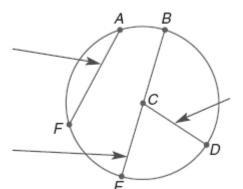

Unit 10 - Geometry Circles

NAME _____Period _____

Geometry

Chapter 10 – Circles

***In order to get full credit for your assignments they must me done on


time and you must SHOW ALL WORK. ***

1 (10-1) Circles and Circumference – Day 1- Pages 526-527 16-20, 32-54 even
2 (10-2) Angles and Arcs – Day 1- Pages 533-535 14 – 31, 32 -42 even, 58
3 (10-2) Angles and Arcs – Day 2- 10-2 Practice WS
4. (10-3) Arcs and Chords– Day 1- Pages 540- 11-20 and 23-35 odd
5 (10-3) Arcs and Chords– Day 2- 10-3 Practice WS
6 (10-4) Inscribed Angles – Day 1- Pages 549-550 8-10, 13-16, 22, 25
7 (10-4) Inscribed Angles – Day 2- 10-4 Practice WS
8 (10-5) Tangents- Day 1 - Pages 556-557 8-18, 23
9 (10-5) Tangents- Day 2 - 10-5 Practice WS
10 (10-6) Secants, Tangents, and Angle Measures – Day 1– Pages 564-565 12-32 even
11 (10-6) Secants, Tangents, and Angle Measures – Day 2– 10-6 Practice WS
12 Chapter 10 Review

Section 10 – 1: Circles and Circumference

Notes

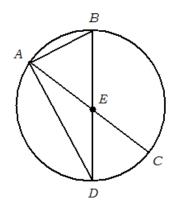
<u>Circle</u> – a set of _____ equidistant from a given point called the _____ of the circle

• Chord: any _____ with endpoints that are on the _____

Ex:

• <u>Diameter</u>:

Ex:


• Radius:

Ex:

Circumference:

Example #1:

- a.) Name the circle.
- b.) Name a radius of the circle.
- c.) Name a chord of the circle.
- d.) Name a diameter of the circle.
- e.) If AC = 18, find EC.

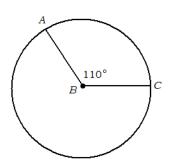
f.) If DE = 3, find AE.

Example #2:

a.) Find C if r = 13 inches.

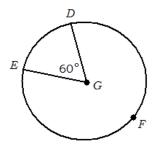
- b.) Find C if d = 6 millimeters.
- b.) Find d and r to the nearest hundredth if C = 65.4 feet.

Section 10 – 2: Angles and Arcs

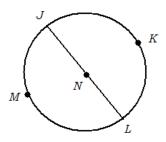

Angles and Arcs

✓ A ______ has the center of the circle as its _____, and its sides contain two _____ of the circle.

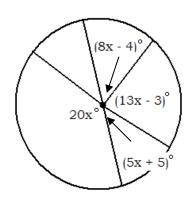
Arcs of a Circle


✓ Minor Arc

- Arc degree measure equals the measure of the _____ angle and is _____ than _____.
- **■** Ex:

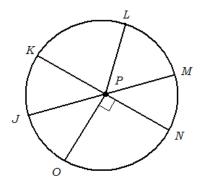

✓ Major Arc

- Arc degree measure equals 360 ______ the measure of the _____ arc and is _____ than 180.
- **Ex:**



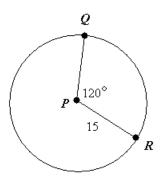
✓ Semicircle

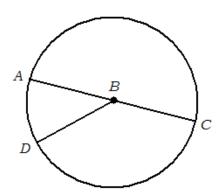
- Arc degree measure equals ______ or _____.
- **Ex:**


Example #1: Refer to circle *T*.

- a.) Find $m \angle RTS$.
- b.) Find $m \angle QTR$.

Example #2: In circle P, $m\angle NPM = 46$, \overline{PL} bisects $\angle KPM$, and $\overline{OP} \perp \overline{KN}$. Find each measure.

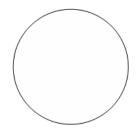



- b.) *m LM*
- c.) m JKO

Arc Length

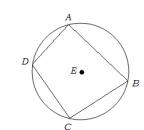
✓ Part of the ______.

Example #3: In circle B, AC = 9 and $m\angle ABD = 40$. Find the length of AD.

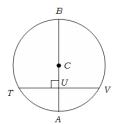

Section 10 – 3: Arcs and Chords

Arcs and Chords

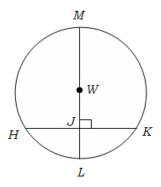
✓ The _____ of a chord are also endpoints of an ____.


<u>Theorem 10.2</u>: In a circle, two _____ arcs are congruent if and only if their corresponding ____ are congruent.

Ex:

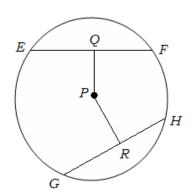

Inscribed and Circumscribed

- ✓ The chords of _____ arcs can form a _____.
- ✓ Quadrilateral *ABCD* is an ______ polygon because all of its ______ lie on the circle.
- ✓ Circle E is ______ about the polygon because it contains all of the vertices of the . .



Theorem 10.3: In a circle, if the diameter (or radius) is ______ to a chord, then it _____ the chord and its arc.

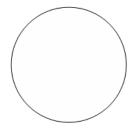
Ex:


Example #1: Circle W has a radius of 10 centimeters. Radius \overline{WL} is perpendicular to chord \overline{HK} , which is 16 centimeters long.

- a.) If mHL = 53, find mMK.
- b.) Find JL.

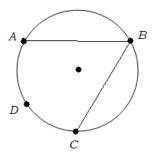
Theorem 10.4: In a circle, two _____ are congruent if and only if they are _____ from the center.

Example #2: Chords \overline{EF} and \overline{GH} are equidistant from the center. If the radius of circle *P* is 15 and EF = 24, find *PR* and

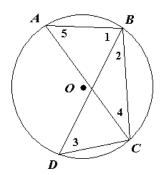


Section 10 – 4: Inscribed Angles Notes

Inscribed Angles

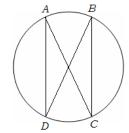

✓ An inscribed angle is an angle that has its _____ on the circle and its ____ of the circle.

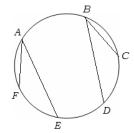
Ex:



Theorem 10.5: If an angle is ______ in a circle, then the measure of the angle equals ______ the measure of its intercepted arc (or the measure of the _____ arc is _____ the measure of the inscribed angle).

Ex:

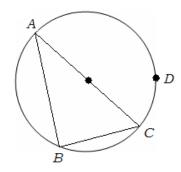

Example #1: In circle O, mAB = 140, mBC = 100, and mAD = mDC. Find the measures of the numbered angles.

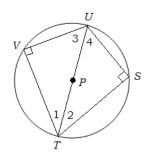


Theorem 10.6: If two inscribed angles of a _____ (or congruent circles)

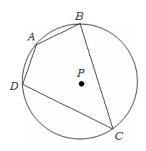
intercept _____ arcs or the same arc, then the angles are

Ex:

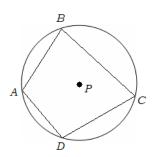



Angles of Inscribed Polygons

Theorem 10.7: If an inscribed angle intercepts a semicircle, the angle is a _____ angle.


Ex:

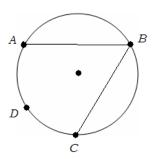
Example #2: Triangles TVU and TSU are inscribed in circle P, with $VU \cong SU$. Find the measure of each numbered angle if $m\angle 2 = x + 9$ and $m\angle 4 = 2x + 6$.



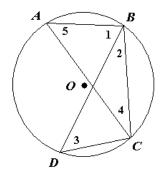
Example #3: Quadrilateral *ABCD* is inscribed in circle *P*. If $m \angle B = 80$ and $m \angle C = 40$, find $m \angle A$ and $m \angle D$.

Theorem 10.8: If a quadrilateral is _____ in a circle, then its _____ angles are _____.

Ex:

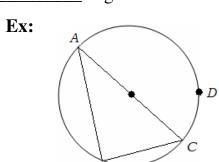


Section 10 – 4: Inscribed Angles Notes

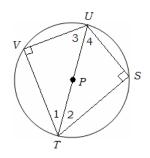

Inscribed Angles

If an angle is _____ in a circle, then the measure of the angle equals ____ the measure of its intercepted arc (or the measure of the ____ arc is ____ the measure of the inscribed angle).

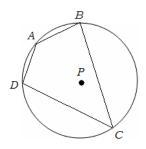
Ex:



Example #1: In circle O, mAB = 140, mBC = 100, and mAD = mDC. Find the measures of the numbered angles.

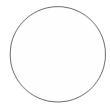


Angles of Inscribed Polygons


<u>Theorem 10.7</u>: If an inscribed angle intercepts a semicircle, the angle is a _____ angle.

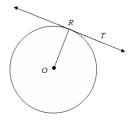
Example #2: Triangles TVU and TSU are inscribed in circle P, with $VU \cong SU$. Find the measure of each numbered angle if $m\angle 2 = x+9$ and $m\angle 4 = 2x+6$.

Example #3: Quadrilateral *ABCD* is inscribed in circle *P*. If $m \angle B = 80$ and $m \angle C = 40$, find $m \angle A$ and $m \angle D$.

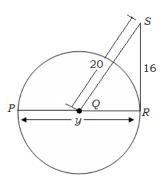

Section 10 – 5: Tangents

Notes

Tangents

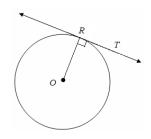

- ✓ <u>Tangent</u> a line in the plane of a _____ that intersects the circle in exactly one _____.
- ✓ The point of intersection is called the ______.

Ex:

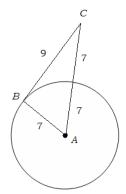


Theorem 10.9: If a line is _____ to a circle, then it is ____ to the ____ drawn to the point of

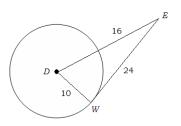
Ex:


Example #1: \overline{RS} is tangent to circle Q at point R. Find y.

Theorem 10.10: If a _____ is perpendicular to a radius of a circle at its _____ on the circle, then the line is _____ to the

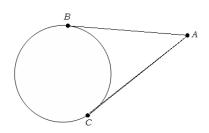

circle.

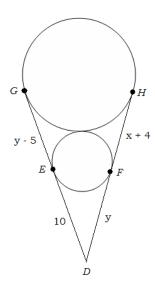
Ex:



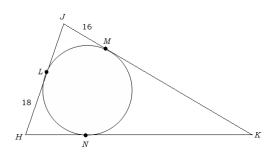
Example #2: Determine whether the given segments are tangent to the given circles.

a.) \overline{BC}

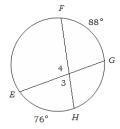

b.) \overline{WE}

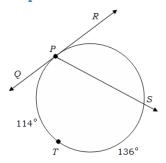

Theorem 10.11: If two _____ from the same exterior point are

_____ to a circle, then they are _____.

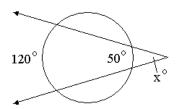

Ex:

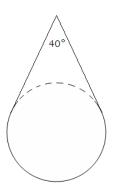
Example #3: Find x. Assume that segments that appear tangent to circles are tangent.

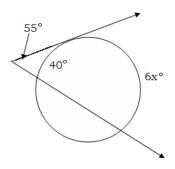

Example #4: Triangle HJK is circumscribed about circle G. Find the perimeter of ΔHJK if NK = JL + 29.


Section 10 – 6: Secants, Tangents, and Angle Measures Notes

Secant – a line that interse Ex:	cts a circle in exactly	points
Theorem 10.12: (Secant-Sec	cant Angle) <u>Theor</u>	rem 10.13: (Secant-Tangent
Angle)		
Ex:	E	x:
A D D D D D D D D D D D D D D D D D D D		
Theorem 10.14:		
Two Secants	Secant-Tangent	Two Tangents


Example #1: Find $m \angle 3$ and $m \angle 4$ if mFG = 88 and mEH = 76.


Example #2: Find $m\angle RPS$ if mPT = 144 and mTS = 136.


Example #3: Find x.

Example #4: Use the figure to find the measure of the bottom arc.

Example #5: Find *x*.

