

Name

Seat # _____ Date

Derivatives of Inverse Functions

In 1-3, use the derivative to determine whether the function is strictly monotonic on its entire domain and therefore has an inverse.

1.
$$f(x) = \frac{x^4}{4} - 2x^2$$
 2. $g(x) = (x+a)^3 + b$ 3. $h(x) = 2 - x - x^3$

4. Think About It...Find the derivative of $y = \tan x$. Notice that the subject derivative has the same sign for all values of x, so $y = \tan x$ is a monotonic function. However, $y = \tan x$ is not a one-to-one function. Why?

In 5-6, (a) "delete" part of the graph of the function shown so that the part that remains is one-to-one. Then, (b) find the inverse of the remaining part and (c) state its domain. (Note: there is more than one correct answer for these questions!)

In 7-9, find the derivative of the inverse function at the corresponding value.

- 7. Given $f(x) = x^3 + 2x 1$, find $\frac{d}{dx} [f^{-1}]|_{x=2}$ (Note: you may need to use guess and check to solve an equation involved in this problem.)
- 8. Given $g(x) = 2x^5 + x^3 + 1$, find $\frac{d}{dx} [g^{-1}] \Big|_{x=1}$
- 9. Given $h(x) = \sin x$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ find $\left.\frac{d}{dx}\left[h^{-1}\right]\right|_{x=1/2}$

10. Selected values of a strictly monotonic function g(x) and its derivative g'(x) are shown on the table below.

x	-3	-1	1	4
g(x)	5	1	0	-3
<i>g</i> '(<i>x</i>)	-4	$-\frac{1}{5}$	$-\frac{1}{6}$	-2

a) Find $(g^{-1})'(1)$

- b) Find $(g^{-1})'(-3)$
- 11. Selected values of a strictly monotonic function h(x) and its derivative h'(x) are shown on the table below.

x	-1	0	2	4
h(x)	-5	-1	4	7
h'(x)	3	$\frac{1}{2}$	$\frac{1}{6}$	5

Let f(x) be a function such that $f(x) = h^{-1}(x)$.

- a) Find f'(-1)
- b) Find f'(4)

True or False? In 12-15, determine whether the statement is true or false. Justify your answer. 12. If f(x) is an even function, then $f^{-1}(x)$ exists.

- 13. If the inverse of f exists, then the y-intercept of f is an x-intercept of f^{-1} .
- 14. If $f(x) = x^n$ where *n* is odd, then $f^{-1}(x)$ exists.
- 15. There exists no function f such that $f = f^{-1}$.

Derivatives of Inverse Functions

1. $f'(x) = x^3 - 4x = x(x^2 - 1)$

Performing a sign analysis, f'(x) < 0 if x < 0, but f'(x) > 0 if x > 0 (except at x = 1), so this is not a strictly monotonic function and it does not have an inverse function.

2. $g'(x) = 3(x+a)^2$

Performing a sign analysis, g'(x) > 0 for all values of x, except at x = -a. So this is a strictly monotonic function and it has an inverse function.

3. $h'(x) = -1 - 3x^2$

Performing a sign analysis, h'(x) < 0 for all values of x. So this is a strictly monotonic function and it has an inverse function.

4. $y' = \sec^2 x$. We have $y' = \sec^2 x > 0$, for all values of x included in the domain of $\sec x$. Therefore $y = \tan x$ is always increasing. But the graph of $y = \tan x$ has vertical tangent lines and it does not pass the horizontal line test: $y = \tan x$ is not a one-to-one function.

Domain of $f^{-1}(x)$ is $[0, +\infty)$

Domain of $g^{-1}(x)$ is $[0, +\infty)$

- 7. Given $f(x) = x^3 + 2x 1$, $\frac{d}{dx} \left[f^{-1} \right] \Big|_{x=2} = \frac{1}{f'(1)} = \frac{1}{5}$
- 8. Given $g(x) = 2x^5 + x^3 + 1$, $\frac{d}{dx} \left[g^{-1} \right] \Big|_{x=1} = \frac{1}{g'(0)} =$ undefined

9. Given
$$h(x) = \sin x$$
 on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \left. \frac{d}{dx} \left[h^{-1} \right] \right|_{x=1/2} = \frac{1}{h' \left(\frac{\pi}{6} \right)} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$

10.

x	-3	-1	1	4
g(x)	5	1	0	-3
<i>g</i> '(<i>x</i>)	-4	$-\frac{1}{5}$	$-\frac{1}{6}$	-2

a)
$$(g^{-1})'(1) = \frac{1}{g'(-1)} = -5$$

b) $(g^{-1})'(-3) = \frac{1}{g'(4)} = -\frac{1}{2}$

11.

x	-1	0	2	4
h(x)	-5	-1	4	7
h'(x)	3	$\frac{1}{2}$	$\frac{1}{6}$	5

a) $f'(-1) = \frac{1}{h'(0)} = 2$ b) $f'(4) = \frac{1}{h'(2)} = 6$

12. If f(x) is an even function, then $f^{-1}(x)$ exists. FALSE. An even function has symmetry with respect to the y-axis and, therefore, cannot be one-to-one.

- 13. If the inverse of f exists, then the y-intercept of f is an x-intercept of f^{-1} . TRUE. Switching x and y coordinates will result in switching x and y intercepts.
- 14. If $f(x) = x^n$ where *n* is odd, then $f^{-1}(x)$ exists. TRUE. If $f(x) = x^n$ where *n* is odd, its derivative is $f'(x) = nx^{n-1}$ where n-1 is even. So f'(x) > 0 for all values of x except x = 0. Therefore $f(x) = x^n$ is strictly monotonic.
- 15. There exists no function f such that $f = f^{-1}$. FALSE. There are many such functions! Some examples: y = x, y = -x, y = -x + a,...