. If the module is suitable, it confirms the 
reservation. 

Not only packets to be buffered can push away 
other buffered packets, but also packets with a 
destination can push them away. Like this, we 
want to achieve that these packets reach their 
destination as fast as possible. 

3.2.2 Emerging Choice of Buffer Spaces 

As explained in the previous section, 
reservation messages for packets to be 
buffered are sent in random directions. No 
criterion is used to prefer any direction or to 
rate buffer spaces. We expect the following 
emerging behavior: Because a buffer space 
needs to be available open-end it is more likely 
that modules become buffer spaces that are 
less used by packets with destination. 
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Figure 11: Usage of modules as buffer spaces 

over time with a coverage of 30% of the layout 

with buffered packets 

Figure 11 shows a GridSorter layout with four 
sources in the north and four destinations in 
the south. The assignment of a destination to a 
packet is done randomly. Between these 
sources there are additional columns with 
modules and in the east there is a column that 
is not part of any shortest path from the 
sources to the destinations. 

The layout has 72 conveying modules and 24 
packets are buffered permanently. If a buffered 
packet is requested and leaves the system, a 
new packet to be buffered enters the system. 
This corresponds to 30% coverage of the 
layout with buffered boxes. 

The gray value indicates the usage of the 
specific module as a buffer space over time. 
We can see that the columns between the 
sources and the destinations are less used as 
buffer space than the rest of the layout. The 
column in the east is used as a buffer space 
around 60% of the time. In this specific layout, 
the system shows the desired emerging 
behavior. 

4 CONCLUSION 

In this paper we presented two conceptually 
different buffering algorithms: One is designed 
for the Cognitive Conveyor and the other for 
the GridSorter. The main difference between 
both algorithms is whether movement of 
buffered packets is permitted once they have 
reached their buffer space.  

The algorithm for the Cognitive Conveyor does 
not permit movement of buffered packets. 
Therefore, a rating is used to assess the 
suitability of possible buffer spaces. The 
suitability is defined by the likelihood of 
buffered packets interfering with the regular 
transport process. In contrary, the movement 
of packets is an integral part of the buffer 
algorithm for the GridSorter. Buffered packets 
are moved to dynamically assigned buffer 
spaces in order to clear the way for packets on 

the way to their destination. Movement of 
buffered packets has the advantage of high 
buffer capacity, but it could lead to higher 
energy consumption. Collisions and deadlock 
scenarios cannot occur in either of the 
algorithms.  

We have shown that it is possible to realize 
high level logistic functionalities without a 
centralized control. Modular, decentralized 
controlled material handling systems offer the 
opportunity to accomplish complex 
intralogistics tasks with the same mechanical 
modules. We have developed buffer algorithms 
because they bridge the gap between storage 
and transportation.  

We expect modular, decentralized controlled 
systems to become more mature. For this 
purpose different operational scenarios should 
be developed. It makes sense that one 
operational scenario is about the combination 
of all different systems. The next step is to 
analyze the influence of buffering on the 
throughput of the system. Furthermore, 
buffering is the base for realizing other high 
level functionalities like sequencing.   

5 ACKNOWLEDGMENT 

The research project netkoPs is supported by 
the “Bundesministerium für Bildung und 
Forschung“ of the German state. The research 
project GridSorter is supported by the 
„Bundesministerium für Wirtschaft und Energie 
aufgrund eines Beschlusses des Deutschen 
Bundestages“. 

6 REFERENCES  

[1] Cox, W. M.; Alm, R.: The Right Stuff: 
America’s Move to Mass Customization. In: 
Federal Reserve Bank of Dallas, Annual 
Report (1998), S. 3–26 

[2] Furmans, K.; Schönung, F.; Gue, K. R.: 
Plug-and-Work Material Handling Systems. In: 
Progress in Material Handling Research 
(2010), S. 132–142 

[3] Mayer, S.; Furmans, K.: Wissenschaftliche 
Berichte des Institutes für Fördertechnik und 
Logistiksysteme der Universität Karlsruhe 
(TH). Bd. 73: Development of a completely 
decentralized control system for modular 
continuous conveyors. Universitätsverlag 
Karlsruhe, 2009 

  



8 

 

 

[4] Krühn, T.; Radosavac, M.; Shchekutin, N.; 
Overmeyer, L. (2013): Decentralized and 
Dynamic Routing for a Cognitive Conveyor, 
International Conference on Advanced 
Intelligent Mechatronics (AIM), S. 436-441. 
Wollongong, Australia: IEEE/ASME 

[5] Furmans, K., Gue, K. R.,  Seibold, Z.: 
Optimization of Failure Behavior of a 
Decentralized High-Density 2D Storage 
System, Dynamics in Logistics, Third 
International Conference LDIC 2012,  
Proceedings, 2012 

[6] Gudehus, T.: Logistik – Grundlagen, 
Strategien, Anwendungen. Springer Verlage, 
Berlin / Heidelberg, 2010 

[7] Mayer, S.; Furmans, K.: Deadlock 
prevention in a completely decentralized 
controlled materials flow systems. In: Logistics 
Research 2 (2010), S. 147–158 

[8] Gue, K. R., Furmans, K., Seibold, Z., 
Uludağ, O.: GridStore: A Puzzle-Based 
Storage System With Decentralized Control, 
Automation Science and Engineering, IEEE 
Transactions on  (Volume:11 ,  Issue: 2, 
pages: 429 - 438 ), ISSN: 1545-5955, 2014 

[9] Furmans, K., Seibold, Z., Trenkle, A., Stoll, 
T.: Future requirements for small-scaled 
autonomous transportation systems in 
production environments, 7th International 
Scientific Symposium on Logistics, 
Proceeding, 2014. 

[10] Ventz K., Hachicha M. B., Radosavac M., 
Krühn T., Overmeyer L.: Aufbau 
hochfunktionaler Intralogistik-Knoten mittels 
kleinskaliger Module als Cognitive Conveyor. 
Logistics Journal, Vol. 2012. 

 

[11] Seibold, Z.; Stoll, T.; Furmans, K.: Layout-
Optimized Sorting of Goods with Decentralized 
Controlled Conveying Modules. Systems 
Conference (SysCon), IEEE. 2013 

[12] Gue, K.; Kim, B. S.: Puzzle‐based storage 
systems. Naval Research Logistics (NRL) 
54.5,  556-567. 2007. 

_____________________________________ 

Author: 

 
 
University: 
 

Department: 

 

E-Mail: 

 

Sohrt, Simon; 
Krühn, Tobias; 
Overmeyer, Ludger 

Leibniz Universität 
Hannover 

Institute for Transport 
and Automation 
Technology 

{simon.sohrt; 
tobias.kruehn; 
ludger.overmeyer} 
@ita.uni-hannover.de 

 
Author: 

 
 
University: 

 
Department: 
 

E-Mail: 

 

Seibold, Zäzilia; 
Prössdorf, Lisa; 
Furmans, Kai  

Karlsruhe Institute of 
Technology 

Institute for Material 
Handling and Logistics 

{zaezilia.seibold; 
kai.furmans} 
@kit.edu 

____________________________________
 

 


