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Abstract
†

Jacobian Adaptation (JA) of the acoustic models is an 

efficient adaptation technique for robust speech recognition. 

Several improvements for the JA have been proposed in the 

last years, either to generalize the Jacobian linear 

transformation for the case of large noise mismatch between 

training and testing or to extend the adaptation to other 

degrading factors, like channel distortion and vocal tract 

length. However, the JA technique has only been used so far 

with the conventional mel-frequency cepstral coefficients 

(MFCC). In this paper, the JA technique is applied to an 

alternative type of features, the Frequency-Filtered (FF) 

spectral energies, resulting in a more computationally 

efficient approach. Furthermore, in experimental tests with 

the database Aurora1, this new approach has shown an 

improved recognition performance with respect to the 

Jacobian adaptation with MFCCs. 

1. Introduction 

Recognition systems in real world applications are severely 

degraded by mismatch between training and testing 

conditions. This mismatch is generally associated to noise 

environmental conditions, channel distortion and articulatory 

effects, and the need for alleviating these problems has 

become an important challenge of the speech technology. 

Many robust recognition techniques have been proposed in 

the last years, including novel speech representations and 

acoustic model compensation techniques. 

Jacobian Adaptation (JA) proposed in [1] belongs to this 

second approach. In some previous works [1, 2, 3, 4] it has 

been shown that JA is an effective and relatively low 

computational cost technique in comparison with other model 

adaptation techniques, like Parallel Model Combination 

(PMC) [2]. 

In this work, we propose to use JA with the Frequency-

Filtered (FF) spectral representation [5], instead of the widely 

used mel-frequency cepstrum coefficients (MFCC). The FF 

parameter set basically consists in the substitution of the 

Discrete Cosine Transformation (DCT) by a simple low-order 

filtering of the frequency sequence of spectral energies. The 

fact that the FF features lie in the frequency domain, implies a 

lower computational cost of the adaptation algorithm.   

In section 2 we first review JA and FF representation. 

Then, the Frequency Filtering Jacobian Adaptation (FF-JA) 
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technique is presented. This new technique is compared to the 

Jacobian Adaptation with MFCC (MFCC-JA), and to an 

optimization previously proposed in [3], and its 

computational advantage is showed. In section 3, 

experimental results with the Aurora1 database, which has 

been used for developing the ETSI DSR-AFE standard front-

end [6], are presented. In them, FF-JA has shown an 

improved recognition performance with respect to the MFCC-

JA, and also with respect to mean subtraction of either the 

cepstral coefficients (MFCC-MS, i.e. the well known CMS) 

or the FF features (FF-MS).  

2. The Frequency Filtering Jacobian 

Adaptation approach 

2.1. Fundamentals of Jacobian Adaptation 

Jacobian Adaptation is an acoustic model compensation 

technique based on a well-known approximation, which 

consists in that little modifications of the variables of an 

analytic function affect this function in a linear dependent 

way with the partial derivatives. In [1], this approach is 

extensively presented and it is shown that it is possible to find 

a simple and efficient linear function able to adapt 

Continuous Density Hidden Markov Models (CDHMM) from 

certain noisy training conditions to others. More recent 

contributions proposed modifications for the adaptation of 

other degrading factors like channel distortion and vocal tract 

length [7], but in this paper we will only adapt the mean 

vectors of the CDHMM. The equation that represents the 

transformation is as follows 
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where Cs+n/ Cn is the Jacobian matrix, s+n and Cs+n are 

respectively the new adapted and the original noisy speech 

cepstrum mean vector, and Cnref and Cntar are the reference 

and the target noise cepstrum vector, i.e. the noise present in 

the training signals and the actual noise present in the 

recognition phase respectively. Considering that relationship 

between cepstra of speech, noise and noisy speech is  
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where logarithmic and exponential operations are performed 

individually for each vector’s component, it can be 

demonstrated that Jacobian matrix can be written as 
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where F is the DCT matrix transformation, F-1 is its inverse, 

Nref is the training noise filter-bank energies (FBE) vector and 

S is the FBE mixture vector of the noisy speech model. The 

quotient is computed element by element and diag( ) is the 

diagonal matrix formed with the elements of the vector inside.  

Conventional JA algorithm can be summarized in two 

main steps. In the training phase the reference noise is 

estimated in order to calculate the Jacobian matrices of every 

mixture model using equation (3). In the recognition phase 

the actual testing noise is estimated to upgrade the models 

using equation (1) and the Jacobian matrices previously 

computed. 

The -JA [3] is a modified version of the original one that 

alleviates the problem of JA for large mismatch between 

training and testing. The expression of the -JA matrix is 
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It is shown in [3] that this last approximation gets better 

results than the original one. In this paper we will use the 

alpha modified version, but we will just refer to as Jacobian 

Adaptation. 

2.2. The FF feature representation 

Logarithmic filter-bank energies (FBE) are typical spectral 

measurements in most current speech recognition systems. 

The discrete cosine transform is applied to compute, from the 

set of energies, a set of uncorrelated features, the so-called 

mel-frequency cepstral coefficients, which is probably the 

most widely used spectral representation in speech 

recognition.  

In [5], the authors proposed a computational simple 

alternative to the DCT, called Frequency Filtering. The FF 

features have generally shown an equal or better recognition 

performance than the MFCCs [8], and, unlike them, the FF 

features show a frequency meaning. The FF technique 

consists of a filtering operation, typically with the second 

order filter 

H(z) = z – z
-1

 (5) 

In matrix notation [8], 

CF = H·log(S)  (6) 

where CF is the vector of the frequency-filtered parameters, S

is the vector of (linear) FBEs and H is the matrix: 
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2.3. The FF-JA formulation 

As it was done for the cepstral coefficients, we may define the 

Jacobian approximation for the adaptation of the mean 

vectors of the acoustic models based on the frequency-filtered 

spectral energies. This FF-JA technique can be simply 

rewritten substituting in the original formulation, the 

cepstrum vectors (C) with the FF vectors (CF), and the DCT 

matrix and its inverse with the filter matrix H in (7) and its 

inverse, that is: 
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This inverse matrix is only valid when the number of feature 

coefficients is even. This can not be considered an important 

constraint. In fact, MFCC-JA needs the inclusion of the 

zeroth cepstral coefficient to properly perform the inversion. 

Some computational advantages of the new FF-JA 

approach can be expected. On the one hand, the calculation of 

the FF parameters simply consists of subtracting two band 

energies. On the other hand, the frequency physical meaning 

of the FF representation may be useful for implementing 

robust techniques such as JA.  

2.4. Computational advantage of FF-JA 

JA is a fast adaptation algorithm, but it needs a lot of memory 

space to store all the Jacobian matrices and this can be a 

handicap in some embedded systems. An optimization 

algorithm has been previously presented in [3], which 

basically consists of expressing Jacobian matrices as functions 

of a basis of canonical matrices, which can be reduced by 

using Principal Component Analysis (PCA-JA). This 

approach allows reduction in both memory and computational 

cost of the JA. 

FF-JA also allows reducing memory space requirements 

due to the special characteristics of the filter matrices. If we 

define the parameters 
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where Nk and Sk are respectively the k-th component of noise 

and noisy speech FBE vectors, it can be demonstrated that 

JA-FF matrices can be written as 
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This structure permits that Jacobian matrices can be easily 

reconstructed from the parameters k. Concretely, if we call Nf

the dimension of the filter matrix and Ng the number of 

Gaussians to adapt, only Ng vectors of Nf components are 

needed to store, whereas in the MFCC-JA approach it is 

necessary to store Ng matrices of NfxNf components. The new 

FF-JA approach is also more efficient in terms of memory 

space than the optimization algorithm in [3], which needs to 

store Ng vectors of Nf components and NPCA canonical 

matrices of NfxNf components. 

However, the reconstruction algorithm implies an obvious 

computational cost increase in the recognition phase. This 

drawback can be compensated in the matrix-per-vector 

computation due to the sparseness of FF-JA matrices. MFCC-

JA needs Ng full matrix-per-vector computations. PCA-JA 

needs NPCA full matrix-per-vector and NPCAxNg scalar-per-

vector computations. FF-JA needs Ng sparse matrix-per-

vector computations. The number of elements different from 

zero of the sparse matrices is about Nf2/4 and some additional 

operations are needed for the reconstruction of the matrices. 

Table 1 shows a comparison between MFCC-JA, PCA-JA 

and FF-JA. To measure the computational cost, only additions 

and multiplications are considered, and it is also assumed that 

Gaussian means and all matrices and vectors needed for each 

adaptation algorithm are stored in memory. 

Memory Operations 

MFCC-JA 
Ng·Nf2

(117600)

2Ng·Nf2

(235200) 

PCA-JA 
Ng·Nf+NPCA·Nf2

(9772) 

2NPCA·{Nf2+Ng·Nf} 

(120344) 

FF-JA 
Ng·Nf 

(8400) 

Ng·{Nf2/2 + 2Nf} 

(75600) 

Table 1: Comparison of Jacobian Adaptation algorithms in 

terms of memory and computations. In brackets, an example 

with Ng=600, Nf=14 and NPCA=7. 

3. Evaluation tests 

3.1. Experimental set-up 

Experimental evaluation has been carried out with the 

Aurora1 database, which consists of the TIdigits speech 

database with artificially added noise [6]. It provides 422 

speech continuous digit realizations of different speakers for 

each training SNR and for four different noise conditions: 

‘exhibition hall’, ‘babble noise’, ‘car moving’ and ‘suburban 

train’ noise. 1000 testing realizations are provided for six 

different SNR levels and the same four noisy scenarios.  

Recognition system was implemented with HTKv3.0 

Toolkit. HTK libraries were modified to include the FF 

representation. CDHMM of digits were defined with 18 states 

and 3 mixtures for each state. Silence model was composed 

by 5 states and 6 mixtures for each state and the interword 

silence model is formed with 3 states and 6 mixtures for each 

state. After pre-emphasizing signals with a zero at 0.97, 

Hamming windowed frames of 25 ms were taken every 10 ms. 

14 cepstral coefficients, including the zeroth cepstral one, 

were obtained from a 23 component log-FBE vector in 

experiments with MFCC. When FF parameterization was 

considered, also 14 coefficients were obtained from a 14 log-

energies vector. The first and second derivatives are also 

included in both representations. The filter used in the FF 

parameterization is the one proposed in equation (5). 

JA of only static components of mean vectors was 

implemented for MFCC as well as for FF features. In previous 

works [1], it has been shown that JA of covariance matrices 

and delta-cepstrum vectors does not contribute in a significant 

way to recognition improvement. Noise training reference was 

obtained from the most probable mixture of the middle state 

of the silence model. Target noise was obtained from the 

average of the 7 first frames of the testing signal. For JA, the 

α parameter was set to 3. 

3.2. Experimental results 

A complete set of experiments has been carried out for six 

different techniques: MFCC, FF, MFCC-JA, FF-JA, MFCC-

MS and FF-MS. The last two techniques are identical to 

MFCC and FF respectively, but including mean subtraction 

(MS), that in the case of the MFCC features is the well-

known cepstral mean subtraction (CMS) technique.  

Training for each technique has been done with each of 

the four noise environments at three different SNR levels (20, 

15 and 10). Test signals are classified into four noise 

conditions as well, and into six different SNR levels (20, 15, 

10, 5, 0 and -5). The complete testing set is used for each 

training combination, i.e., all test signals are used for testing 

models trained with a specific noise condition and SNR, and 

for a given technique.  

Table 2 shows the whole set of recognition results with 

Aurora1 in two ways. On the left side, results depending on 

the noise conditions are shown. The percentage scores result 

from averaging across SNR in all testing and training 

combinations, but without including results for SNR=-5. That 

is, each result of the table is computed by averaging the 15 

results obtained combining the 3 SNR training levels (20, 15 , 

and 10 dB) and the 5 considered testing levels (20, 15, 10, 5, 

and 0 dB). On the right side of the table, average results 

depending on the reference and target SNR level are shown. 

These results have been computed by averaging all the 

combinations of noise conditions, i.e., each result is the 

average of the 16 pairs of reference-target noises having the 

same SNR for both training and testing. Also, a total average 

result is shown to easily compare the different techniques. 

Obviously, the average score per technique is the same at both 

sides of the table. 

From the bottom row (global averages) of the table, we 

can firstly observe that all the FF-based techniques show 

better scores than their corresponding MFCC versions, and 

the highest ones are obtained when FF is used with JA. 

Actually, a 10,2% relative improvement is obtained in terms 

of recognition accuracy from FF to FF-JA, which means 27% 

error rate reduction. Since, for MFCC, only a 4,68% relative 

improvement is obtained with JA, it seems that the FF 

features are better matched to the JA technique than the 

MFCCs.

For both speech representations, a remarkable 

improvement is obtained if mean subtraction is performed. In 

fact, MFCC-MS (CMS) clearly outperforms MFCC-JA. 

Actually, the same surprising observation was already done in 

[2], where the authors observed how MFCC-JA did not get 

better performance than CMS and, in some tests, it even 

performed worse than CMS. 



Partial results on the left side of the table show that FF-JA 

scores are always the highest ones, except when for tests with 

‘babble’ noise, when the best results are obtained with FF-

MS. Regarding the right side of the table, it can be seen that a 

general trend of the partial results is that FF-MS performs 

better than FF-JA when little SNR differences between 

training and test are found; however, when the SNR mismatch 

increases, FF-JA outperforms all the other techniques. 

In general, the worst results are always obtained when the 

‘babble’ noise is the testing one for all the techniques and so 

the total average results are heavily affected by the low 

performance in that noise condition. In this way, if we 

compare the total average results excluding ‘babble’ noise, we 

obtain that FF-JA shows even more advantage (89,21 %) in 

front of FF-MS (86,42 %) and MFCC-MS (86,33%). 

Finally, although results are not shown in this paper, 

several multi-condition training experiments have been also 

carried out. As it could be expected, although JA is an 

efficient technique to adapt from certain noise conditions to 

others, it does not perform better than MFCC or FF when all 

testing noise situations are included in the training set. 

4. Conclusions 

In this paper, the Jacobian adaptation of CDHMM acoustic 

models has been used with the frequency-filtered spectral 

energies to take advantage of the frequency meaning of this 

kind of features. In this way, besides offering a reduction of 

the computational load, the new FF-JA approach shows in our 

experiments a higher average recognition accuracy than both 

the already reported MFCC-JA technique and the mean 

subtraction techniques. 
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Hall 75,56 79,12 85,93 84,81 74,29 87,00 20 92,02 92,54 93,23 94,07 92,37 93,75

Babble 37,79 36,02 46,88 52,43 39,77 47,37 15 88,95 89,14 90,78 91,66 89,83 91,09

Train 69,51 68,89 87,91 88,19 76,61 89,47 10 79,78 80,66 84,51 85,98 82,94 86,31H
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0 29,39 31,95 41,88 44,32 32,54 55,51

Babble 81,85 80,72 81,27 82,57 78,04 80,94 20 89,47 90,90 91,06 92,17 90,24 92,20

Train 80,20 85,36 77,17 80,90 81,33 84,85 15 87,45 88,00 88,92 89,97 88,53 89,51

B
A

B
B

L
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Car 85,60 88,38 82,93 85,30 87,73 90,00 10 80,92 80,60 84,37 85,15 84,00 85,07

Hall 78,83 79,25 78,98 80,33 79,55 84,08 5 63,10 65,09 72,65 74,33 70,10 76,11

Babble 45,71 45,35 52,43 53,71 46,91 48,62

S
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0 35,80 38,57 48,97 50,47 42,59 57,49

Train 87,86 86,72 88,03 88,78 87,79 90,84 20 84,01 88,07 88,76 90,57 84,84 89,90

T
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Car 79,54 78,53 89,57 90,23 91,50 93,86 15 84,69 86,84 87,86 88,74 85,70 87,91

Hall 66,52 74,21 77,76 77,48 73,04 81,91 10 80,86 81,71 84,28 84,47 82,88 83,64

Babble 40,95 39,82 47,66 48,10 38,61 44,88 5 67,89 68,78 74,80 75,22 73,96 75,57

Train 65,86 67,84 84,05 83,95 79,94 87,97 0 41,90 44,99 55,08 55,82 50,59 59,45C
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Car 91,70 91,90 92,61 92,72 91,54 94,19

S
N

R
 1

0
 

        

AVERAGE 70,81 72,59 77,06 78,33 74,13 79,99 AVERAGE 70,81 72,59 77,06 78,33 74,13 79,99

Table 2: On the left side, word accuracy results by averaging across the training (TR) SNR (20, 15 and 10 dB) and the 

testing SNR (from 20 to 0 dB). On the right side, word accuracy results by averaging across all training and testing noise 

conditions.


