Lesson 7.1•Transformations and Symmetry

Name \qquad Period \qquad Date \qquad

In Exercises 1-3, copy the figure onto graph or dot paper and perform the transformation.

1. Reflect $\triangle T R I$ over line ℓ.

2. Rotate PARL 270° clockwise about Q.

3. Translate PENTA by the given vector.

4. Copy $A B C D E$ and its reflected image, $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$. Use construction tools to locate the line of reflection, ℓ. Explain your method.

In Exercises 5-8, identify the type(s) of symmetry in each figure.
5. Equilateral triangle

6. Rectangle

7. Isosceles triangle

8. Square

In Exercises 9-12, draw each polygon and identify the type(s) of symmetry in each. Draw all lines of reflection and mark centers of rotation.
9. Rhombus
10. Parallelogram
11. Isosceles trapezoid
12. Square
13. Copy $\triangle A B C$ and the center of rotation, P. Using only a compass and straightedge, construct the image of $\triangle A B C$ after a rotation of 180° about P.

Lesson 7.2 • Properties of Isometries

Name \qquad Period \qquad Date \qquad

In Exercises 1-3, copy the figure and draw the image according to the rule.
Identify the type of transformation.

1. $(x, y) \rightarrow(-x,-y)$

2. $(x, y) \rightarrow(x-4, y+6)$

3. $(x, y) \rightarrow(4-x, y)$

In Exercises 4 and 5, the Harbour High Geometry Class is holding a Fence Race. Contestants must touch each fence at some point as they run from S to F. Copy each diagram and use your geometry tools to draw the best possible race path.
4.

5.

In Exercises 6-8, complete the ordered pair rule that transforms each triangle to its image. Identify the transformation. Find all missing coordinates.
6. $(x, y) \rightarrow(\square$, \qquad)
7. $(x, y) \rightarrow(\square$, \qquad)
8. $(x, y) \rightarrow(\square)$

9. Give the inverse mapping rule (the rule that maps the image back to the original) for each of the mappings in Exercises 1-3 and 6-8.

Lesson 7.3•Compositions of Transformations

Name \qquad Period \qquad Date \qquad

In Exercises 1-8, name the single transformation that can replace the composition of each set of multiple transformations.

1. Translation by $(+4,+1)$, followed by $(+2,-3)$, followed by $(-8,+7)$
2. Rotation 60° clockwise, followed by 80° counterclockwise, followed by 25° counterclockwise all about the same center of rotation
3. Reflection over vertical line m, followed by reflection over vertical line n, where n is 8 units to the right of m
4. Reflection over vertical line p, followed by reflection over horizontal line q
5. Reflection over vertical line n, followed by reflection over vertical line m, where n is 8 units to the right of m
6. Reflection over horizontal line q, followed by reflection over vertical line p
7. Translation by $(+6,0)$, followed by reflection over the y-axis
8. Reflection over the y-axis, followed by translation by $(+6,0)$

In Exercises 9-12, copy the figure onto your paper and use your geometry tools to perform the given transformation.
9. Locate P^{\prime}, the reflected image over $\overrightarrow{O R}$, and $P^{\prime \prime}$, the reflected image of P^{\prime} over $\overrightarrow{O T}$. Find $m \angle R O T$ and give a single transformation that maps P to $P^{\prime \prime}$.

10. Locate P^{\prime}, the reflected image over k, and $P^{\prime \prime}$, the reflected image of P^{\prime} over ℓ. Find the distance between ℓ and k and give a single transformation that maps P to $P^{\prime \prime}$.
11. Draw five glide-reflected images of the triangle.

12. Using patty paper and dot paper, make three rotation-glide images of $\triangle A B C$. Find the first image by rotating the triangle 90° counterclockwise about point A and then translating by the rule $(x, y) \rightarrow(x+4, y+4)$. The second image is the image of the first image and so on.

\qquad Period \qquad Date \qquad

1. Find n.

2. Find n.

3. What is a regular tessellation? Sketch an example to illustrate your explanation.
4. What is a 1 -uniform tiling? Sketch an example of a 1 -uniform tiling that is not a regular tessellation.
5. Use your geometry tools to draw the 4.8^{2} tessellation.
6. Carefully draw the tessellation $3^{6} / 3^{2} .4 .3 .4$ with your geometry tools.

Draw the dual of the tessellation and identify the polygons in the dual. Calculate the measure of each angle in the dual.
7. Trace the quadrilateral at right (or draw a similar one). Make the outline dark. Set another piece of paper on top of the quadrilateral and, by tracing, create a tessellation. (Hint: Trace vertices and use a straightedge to connect them.)

8. Give the numerical name for the tessellation at right.
9. Use your geometry tools to draw a parallelogram. Draw squares on each side. Create a tessellation by duplicating your parallelogram and squares.
10. On dot paper, draw a small concave quadrilateral (vertices on dots). Allow no more than three dots inside the figure.
 Tessellate the entire paper with your quadrilateral. Color and shade your tessellation.
11. In non-edge-to-edge tilings, the vertices of the polygons do not have to coincide, as in these wooden deck patterns. Use graph paper to create your own non-edge-to-edge tiling.

