Oxygen:				
symbol		atomic	number	
protons			_electrons	
electron distributi	on			
Oxygen has	_ valence	electrons.		
Electron Dot Diagram -	atom's		surrounded by	
	to repres	sent its	electrons	
example electron dot dia	grams:	0	Li	
Problem Set 1:				

Most atoms need ______ valence electrons to become stable. The exceptions are H and He which need only ______ valence electrons to be stable.

Lewis structure for H₂ H - H shared pair • 2 electrons belonging to both _____ • represented by a _____ between symbols Lewis structure for Cl₂ : Each Cl atom has _____ valence electrons, giving a total of ______ valence electrons to work with. pair • Cl - Cl • unshared pair • electrons belonging to only one _____ • represented by 2 dots Lewis structure for HCl: H Cl

When more than two atoms bond, you must determine which is central. The central atom is:

- frequently _____
- never _____
- often atom with _____ electronegativity

Lewis structure for CH₃I: (There are a total of _____ valence electrons to work with.)

Problem Set 2:

$\begin{array}{c} \textbf{CHEMISTRY:} A \ Study \ of \ Matter \\ {}_{\tiny @ \ 2004, \ GPB} \end{array}$

Lewis structure of ethene, C2H4	(has total of	valence electrons)
---------------------------------	---------------	--------------------

type of bond	pairs of electrons shared

Problem Set 3:

The Chemistry Quiz

CR1.	CR2.	1.	2.	3.	4.	5.

CHEMISTRY: A Study of Matter © 2004, GPB 5.8

Name_____

Any molecule containing only _____ atoms has a ______ shape.

To predict shapes of molecules with more than 2 atoms we use the VSEPR theory:

- Since electrons ______ each other, electrons pairs will be as _____ apart as possible.

shape	number of atoms bonded to central atom	number of unshared pairs of electrons	example
linear (º angle)			0 = C = O
trigonal planar (° angles)			н, с=о н
tetrahedral (° angles)			
bent			н ^{,0} ,н
trigonal pyramidal			н Х

Polar Molecules:

- must contain at least one _____ bond
 are shaped so that there is a _____ and a _____ end

example of a polar molecule:

Non-polar Molecule:

- contains only _____ bonds -or-
- contains polar bonds, but has no _____ ____

example of a non-polar molecule:

Intermolecular Forces

- _____ of attraction _____ molecules
- are _____ than covalent and ionic bonds
- 3 types:
 - 1. Dipole-dipole forces:
 - force of attraction between the _____ end of one _____
 and the _____ end of another molecule
 - the _____ of all the intermolecular forces

2. Hydrogen Bonding:

- occurs in molecules with H -____, H ____, and H ____ bonds
- large _____ charge on H is attracted to an _____ pair of electrons on a neighboring ______

3. London Dispersion Forces:

- _____ intermolecular forces resulting from constant
- the only type of intermolecular force between nonpolar molecules

The Chemistry Quiz

CR1. CR2. 1. 2.

3. 4. 5.

CHEMISTRY: A Study of Matter © 2004, GPB 5.16

Worksheet:	Molecular	Geometry	and
	Intermole	cular Force	S

Name_____

<u>Molecular Geometry</u>

A molecule consisting of only two atoms he	as a shap	_ shape. A molecule with	
atoms bonded to the centra	l atom with	unshared	
pair(s) of electrons has a linear shape. A r	nolecule with	atoms bonded	
to the central atom with uns	shared pair(s) of elect	rons has a trigonal	
planar shape. A molecule with	_ atoms bonded to th	e central atom with	
unshared pair(s) of electror	is has a tetrahedral sh	nape. A molecule	
with atoms bonded to the co	entral atom with	unshared	
pair(s) of electrons has a bent shape. A m	olecule with	atoms bonded	
to the central atom with uns	shared pair(s) of elect	rons has a trigonal	
pyramidal shape.			

Predicting Molecular Shapes

Draw each molecule and predict the shape each molecule will form. IBr CCl_4

PCl₃

 C_2H_2

SO₃

 H_2S

NH₂Cl

Polarity in Molecules

Determine the type of bonds in each of these molecules using the "Table of Electronegativities." Then, determine whether each of these molecules will be polar or nonpolar. Explain your reasoning.

IBr	CCl ₄
PCI ₃	H₂S
C ₂ H ₂	SO₃

NH₂Cl

Intermolecular Forces

While bonding is the force of attraction WITHIN molecules,

_____ are the forces of attraction BETWEEN molecules. Circle these forces in the following diagram.

Define "Dipole-dipole Forces."

Define "Hydrogen Bonding."

Define "London-Dispersion Forces."

CCl ₄	HCN	H₂S	CBr ₄	HI	molecule
					Lewis Structure
					bonded t atoms
					o central om: unshared pairs
					shape of molecule
					TI
					polarity of bonds
					polarity of molecules

SCl ₂	CH ₂ S	CH3Cl	PCl ₃	SF ₂	molecule
					Lewis Structure
					bonded t atc atoms
					'o central om: unshared pairs
					shape of molecule
					1
					polarity of bonds
					polarity of molecules