
Introduction to C++

Callum Beddow
calum.beddow12@imperial.ac.uk

Imperial College Software Society

October 13, 2014

1 / 97

Buy Software Soc.’s Free Membership

at

https://www.imperialcollegeunion.org/shop/

club-society-project-products/software-products/

This is to keep the union happy. ˆ ˆ

2 / 97

Contents I

0. Introduction
What is C++?
Why C++?
What You Will Need
The Compiler
Compiling and Running

1. A Tutorial Introduction
Getting Started
Variables and Arithmetic Expressions
For Loops
If Statements
Constants
Input and Output
Arrays
Functions
Passing Arguments by Reference

3 / 97

Contents II
External Variables and Scope

2. Pointers and Arrays
Pointers and Addresses
Pointers and Function Arguments
Address Arithmetic
Pointers and Arrays
Dynamic Memory Allocation
Pointer Arrays: Pointers to Pointers
Multidimensional Arrays
Command Line Arguments
Function Pointers
Void Pointers

3. Structures
Basics of Structures
Operator Overloading
Self-referential Structures

4 / 97

Contents III
4. Header Files & Libraries

Header Files
Conditional Inclusion
Compiling Multiple Files

5 / 97

0. Introduction

0. Introduction

6 / 97

0. Introduction, 0.1 What is C++?

0.1 What is C++?

• C++ is a multi-purpose programming language

• C++ is imperative

You define a sequence of commands that are run one after the
next, allowing you to change the state of the computer.

• C++ is based on C, which was based on B, which was based on
BCPL

• The latest C++ standard was released in 2011 (C++11)

7 / 97

0. Introduction, 0.2 Why C++?

0.2 Why C++?

• C++ is:
• General purpose
• Fast
• Portable
• Widely used

• It has many libraries and pre-made functions that allow you to
perform operations without having to write them yourself. C++

is (nearly entirely) backwards compatible with C allowing you
to use C libraries as well.

8 / 97

0. Introduction, 0.3 What You Will Need

0.3 What You Will Need

• A computer or Laptop.

• A text editor to write the code in (e.g. Notepad++ , Xcode)

• A compiler, to turn what you write into machine code. g++

For Windows:
For the text editor Notepad++ , and the g++ compiler can be installed
from MinGW , which can be downloaded here . When installing tick
the base, g++ and msys boxes. Make a shortcut to the
C:\MinGW\msys\1.0\msys.bat (MinGW Shell) script. Run the
bat script then run the

echo 'export PATH=/c/MinGW/bin:$PATH'>> .profile

command, then close and open the console again.

For Mac OS X:
Xcode comes with both g++ and a text editor. Xcode can be
downloaded from the App Store, then install ‘Command Line Tools’
from ‘Preferences\Downloads’.

9 / 97

0. Introduction, 0.4 The Compiler

0.4 The Compiler

The compiler turns what you write, human readable code, into
binary computer code that is run. There are 3 main steps to
compiling:

• Preprocessing
Preprocessor commands all start with a #. They are mainly
used to include files from libraries and replace text.

• Translation into object code
This turns your code into machine code, but also stores the
names of functions you need from other files needed.

• Linking
This gets the functions you need from other files and inserts
them into the object code, and makes the file a proper
executable.

The translation and linking is the proper compiling as it makes the
machine code.

10 / 97

0. Introduction, 0.5 Compiling and Running

0.5 Compiling and Running

Using the MinGW Shell (Windows), or terminal (Mac):

• touch filename.cpp

touch makes a new file, if it does not exist. If the file does
exist it updates the timestamp.

• start filename.cpp or open filename.cpp

start (on Windows) or open (on Mac) will open the file for
you to write the code in.

• g++ filename.cpp

This command compiles the code and creates the executable
file a.exe (Windows) or a.out (Mac / Linux). g++ is the
name of the compiler.

• ./a.exe or ./a.out

This will run the program that was just compiled to a.exe

(Windows) or a.out (Mac / Linux).

11 / 97

0. Introduction, 0.5 Compiling and Running

Tips

• Command History
You can go through your previous commands, by using the up &

down arrow keys.

• Autocompletion
File names and directory names can be completed using the tab key.

This saves you from typing out long filenames, e.g. say you wanted to

compile the file verylongfilename.cpp you could type g++ ver

then press the tab key. If the file/directory name is ambiguous it will

complete up to that point, then list the files.

• Chaining Commands Together
Commands can be chained together using &&. If the first command

completes successfully (i.e. returns 0), then the next command will

be run. If you do not care whether it was successful, you can use ;

instead. For example, say you want to compile the file hi.cpp then

run it, you can use g++ hi.cpp && ./a.out. That way, if the

compilation fails, the program will not be run.

12 / 97

0. Introduction, 0.5 Compiling and Running

Other Useful Commands I

• ls

ls lists the stuff in the directory you are currently in.

• cd directoryname

cd changes directory, moving you into the directoryname
directory. To go up a directory use ../ as the directory.

• g++ -Wall -Wextra codetocompile.cpp

The -Wall & -Wextra turns on all warnings (for things that
are bad) and extra warnings (for things the compiler thinks you
may make a mistake doing it that way). These are useful for
helping you debug your code.

• g++ codetocompile.cpp -o outputfilename The -o flag
for g++ allows you to change the output file name from the
default (a.out) to outputfilename.

13 / 97

0. Introduction, 0.5 Compiling and Running

Other Useful Commands II

• pwd

pwd tells you your present working directory, i.e. were you
currently are in the filesystem.

• ./a.out > filename

> can be used to write the output of your program (what
would be written to the console using cout in code) to a file.

14 / 97

1. A Tutorial Introduction

1. A Tutorial Introduction

15 / 97

1. A Tutorial Introduction, 1.1 Getting Started

1.1 Getting Started

As is the tradition in programming we will start with the “Hello
World” program, that prints “Hello World” to the Screen.

1 // Hello World Program

2

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 cout << "Hello World" << endl;

9 return 0;

10 }

So what does it all mean and why do we need it?

16 / 97
HelloWorld.cpp

1. A Tutorial Introduction, 1.1 Getting Started

• //Hello World Program

This is a single line comment, and does nothing. Comments
are used to remind you what the code does.

• #include <iostream>

This tells the compiler that we will be using things from the
input output stream standard library, namely cout ans endl.

• using namespace std;

In C++ things are grouped together in namespaces, this tells the
compiler to look for things in the std namespace, otherwise we
must tell it to look for them there, so cout without this line
would be std::cout and endl would be std::endl.

17 / 97

1. A Tutorial Introduction, 1.1 Getting Started

• int main(){return 0;}

This is the main function. All C++ programs have a main
function so the computer knows where to start in the program,
in case you had many functions. The int is the return type,
that is an integer that the program gives back to whatever ran
this code. The return 0;, is when it gives back the integer and
leaves the main function. Returning 0 traditionally denotes that
the program finished successfully, and other integers are error
codes.

18 / 97

1. A Tutorial Introduction, 1.1 Getting Started

The Most Important Part of the Code

The lines above need to be there (except the comment line), but
understanding them isn’t necessary at this point. They can just be
copy and pasted in, knowing that you only have to change what’s
between the { and the return 0;

• cout << "Hello World"<< endl;

cout is the standard output stream, i.e. it writes on the screen.
You feed in what you want written with <<. In this case
"Hello World", then it is written to the screen. After that a new
line is fed in with << endl. So when the program finishes, the
terminal starts on the line after “Hello World”.

19 / 97

1. A Tutorial Introduction, 1.1 Getting Started

Semicolons Everywhere;

Remember the Semicolon;
Semicolons denote the end of a statement or instruction in C++, not
a newline. You can, if you want, put all your C++ onto one line, so
how does the compiler know where one instruction ends and the
next starts? Semicolons ;

20 / 97

1. A Tutorial Introduction, 1.1 Getting Started

More couting
1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 cout << "Hello " // no ; so is continued to the next line

7 << "World"

8 << endl << endl; // outputs: Hello World

9

10 cout << 42 << endl; // outputs: 42

11 cout << 4 << 2 << endl; // outputs: 42 (no spaces)

12 cout << 4 << " " << 2 << endl << endl; // outputs: 4 2 (with

space)

13

14 cout << 4+2 << " " << 4*2 << endl; // outputs: 6 8

15

16 cout << 4/2 << ", " << 2/4 << ", " << 2.0/4.0 << endl;

17 // outputs: 2, 0, 0.5

18 return 0;

19 }

21 / 97
Morecouting.cpp

1. A Tutorial Introduction, 1.2 Variables and Arithmetic Expressions

1.2 Variables and Arithmetic Expressions

Variables
Variables are used to store values, and can be changed. They must
have a type and a name. The type defines what is being stored, and
the name is what you use to access it.

Type Description Examples

bool A boolean value (true of false) true, false

char A character 'a', '@', '7'

int An integer 0, 10,-100

double A double precision floating point number 0.1, 1e-10, 7.0

Variable Declaration

• Type Name;

• Type Name = Value;

22 / 97

1. A Tutorial Introduction, 1.2 Variables and Arithmetic Expressions

Arithmetic Operators
C++ can do arithmetic:

Syntax Name

a = b Assignment Operator int x = 3

a + b Addition x + 7

a - b Subtraction 5 - 4

a * b Multiplication 6*3

a / b Division 2/3— 2.0/3.0

a % b Modulo (integer remainder) 5 % 3

++a Prefix increment ++x

a++ Postfix increment x++

--a Prefix decrement --x

a-- Postfix decrement x--

The prefix inc/decrement inc/decrements the variable by 1 before
the rest of the operations, postfix does it after the rest of the
operations.If x=3, x++*2 is 6 and x is 4, whereas if x=3 , ++x*2 == 8

and x is 4.
23 / 97

1. A Tutorial Introduction, 1.2 Variables and Arithmetic Expressions

Things to Watch Out for

Watch for Integer Division /

If two integers are divided, the result will be the solution rounded
down, i.e. 3/2 is 1, 2/3 is 0.

int’s store Integers

Integers only store integers, other numbers are rounded down before
being stored, i.e. 2.2 → 2, 2.5 → 2, and even 2.999 → 2.

= is not ==

= (is set to) Sets a variable to something.
== (is equal to?) Compares two things to see if they are the same.

24 / 97

1. A Tutorial Introduction, 1.2 Variables and Arithmetic Expressions

Writing a Fahrenheit to Kelvin Converter
To produce a table of values for Farhrenheit in Kelvin

1 #include <iostream>

2 using namespace std;

3

4 /* Kelvin - Fahrenheit table

5 for fahr = 0, 15, ..., 120*/

6 int main () {

7 int min = 0, max = 120, step = 15;

8 int fahr = min;

9

10 cout << "F \t K \n";

11 while (fahr <= max){

12 int kel = 5 * (fahr - 32) / 9.0 +

273;

13 cout << fahr << "\t" <<kel<< endl;

14 fahr = fahr + step;

15 }

16 return 0;

17 }

Conversion Equation:

kel =
5 × (fahr − 32)

9
+273

Program’s Output:
F K

0 255

15 263

30 271

45 280

60 288

75 296

90 305

105 313

120 321

25 / 97
FahrtoKel.cpp

1. A Tutorial Introduction, 1.2 Variables and Arithmetic Expressions

While Loops

while can be used to repeat a block of code multiple times, when a
specified condition is true. The syntax for a while loop is

while (condition){

//lines of Code to run while condition is true

}

The { } is used for a single or multiple lines of code, and does not
need a ;. Variables declared in { }, such as int kel; are only
accessible within the { } .

26 / 97

1. A Tutorial Introduction, 1.2 Variables and Arithmetic Expressions

Rest of the Code

• /*Some text */

A multiline comment can be constructed by putting /* and */

around what you want to comment out. It should be noted
that the comment goes from the /* to the first */, so you
cannot put multiline comments in multiline comments.

• The characters '\n' and '\t'

These are escape characters and represent characters cannot be
typed in the source code. In this case they are newline
character ('\n'), and the tab character ('\t') for producing
lined up columns.

27 / 97

1. A Tutorial Introduction, 1.2 Variables and Arithmetic Expressions

Fahrenheit to Kelvin Converter, with Doubles

1 #include <iostream>

2 using namespace std;

3

4 /* Kelvin - Fahrenheit table

5 for fahr = 0, 15, ..., 120*/

6 int main () {

7 double min = 0, max = 120, step = 15;

8 double fahr = min;

9

10 cout << "F \t K \n";

11 while (fahr <= max){

12 double kel = 5 * (fahr - 32) / 9.0

+ 273;

13 cout << fahr << "\t" <<kel<< endl;

14 fahr = fahr + step;

15 }

16 return 0;

17 }

Program’s Output:
F K

0 255.222

15 263.556

30 271.889

45 280.222

60 288.556

75 296.889

90 305.222

105 313.556

120 321.889

Did you notice the rounding down in the previous version?
28 / 97

FahrtoKeldouble.cpp

1. A Tutorial Introduction, 1.3 For Loops

1.3 For Loops

For loops are like while loops, but are a bit more condensed.

1 #include <iostream>

2 using namespace std;

3 int main () {

4 cout << "F \t K \n";

5 for (double fahr=0; fahr <= 120; fahr = fahr +15)

6 cout << fahr << "\t" << 5 * (fahr - 32) / 9 + 274 << endl;

7 return 0;

8 }

for (Step before loop;

Condition;

Step at end of loop cycle) {

... code here repeats while condition is true ...

}

29 / 97
forFahrtoKel.cpp

1. A Tutorial Introduction, 1.3 For Loops

The for loop

for (Step before loop; Condition; Step at end of loop cycle) {

... code here repeats while condition is true ...

}

is equivalent to

Step before loop;

while (Condition) {

... code here repeats while condition is true ...

Step at end of loop cycle;

}

There is no difference between the two, except that the for loop is
more compact.

30 / 97

1. A Tutorial Introduction, 1.3 For Loops

Comparison Operators

The comparison operators in C++ are:

Syntax Operator Name

a == b is equal to
a != b is not equal to
a > b is greater than
a < b is less than
a >= b is greater than or equal to
a <= b is less than or equal to

a!=b and a=!b
The first is is a not equal to b?, the second is set a to not b.

31 / 97

1. A Tutorial Introduction, 1.4 If Statements

1.4 if Statements

If-Then-Else statements allow you to branch your code down two
possible routes, depending on whether a condition is true or false

if (condition) {

// Code to be run if the condition is true

} else {

// Code to be run if the condition is false

}

If-Then statements are also possible, where you do not need to
specify what happens if the condition is false

if (condition) {

// Code to be run if the condition is true

}

32 / 97

1. A Tutorial Introduction, 1.4 If Statements

Print random numbers and whether they are even or odd until the
sum of the numbers will be > 10000

1 #include <iostream>

2 #include <cstdlib> // for rand();

3 #include <ctime> // for time();

4 using namespace std;

5

6 int main(){

7

8 // Seeding the random number, to prevents the same output each

time

9 srand(time(NULL));

10

11 int sum = 0;

12

13 while(true){

14 int num = rand() %1000;

15

16 sum = sum + num;

17 if (sum > 10000){

33 / 97
rnd.cpp

1. A Tutorial Introduction, 1.4 If Statements

18 break; // Leaves a while/for loop, you are currently in (

line 13)

19 }

20

21 cout << num << "\t";

22 if (num %2 == 0){

23 cout << "even";

24 } else {

25 cout << "odd";

26 }

27 cout << endl;

28 }

29

30 return 0;

31 }

34 / 97

1. A Tutorial Introduction, 1.4 If Statements

Logical Operators

The logical operators in C++, where A and B are logical expressions
(i.e. 2 == 1), which is evaluated to false or true, are :

Syntax Operator Name

!A not A (false → true— true → false)
A && B A and B (true iff A and B are true)
A— B— A or B (true if either A or B (or both) are true)

A != B A xor B (true iff only one of A or B are true)
!(A && B) A nand B (true iff A and B not both true)
!(A— B)— A nor B (true iff A and B are false)
!(A != B) A xnor B (true iff A and B are false or true)

iff means if and only if.

35 / 97

1. A Tutorial Introduction, 1.5 Constants

1.5 Constants - Const
It is bad practice to bury magic numbers in your code. It is better
to put them at the top of the file, give them clear name, and make
them const to prevent them from being changed. The syntax for
this is:

const type NAME

This makes the converter:

1 #include <iostream>

2 const int MIN = 0, MAX = 120,

3 STEP = 15;

4

5 using namespace std;

6 int main() {

7 cout << "F \t K \n";

8 for (double fahr=MIN;fahr <= MAX; fahr = fahr + STEP)

9 cout << fahr << "\t" << 5 * (fahr - 32) / 9 + 274

<< endl;

10 return 0;

11 }

36 / 97
constFahrtoKel.cpp

1. A Tutorial Introduction, 1.6 Input and Output

1.6 Input && Output

C++ has no built-in routines for handling IO, but there are some
standard Libraries. Two libraries for Input and Output are:

• iostream - For IO to the Screen.

• fstream - For IO to Files.

These contain classes (used to ’create objects’):

• iostream automatically defines two streams for input and
output: cout and cin.

• ifstream does not automatically define streams for you, so you
must define the objects yourself using ofstream and ifstream
class (classes are like types, as objects are like variables).

37 / 97

1. A Tutorial Introduction, 1.6 Input and Output

Reading from Standard Input - cin (in iostream)

How far in the alphabet is a lowercase letter?

1 #include <iostream>

2 using namespace std;

3 int main() {

4 char letterin;

5 cout << "Please enter a lower case letter: ";

6 cin >> letterin;

7 cout << "\n It is the "

8 << letterin - 'a' + 1

9 << " letter in the alphabet\n";

10 return 0;

11 }

38 / 97
cin.cpp

1. A Tutorial Introduction, 1.6 Input and Output

• #include <iostream>

cin is in the iostream library

• char letterin;

Declare space to store the character to be read in.

• cin >> letterin;

cin reads in one line from standard input. This is split by white
spaces ('', '\t', etc.) which can then be read into variables
with >>. N.B. Beware the direction of the arrows: cout uses <<

and cin uses >>.

• letterin - 'a'+ 1

letters are represented and stored as numbers, e.g. 'a' is stored
as 97 as ASCII . The lower case letters are stored contiguously
so 'c' is 99. When doing subtraction/addition the letters are
converted to numbers so 'c'−'a'= 2. The +1 is because we
want the number in the alphabet not the distance from 'a'.

39 / 97

1. A Tutorial Introduction, 1.6 Input and Output

Writing to Files - ofstream (in fstream)

Writing a square grid of letters to a file becoming pseudo
randomised.

1 #include <iostream>

2 #include <fstream>

3 using namespace std;

4 int main() {

5 ofstream fout("1.5.2.1output.txt");

6 char lin; int iin, size = 5;

7 cout << "Please enter a lower case letter: ";

8 cin >> lin; lin = lin - 'a';

9 cout << "Please enter an integer ";

10 cin >> iin; iin = iin%26;

11 for(int i=0; i < size; i++){

12 for (int j=0; j < size; j++)

13 fout << char('a'+ (lin +(i*size+j)*iin)%26) << '\t';

14 fout << endl;

15 } return 0;

16 }

40 / 97
letterrandomise.cpp

1. A Tutorial Introduction, 1.6 Input and Output

• #include <fstream>

The ofstream class (type) is found in the file stream library.

• ofstream fout("1.5.2.1output.txt"); This makes an ofstream
object (variable) fout and makes the file "1.5.2.1output.txt" in
the directory the program is run. It acts just like cout, except
for writing to screen it writes to a file. You can create as many
as you like with

ofstream objectname (filename);

• iin = iin%26;

This stores the remainder of iin ÷ 26 in iin. This guarantees
that iin is a number between and not excluding 0 and 25.

41 / 97

1. A Tutorial Introduction, 1.6 Input and Output

• char('a'+ (lin +(i*size+j)*iin)%26)

This is typecasting. It converts one type to another, in this
case from int to char. It can be done in two ways:

typeto(expression of original type)

or
(typeto) expresion of original type

Here, char(a number) is used here so that fout writes a letter to
the file rather than a number, as output streams determine
how to write something based on it’s type.

42 / 97

1. A Tutorial Introduction, 1.6 Input and Output

Reading from files - ifstream (in fstream)
Take the grid from the last program and find how far each letter is
from 'a'.

1 #include <iostream>

2 #include <fstream>

3 using namespace std;

4 int main() {

5 ifstream fin("1.5.2.1output.txt");

6 char c; int size = 5;

7 for(int i = 0; i < size; i++)

8 {

9 for(int j=0; j < size; j++)

10 {

11 fin >> c ;

12 cout << c-'a'<<'\t';

13 }

14 cout << endl;

15 }

16 return 0;

17 }

43 / 97
gridtonum.cpp

1. A Tutorial Introduction, 1.6 Input and Output

• #include <fstream>

ifstream is in the file stream library.

• ifstream fin("1.5.2.1output.txt");

This makes an ifstream object(variable) fin and opens the file
"1.5.2.1output.txt" in the directory the program is run for
reading. It acts like cin, except reads from a file. You can
make ifstream objects for opening files by

ifstream objectname (filename);

• fin >> c ;

This reads in a line from the file and puts one character into c

at a time.

44 / 97

1. A Tutorial Introduction, 1.7 Arrays

1.7 Arrays
Arrays allow you to store a large number of values in a list so that
they can be used later in the program, the array has n spaces, but
goes from 0 to (n − 1), where n is a const int:

type arrayname[n]

1 #include <iostream>

2 using namespace std;

3 int main() {

4 const int i=5;

5 int evn[i]={2,4};// Declare the array and set the first two

elements.

6 evn[2] = 6;// Set the 3rd (0,1,2) element.

7 for (int n=3;n<i;evn[n]=2+2*n++); // Fill the rest of the array

with even numbers

8 for (int n=0; n<i; n++) // Print out all the elements

9 cout << evn[n] << endl;

10 return 0;

11 }

45 / 97
evennums.cpp

1. A Tutorial Introduction, 1.7 Arrays

Arrays & the Vector Class

• Arrays are fixed length, they cannot change size.

• So how can you store more values as your program needs it?
• Vectors are similar to array, but they can change in length, so

extra values can be added or removed.
• Vectors has other properties that the arrays do not, for example

it knows it’s own size.
• Vectors are part of the standard template Library (STL).
• http://www.cplusplus.com/reference/stl/vector/

Making Vectors

Vectors are in the vector library and are declared by:

vector <type> vectorname(size)

Note the round brackets (), arrays have square brackets [].

46 / 97

1. A Tutorial Introduction, 1.7 Arrays

Vector Class Example: Even Numbers

1 #include <iostream>

2 #include <vector>

3 using namespace std;

4 int main() {

5 int i=5; // Does not need to be const

6 vector<int> evn(i); // Note the () brackets

7

8 // Elements can be accessed just like arrays with []

9 for(int n=0; n<i; evn[n]=2+2*n++);

10

11 evn.push_back(12); // Adding extra values

12 evn.push_back(14);

13

14 for(int n=0; n < evn.size(); n++) // They know their own size

15 cout << evn[n] << endl; // the last element is evn.size()-1

16

17 return 0;

18 }

47 / 97
evennumsvector.cpp

1. A Tutorial Introduction, 1.8 Functions

1.8 Functions

returnType functionName (type1 argName1, type2 argName2 /*, etc

...*/)

{

... code here ...

return (valueOfReturnType);

}

• Functions are like subroutines or procedures, they encapsulate
bits of computation.

• They split a program up into different reusable parts.

• Functions are called from other parts of the program, with their
name and parameter list.

functionName(arg1, arg2 /*, etc...*/)

• They must have a function prototype, or be declared before
they are used.

returnType functionName (type1, type2 /*, etc...)

48 / 97

1. A Tutorial Introduction, 1.8 Functions

Function Example - x
n

1 #include <iostream>

2 using namespace std;

3

4 int power(int, int); // Function Prototype

5

6 int main() {

7 const int b = 2;

8

9 for (int i = 0; i < 10; i++)

10 cout << power(b,i) << '\n'; // Calling the Function

11 return 0;

12 }

13

14 int power(int x, int n){ // Function Declaration.

15 int ret = 1;

16 for(int i=1; i <= n; i++)

17 ret = ret * x;

18 return ret;

19 }

49 / 97
power.cpp

1. A Tutorial Introduction, 1.8 Functions

Things to Note:

• Copies of the arguments are passed into the function.
In the previous example, changing x and n in the power
function in no way effect b or i in the main function.

• This is called passing by value, as the value of the variable is
copied into the function.

• The function ends when it gets to a return. Anything
afterwards is ignored.

• There is a much better power function in the cmath library,
called pow (see here).

Functions can be Recursive
Functions can call themselves, this is known as recursion.

50 / 97

1. A Tutorial Introduction, 1.8 Functions

Recursive Function Example - x
n

1 #include <iostream>

2 using namespace std;

3

4 int power(int, int); // Function Prototype

5

6 int main() {

7 for (int i = 0; i < 10; i++)

8 cout << power(2,i) << '\n'; // Calling the Function

9 return 0;

10 }

11

12 int power(int x, int n){ // Function Declaration.

13 if(n>0){

14 return x * power (x, n-1); // Function Calls itself

15 } else {

16 return 1;

17 }

18 }

51 / 97
powerrecursive.cpp

1. A Tutorial Introduction, 1.9 Passing Arguments by Reference

1.9 Passing Arguments by Reference

• Variables can be given directly to functions, such that they are
not copies of the variables. This is done by putting the
reference operator & after the type.

returnType functionName (type1& argName1, type2& argName2 /*, etc

...*/)

{

... code here ..

return (valueOfReturnType);

}

• This gives the address (location) of the variable in memory is
given to the function.

• This is useful if you do not want copies made of that which is
passed to it, for example if it will take a long time to copy.

• const can be used to prevent changes to the variable.

52 / 97

1. A Tutorial Introduction, 1.9 Passing Arguments by Reference

Interchanging two Variable

1 #include <iostream>

2 using namespace std;

3

4 void swap(int&, int&);

5

6 int main(){

7 int a = 5, b = 7;

8 cout << "a = " << a << "\tb ="<< b << "\nswap\n";

9 swap(a,b);

10 cout << "a = " << a << "\tb ="<< b << endl;

11 }

12

13 void swap (int& x, int& y){

14 int z;

15 z = x; x = y; y = z;

16 }

There is a better version of swap in the algorithm library, which
works for all types, not just int’s, see here .

53 / 97
swap.cpp

1. A Tutorial Introduction, 1.10 External Variables and Scope

1.10 External Variables and Scope

1 #include <iostream>

2 using namespace std;

3

4 int a=2, b;

5

6 int sum () {

7 return a+b;

8 }

9

10 int main(){

11 b=5;

12 cout << sum() <<endl;

13 }

• Variables declared outside of functions
can be used anywhere lower in the code.
They are global/external variables.

• Although global variables can exist, it

is bad practice to make or use them.

• Variables declared between { } only
exist between the { }. This is their
scope.

• A variable declared between { } can
have the same name as an existing
variable, but will access a different, new
portion of memory.

• This is known as variable shadowing,
and is also bad practice.

54 / 97
external.cpp

2. Pointers and Arrays

2. Pointers and Arrays

55 / 97

2. Pointers and Arrays, 2.1 Pointers and Addresses

2.1 Pointers and Addresses

• A Pointer is a variable that stores the address of a variable.

A simplified view of memory is that it is consecutively numbered
(addressed) memory cells (of 1 byte = 8 bits (1’s and 0’s)).
Different types of variables take up different numbers of bytes (e.g.
a char is 1 byte). The number of bytes taken up by the type can be
found using the sizeof operator:

1 #include <iostream>

2 using namespace std;

3 int main(){

4 cout << sizeof(int)<< endl;

5 }

My laptop and compiler outputs 4, however the program may give
different results on different computers or for different types.

56 / 97
sizeof.cpp

2. Pointers and Arrays, 2.1 Pointers and Addresses

Pointers and Addresses cont.

A pointer is a group of cells (usually 2 or 4) that can hold the
address of a variable. This could be represented by:

.

p: c:

where ‘p’ is a pointer to ‘c’. The operator ‘&’ gives the address of
an object, so to set the value of p to the address of c:

p = &c

. p is then said to point to c.

The & only applies to objects in memory, it cannot be applied to
expressions, constants of register variables.

57 / 97

2. Pointers and Arrays, 2.1 Pointers and Addresses

Pointers and Addresses cont.

• The ‘*’ operator is the indirection operator.
It is used to give you access to the memory pointed to by a
pointer.

Declaring Pointers

int c = 5; // Declaring an integer

int *p1; //Declaring a pointer to an integer (p1)

p1 = &c; // pointing p1 to c

int *p2 = &c; // Declaring a pointer to an integer (p2) and

pointing it to c

58 / 97

2. Pointers and Arrays, 2.1 Pointers and Addresses

Pointers and Addresses Example

1 #include <iostream>

2 using namespace std;

3 int main(){

4 int a = 5, b = 7, c;

5 int *pa, *pb = &a;

6 pa = &b; // pa points to b

7 cout << pa << " contains: " << *pa << endl;

8 c = *pb; // c is set to the value pointed to by pb

9 std::cout << "c at " << &c << " contains: " << c << '\n';

10 *pb = 0;

11 std::cout << "pb at: " << &pb << " points to: " << pb

12 << " containing: " << *pb

13 << endl;

14 return 0;

15 }

0x7fff11232620 contains: 7

c at 0x7fff1123261c contains: 5

pb at: 0x7fff11232610 points to: 0x7fff11232624 containing: 0

59 / 97
pointing.cpp

2. Pointers and Arrays, 2.2 Pointers and Function Arguments

2.2 Pointers and Function Arguments
We saw how you could pass variables by reference to a function to
change them. We can also do the same with pointers.

1 #include <iostream>

2 using namespace std;

3 void swap(int*, int*);

4 int main(){

5 int a = 5, b = 7;

6 cout << "a = " << a << "\tb = "<< b << "\nswap\n";

7 swap(&a,&b);

8 cout << "a = " << a << "\tb = "<< b << endl;

9 }

10 void swap (int *ipx, int *ipy){

11 int z;

12 z = *ipx; *ipx = *ipy; *ipy = z;

13 }

a = 5 b = 7

swap

a = 7 b = 5

60 / 97
pointswap.cpp

2. Pointers and Arrays, 2.3 Address Arithmetic

2.3 Address Arithmetic

• Pointers can be + or − with an int, but not multiplied or
divided.

Adding an integer n moves the pointer by the sizeof the pointed
object n times.

Segmentation Fault

A Seg Fault occurs when a program tries to access memory that it
shouldn’t. This is usually caused by bad address arithmetic, or
reading elements much further than the end of an array.

61 / 97

2. Pointers and Arrays, 2.3 Address Arithmetic

A Bad Address Arithmetic Example

To show address arithmetic it, a pointer is made to point at a
variable and

1 #include <iostream>

2 using namespace std;

3

4 int main(){

5 char b[] = "Hello World", c = 'c';

6 char *ipc = &c;

7 while (true){

8 cout << *ipc++;

9 }

10 }

This program can produce different output when it is run.

62 / 97
badaddress.cpp

2. Pointers and Arrays, 2.3 Address Arithmetic

Bad Address Arithmetic Example - Output

Note: The Segmentation fault, and also that it prints “Hello World”,
and the program name “a.out”.

63 / 97

2. Pointers and Arrays, 2.4 Pointers and Arrays

2.4 Pointers and Arrays

• There is a relationship between pointers and arrays (as can be
seen in the last example).

An array declared int b[7]; defines an integer array b of size 7:

b:

b[0] b[1] b[2] b[3] b[4] b[5] b[6]

A pointer can be declared int*pb = &b[0]; creating a pointer that
points to the first element:

b:

b[0] b[1] b[2] b[3] b[4] b[5] b[6]

pb:

In fact thats what b is! Elements can be accessed by b[i] or *(b+i),
this is why arrays count form zero. &b[0] also works with vectors to
give the address of the 1st element, whereas just the name does not.

64 / 97

2. Pointers and Arrays, 2.4 Pointers and Arrays

Moving Through Arrays - Example

Pointers can be incremented to move along arrays i blocks, Then
the value can be read by *(pb+i):

b:

b[0] b[1] b[2] b[3] b[4] b[5] b[6]

pb+0:
pb+1: pb+2: pb+3: pb+4: pb+5: pb+6:pb:

1 #include <iostream>

2 using namespace std;

3 int main(){

4 char b[] = "abcdefghijklmnopqrstuvwxyz";

5 char *ipc = &b[0];

6 for(int i = sizeof(b)-1; i>=0; i--)

7 cout << *(ipc+i);

8 cout << endl ;

9 }

This example prints the
alphabet in reverse.

• The sizeof()

operator knows the
size of an arrays.

• The last character
of a string is ‘\0’,
so b is 27 long.

65 / 97
pointarray.cpp

2. Pointers and Arrays, 2.5 Dynamic Memory Allocation

2.5 Dynamic Memory Allocation

• Some programs cannot know how much memory they need
before they are run.

• Memory can be allocated with the new operator.

• new returns a pointer to the allocated memory.

• When it is finished using the memory it must be released with
delete.

The new and delete operators come in two forms:

Form Allocate Free

Single Variable: new type; delete pointer

Array: new type[n]; delete[] pointer

Do Not Mix the Forms
C++ does not keep track of whether it is a variable or array, you
must do so.

66 / 97

2. Pointers and Arrays, 2.5 Dynamic Memory Allocation

Calculating the Mean of some Random Numbers
1 #include <iostream>

2 #include <cstdlib>

3 using namespace std;

4 int main(){

5 int num;

6 cout << "How many points? "; cin >> num;

7 double *points = new double[num];

8

9 for (int i = 0; i != num; points[i++] = (double)rand() /

RAND_MAX);

10 cout << "Points filled with random numbers from 0 - 1" << endl;

11

12 double sum = 0;

13 for (int j=0; j < num; j++) sum += points[j];

14

15 cout << "Mean of Points: " << sum/num << endl;

16

17 delete [] points;

18 return 0;

19 }

67 / 97
Mean.cpp

2. Pointers and Arrays, 2.5 Dynamic Memory Allocation

• #include <cstdlib>

cstdlib is included as the rand() function and largest possible
value from that function RAND_MAX are in there.

• double *points = new double[num];

This creates the pointer to a double points and points it at a
new dynamically allocated array of num int’s.

• (double)rand()/ RAND_MAX

rand() returns a random number between 0 and RAND_MAX.
Typecasting it to a double prevents integer division, then
dividing it by RAND_MAX gives a random number between 0 and 1

• delete [] points;

This frees the array of dynamically allocated memory pointed
to by points.

68 / 97

2. Pointers and Arrays, 2.6 Pointer Arrays: Pointers to Pointers

2.6 Pointer Arrays: Pointers to Pointers

• Since pointers are variables they can also be stored in arrays.

• This can then be used to sort that which is pointed to, by only
changing the pointers in memory.

"Fish"

{’C’,’a’,’t’,’\0’}

"Elephant"

"Fish"

"Cat"

"Elephant"

• This will therefore be much more efficient than actually sorting
them if the memory pointed to is large.

C Strings are character arrays that are terminated by the '\0'. This
is so functions know were the end of the string is and do not need
to know its length.

69 / 97

2. Pointers and Arrays, 2.6 Pointer Arrays: Pointers to Pointers

Sorting C Strings
1 #include <iostream>

2 #include <cstring>

3 #include <algorithm>

4 using namespace std;

5

6 int main(){

7 char *wordlist[6] = {"cat","dog","caterpillar","fish","catfish"

};

8 wordlist[5] = "bat";

9

10 for(bool swapped=false; !swapped; swapped = !swapped)

11 for(int i = 1; i < 6; i++)

12 if (strcmp(wordlist[i-1], wordlist[i]) > 0){

13 swap(wordlist[i-1],wordlist[i]);

14 swapped = true;

15 }

16

17 for(int i = 0 ; i<6; i++) cout << wordlist[i] << endl;

18 return 0;

19 }

70 / 97
stringswap.cpp

2. Pointers and Arrays, 2.6 Pointer Arrays: Pointers to Pointers

• #include <algorithm>

The algorithm library contains a generalised swap function.

• char *wordlist[6] = {"cat","dog","caterpillar" . . .
Declaring an array of character pointers and setting the to
some C strings.

• strcmp(wordlist[i-1], wordlist[i])

This compares the previous word in the list with the current
word. strcmp returns 0 if the strings are the same, a number
< 0 if the first is less, and > 0 if the first is greater.

• swap(wordlist[i-1],wordlist[i]);

The algorithm library swap function interchanges two pointers
to pointers of characters.

71 / 97

2. Pointers and Arrays, 2.7 Multidimensional Arrays

2.7 Multidimensional Arrays

• C++ allows for rectangular multi-dimensional arrays.

• They are declared with the number of pairs of [] equal to the
number of dimensions, e.g. 2D array:

Type name[n][m]

• C++ 2D arrays are really a 1D array whose elements are an
array.

72 / 97

2. Pointers and Arrays, 2.8 Command Line Arguments

2.8 Command Line Arguments

Command line arguments can be used to supply programs with
input on the command line. The main function gives you an int for
the number of arguments and a char**, an array of C strings of the
arguments.

1 #include <iostream>

2 using namespace std;

3

4 int main(int argc, char *argv[])

{

5

6 for(int i = 0 ; i<argc; i++)

7 cout << argv[i]<< ' ';

8 cout << endl;

9

10 return 0;

11 }

$./a.out Hello World

./a.out Hello World

• argv[0] is the name of the
program.

73 / 97
commandlineargs.cpp

2. Pointers and Arrays, 2.9 Function Pointers

2.9 Function Pointers

• Although functions are not variables, you can define pointers to
functions.

• These pointers can then be passed between functions, put in
arrays etc.

• To declare a pointer to a function:

returntype (*ptrname)(type1 arg1,type2 arg2 /*,...*/);

• All functions you want to use with the same function pointer,
must have the same arguments and return type.

74 / 97

2. Pointers and Arrays, 2.9 Function Pointers

Folding Vectors I

Left folding takes a value x and a list of values and repeatedly
applies x = function(x ,valueFromList), for all the values starting at
the top of list.
Here is a left folding function for integers:

1 #include <iostream>

2 #include <vector>

3 using namespace std;

4

5 int add(int a, int b){return a+b;}

6 int multiply(int a, int b){return a*b;}

7 int second(int, int b){return b;}

8

9 int foldl (const vector<int> &vecin, int lvalue, int(*function)(

int,int)){

10 for(unsigned int i = 0; i != vecin.size(); ++i)

11 lvalue = function(lvalue,vecin[i]);

12 return lvalue;

13 }

75 / 97
foldl.cpp

2. Pointers and Arrays, 2.9 Function Pointers

Folding Vectors II
14

15 int main(){

16 vector <int> nums(5);

17 for (unsigned int i = 0; i != nums.size(); ++i)

18 nums[i]= 2*i+1; // Fill vector with odd nums

19 cout << foldl(nums,0,second) << endl;

20 cout << foldl(nums,0,add) << endl;

21 cout << foldl(nums,1,multiply) << endl;

22 cout << foldl(nums,0,multiply) << endl;

23

24 return 0;

25 }

twig$ g++ -Wall -Wextra foldl.cpp && ./a.out

9

25

945

0

76 / 97

2. Pointers and Arrays, 2.10 Void Pointers

2.10 Void Pointers

• Void in C++ means that there is no type. (e.g. int)

• They cannot be deferenced(*), as they have no type.

• They cannot be incremented or decremented, as they have no
length.

• To use a void pointer, you must type cast it.

• Void pointers in C may be used to pass parameters to functions.

As with all pointers, they are best avoided in C++ wherever possible.
Templates or derived classes should be used instead for type safety.

77 / 97

2. Pointers and Arrays, 2.10 Void Pointers

void* Example

1 #include <iostream>

2 using namespace std;

3

4 int main(){

5 char a[] = "hello";

6 void *ptr; //Declare the pointer

7

8 ptr = &a; // Point it to a

9 cout << (char*)ptr << endl; // Typecast it as a (char*)

10

11 ptr = new int; // Allocate some memory for an int

12 *(int*)ptr = 43110; // Set the allocated memory to 43110

13 cout << *(int*)ptr << endl; // Typecast and dereference to an

int to print

14

15 return 0;

16 }

78 / 97
voidstar.cpp

3. Structures

3. Structures

79 / 97

3. Structures, 3.1 Basics of Structures

3.1 Basics of Structures

• Structures allow you to define new types, by grouping together
other named variables or objects into a single object.

• To declare a struct type that contains an int field i and a
double field d :

struct structTypeName{

int i;

int d;

};

• A struct can be made by structTypeName structname;.

• Fields can be accessed by structname.fieldname, acting just like
variables.

• In C structs are defined as
typedef struct {/*...*/} structname;.

80 / 97

3. Structures, 3.1 Basics of Structures

Cartesian to Polar Coordinates I

Take an (x , y) point (struct) in Cartesian coordinates and convert it
to (r , θ) in polar coordinates.

1 #include <iostream>

2 #include <cmath>

3 using namespace std;

4

5 struct point{ // Declare the point type

6 double x;

7 double y;

8 };

9

10 point carttopolar (point in){

11 double r = sqrt(in.x *in.x + pow(in.y,2));

12 double theta = atan2(in.x, in.y); // atan2 is correct for x and

y <0

13 point out = {r, theta}; // Initialise the output structure

14 return out; // out.x = r; out .y = theta;

15 }

81 / 97
carttopolar.cpp

3. Structures, 3.1 Basics of Structures

Cartesian to Polar Coordinates II

16

17 int main (){

18 point a = {3.0,4.0};

19 a = carttopolar(a); // Set a to the polar version of a

20 cout << a.x << " " << a.y << endl;

21 return 0;

22 }

82 / 97

3. Structures, 3.2 Operator Overloading

3.2 Operator Overloading

• Operators such as +, = and <<, are functions that can be
overload, that is given new meanings with a unique type
signature.

• To overload an operator, e.g. + as a new function :

outType operator+ (Type1 leftofoperator, Type2

rightofoperator){

/* function code*/

return variableofTypeoutType;

};

• Like functions they need a function prototype.

• A full list of operators and whether they are overloadable is
avaliable at http://en.wikipedia.org/wiki/Operators_

in_C_and_C%2B%2B

83 / 97

3. Structures, 3.2 Operator Overloading

Multiply a Vector by a Scalar
Take a vector and multiply it by a scalar.

1 #include <iostream>

2 using namespace std;

3

4 struct vector {

5 double x;

6 double y;

7 };

8

9 vector operator*(double phi, vector p){ // overloading the *

operator

10 vector out = {p.x * phi, p.y* phi};

11 return out;

12 }

13

14 int main(){

15 vector a = {3,5};

16 a = 3*a; // Note a*3 will give a compile error

17 cout << a.x << " " << a.y << endl;

18 }

84 / 97
scalarmult.cpp

3. Structures, 3.3 Self-referential Structures

3.3 Self-referential Structures

• Structures cannot contain themselves, as they would need an
infinite amount of memory. However, they can contain pointers
to the same type.

• a->b can be used as a short hand for (*a).b, when you have a
pointer (a) to a structure.

•

•

•

•

(a) Singly Linked

•

•

•

•

•

•

(b) Doubly Linked

Figure: Linked Lists

85 / 97

3. Structures, 3.3 Self-referential Structures

Singly Linked List
1 #include <iostream>

2 using namespace std;

3

4 struct node{

5 int i; //An integer i

6 node *next; // pointer to the next node in the list

7 };

8

9 int main(){

10 node *head = new node; // 1st node

11 (*head).i = 1;

12 (*head).next = new node; // second node

13 (*(*head).next).i = 2;

14 head->next->next = new node; //a->b is the same as (*a).b

15 head->next->next->i = 3;

16

17 for (; head != NULL; head = head->next) // move head along the

nodes

18 cout << head -> i << " "; // Print out i in each node

19 cout << endl;

20 }
86 / 97

linkedlist.cpp

4. Header Files & Libraries

4. Header Files & Libraries

87 / 97

4. Header Files & Libraries, 4.1 Header Files

4.1 Header Files

• Header files are used to divide programs into parts.

• They are included by:
#include "nameofheaderfile.h"

note: "" rather than <>.

• Header files end in ‘.h’ (or occasionally ‘.hpp’).

using namespace

Do not use using namespace in header files, as when they are
included the other code will inherit it. Instead refer to the function
directly using the scope resolution operator ::, e.g.
std::cout << "hi"<< std::endl;.

88 / 97

4. Header Files & Libraries, 4.1 Header Files

Header File Example: Power Function

Here we will print out the powers of 2, but separate the pow
function into a separate header file.
pow.h:

1 int pow (int, int); // Function Prototype

2

3 int pow(int b, int e){ // Function Definition

4 int out = 1;

5 for (;e >= 1; e--) out*=b;

6 return out;

7 }

• If pow.h is included multiple times, there will be a redefinition
error. This is because including a file is just like having the
contents there instead.

89 / 97
pow.h

4. Header Files & Libraries, 4.1 Header Files

power2.cpp:

1 #include <iostream>

2 #include "pow.h" // includeing the header file

3 using namespace std;

4

5 int main(){

6 for (int i=0; i <10; i++)

7 cout << pow(2,i) << endl;

8 return 0;

9 }

90 / 97
power2.cpp

4. Header Files & Libraries, 4.2 Conditional Inclusion

4.2 Conditional Inclusion

• The C++ preprocessor can be controlled with conditional
statements (if-then-else)

• It has #if, #else, #elif (else if). The end of the if statement it
needs a #endif.

• There are also specialised forms, e.g. #ifdef (if . . . is defined
then) and #ifndef (if . . . is not defined then).

• These can be used to ensure the contents of a header file are
only included once:

#ifndef headername

#define headername

... Contents of header file ...

#endif

, by checking if headername has been defined, then if not
define it, and include the content of the header file.

91 / 97

4. Header Files & Libraries, 4.3 Compiling Multiple Files

4.3 Compiling Multiple Files

• The more code you have the longer it will take to compile. If
you have a lot of code then it saves time to re-compile only the
parts that are changed and link together with the compiled
parts.

• For this two things need to be done:
• Split the code into multiple .cpp files, and put the function

prototypes into header files.
• Compile the .cpp files to object code separately, and link them

together to form the executable.

92 / 97

4. Header Files & Libraries, 4.3 Compiling Multiple Files

Multiple Files of Power Example

Here the power (int pow(int, int)) is in the mpow.cpp file with its
function prototype in the mpow.h file, both in the thomasmath

namespace, so as not to conflict with the definition in cmath (in the
std namespace).
mpower2.cpp:

1 #include <iostream>

2 #include "mpow.h" // including the header file

3 #include "mpow.h" // including the header file

4 using namespace std;

5

6 int main(){

7 for (int i=0; i <10; i++)

8 cout << thomasmath::pow(2,i) << endl;

9 return 0;

10 }

93 / 97
mpower2.cpp

4. Header Files & Libraries, 4.3 Compiling Multiple Files

mpow.h:

1 #ifndef __mpow__ // if __mpow__ is not Defined

2 #define __mpow__ // define __mpow__

3

4 namespace thomasmath{ // the function is put in the thomasmath

namespace

5 int pow (int, int);

6 }

7

8 #endif

mpow.cpp:

1 #include "mpow.h"

2

3 // Function definition for pow in thomasmath namespace

4 int thomasmath::pow(int b, int e){

5 int out = 1;

6 for (;e >= 1; e--) out*=b;

7 return out;

8 }

94 / 97

mpow.h

mpow.cpp

4. Header Files & Libraries, 4.3 Compiling Multiple Files

Multiple Files of Power Example:Compiling

• To compile them altogether:

g++ -Wall -Wextra mpower2.cpp mpow.cpp

-Wall -Wextra turns on warnings, to help you find bugs in
your code.

• To compile them separately, then link:

g++ mpow.cpp -c

g++ mpower2.cpp mpow.o

this creates mpow.o which is a compiled version of mpow.cpp,
then this is compiled in with mpower2.cpp to produce the
executable.

95 / 97

References

References

96 / 97

References

References

• B. Kernighan, D. Ritche, The C Programming Language, 1988

• J. Nash, P. Dauncey, Introduction to C++, Blackett Lab, (2003)

• D. Lee, First Year Laboratory Computing Laboratory, Blackett
Lab, (2006-7)

• C++, http://en.wikipedia.org/wiki/C%2B%2B,
(6/11/2007)

• L. Haendel, The Function Pointer Tutorials,
http://www.newty.de/fpt/zip/efpt.pdf, (22/1/2008)

• J. Soulie, Pointers, http:

//www.cplusplus.com/doc/tutorial/pointers.html,
(25/6/2007)

97 / 97

