Name: \qquad Date: \qquad

Strength of Materials Math Worksheet Answers

1. Calculate the maximum tensile and compressive forces allowed for the cross-sectional area shown in Figure 1. The maximum tensile strength is $500 \mathrm{lb} / \mathrm{in}^{2}$ (pounds per inches squared). The maximum compressive strength is $5,000 \mathrm{lb} / \mathrm{in}^{2}$. Use the following equations to complete the problem. Show your work and calculations.
cross-sectional area $=(\mathrm{B}) \times(\mathrm{L})$
maximum tensile force $=($ maximum tensile strength $) \mathrm{x}$ (cross-sectional area)
maximum compressive force $=($ maximum compressive strength $) \mathrm{x}$ (cross-sectional area)

Figure 1: Cross-sectional area.
2. Calculate the maximum tensile and compressive forces allowed for the following two cross-sectional areas shown in Figure 2. The maximum tensile strength is $3,750 \mathrm{lb} / \mathrm{in}^{2}$. The maximum compressive strength is $4,850 \mathrm{lb} / \mathrm{in}^{2}$. Use the following equations along with those in \#2 to complete the problem. Show your work and calculations. cross-sectional area $=\pi \mathrm{x}$ (radius) $^{2} \quad \pi=3.14$

Answer: Figure 2: Cross-sectional areas.
Cross-sectional area of circle $=3.14 \times(10 \text { inches })^{2}=314$ in 2
Cross-sectional area of I-beam $=(15$ inches $) \times(2$ inches $)+(15$ inches $) \times(2$ inches $)+(2$ inches $) \times(20$ inches $)=100$ in 2
Maximum tensile force of circle $=\left(3,750 \mathrm{lb} / \mathrm{in}^{2}\right) *\left(314 \mathrm{in}^{2}\right)=1,177,500 \mathrm{lb}$
Maximum compressive force of circle $=\left(4,850 \mathrm{lb} / \mathrm{in}^{2}\right) *\left(314 \mathrm{in}^{2}\right)=1,522,900 \mathrm{lb}$
Maximum tensile force of I-beam $=\left(3,750 \mathrm{lb} / \mathrm{in}^{2}\right) \times\left(100 \mathrm{in}^{2}\right)=375,000 \mathrm{lb}$
Maximum compressive force of I-beam $=\left(4,850 \mathrm{lb}_{\mathrm{in}}{ }^{2}\right) \times\left(100 \mathrm{in}^{2}\right)=485,000 \mathrm{lb}$
3. Part 1: Calculate the compressive force for the cross-sectional area shown in Figure 3. The original length of the member was 100 -in long. After applying the compressive force, the member was 99 -in long. The modulus of elasticity for the material used in the cross section is $10,000 \mathrm{lb} / \mathrm{in}^{2}$. Use the following equations along with those in \#2 and \#3 to complete the problem. Show your work and calculations.

Part 2: Calculate the tension force for the cross-sectional area shown in Figure 3. The original length of the member was 100 -in long. After applying the tensile force, the member was 103 -in long. The modulus of elasticity for the material used in the cross section is the same as in \#2 above. Use the following equations along with those in \#2 and \#3 to complete the problem. Show your work and calculations.
$\sigma=\mathrm{E} * \varepsilon$
$\sigma=$ stress
$\varepsilon=$ change in length / original length
$\varepsilon=$ strain
$\mathrm{E}=$ modulus of elasticity
change in length $=($ length after force applied $)-($ original length $)$
If the change in length is negative, take the absolute value to get a positive number force $=\sigma *$ cross-sectional area

Figure 3: Cross-sectional area.
Part 1 Answer:
Change in length $=99$ inches -100 inches $=-1$ inch
Taking the absolute value, change in length $=1$ inch
$\varepsilon=1$ inch $/ 100$ inches $=0.01$
$\sigma=\left(10,000 \mathrm{lb} / \mathrm{in}^{2}\right) \times(0.01)=100 \mathrm{lb} / \mathrm{in}^{2}$
Cross-sectional area $=(17$ inches $) \times(39$ inches $)-(13$ inches $) \times(33$ inches $)=234$ in 2
Force $=\left(100 \mathrm{lb} / \mathrm{in}^{2}\right) \times\left(234 \mathrm{in}^{2}\right)=23,400 \mathrm{lb}$

Part 2 Answer:

Change in length $=103-100$ inches $=3$ inches
$\varepsilon=3$ inches $/ 100$ inches $=0.03$
$\sigma=\left(10,000 \mathrm{lb} / \mathrm{in}^{2}\right) \times(0.03)=300 \mathrm{lb} / \mathrm{in}^{2}$
Cross-sectional area $=(17$ inches $) \times(39$ inches $)-(13$ inches $) \times(33$ inches $)=234$ in 2
Force $=\left(300 \mathrm{lb} / \mathrm{in}^{2}\right) \times\left(234 \mathrm{in}^{2}\right)=70,200 \mathrm{lb}$

