
16/03/2015

Mobile Systems '14 (COMP28512) 1

Lecture 4 COMP28512 1

Mobile SystemsMobile Systems
Lecture 4 Lecture 4 –– 17/03/1517/03/15

Image codingImage coding

COMP28512

Steve Furber & Barry Cheetham

Lecture 4 COMP28512 2

Images & videoImages & video

• Static images are big.
– Consider 10”x8” colour photo at 300 dots per inch,

– Has 103008300 = 7.2 Mpixels

– Each pixel is a coloured dot needing 3 bytes, for R G B.

– Image requires: 7.2 M  3 = 21.6 Mbytes

• Movies are enormous.
– Consider TV quality video with 640 x 480 pixels per frame

& 25 Hz frames/s

– For colour, need 640480  3 = 0.9218 Mbyte per frame
= 23.04 Mbytes/second

– That is 166 Gbytes for a 2 hour movie

– 166 Gbytes 4.7 G  36  36 DVD disks needed.

• Compression is needed!

Lecture 4 COMP28512 3

PhysiologyPhysiology

• Human visual system assumed to have 3 colour sensors:

red, green & blue

• Cannot resolve more than 8 bits per colour

so 38 = 24 bits/pixel is acceptable

• Can represent coloured image by 3 components: RGB

• Or by a luminance (monochrome) component & two

chrominance (colour) components.

• Human eye less sensitive to chrominance than luminance.

• Also relatively insensitive to rapidly changing (higher

frequency) fine-detailed aspects of the image.

Lecture 4 COMP28512 4

FrequencyFrequency--domain processingdomain processing

• Allows mobile device to take physiological features

into account when digitising images.

• Avoids encoding what the eye will not see by:

– transforming the image into freq-domain

– efficiently encoding only the features that will be perceived

– reversing the transform at the receiver

• As with MP3, Discrete Cosine Transform is used

• But now it must be a 2-dimensional DCT

• In Matlab, ‘dct2’ is provided by ‘Image Proc Toolbox’.

• Or we can use our own versions (BBdct2 & BBidct2)

Lecture 4 COMP28512 5

Discrete Cosine Transform (DCT)Discrete Cosine Transform (DCT)

• Given {x[n]}0,N-1 its ‘1-D’ DCT is:




















 


1

0

/ where
2

12
cos][][

N

n

kk Nk
n

nxkDCT 















 















 










M
m

Nk
n

mnxkDCT
N

k

M

/
2

12
cos/

2

12
cos],[],[

1

0

1

0






• Given {x[n.m]}0,N-1, 0,M-1 its ‘2-D’ DCT is:

• Low values of k & ℓ correspond to slowly changing features.

• Higher values correspond to fine detail.

Lecture 4 COMP28512 6

Some imagesSome images

16/03/2015

Mobile Systems '14 (COMP28512) 2

Lecture 4 COMP28512 7

More imagesMore images

• Find these in course web-site

• All are bit-map (.bmp) not jpg

Lecture 4 COMP28512 8

Red, green & blueRed, green & blue

• Any of these images may be read into MATLAB by:

• A = imread(‘Boats.bmp’);

• Creates a 576 x 787 x 3 matrix of unsigned 8-bit integers.

• Can separate into red, green blue as follows:

• R=A(: , : , 1); G = A(: , : , 2); B = A(: , : , 3);

• R, G & B are now 576 x 787 matrices

• For processing it is best to concert these to a:
– luminance matrix Y

– chrominance (colour) matrix I

– chrominance (colour) matrix Q

• See AMimages.ipynb to see how it is done in IPython

Lecture 4 COMP28512 9

Converting from RGB to YIQ (NTSC)Converting from RGB to YIQ (NTSC)

• Could have Y = 0.33R + 0.33G + 0.33B
CR = R – Y (‘Red difference’ chrominance)

CG = Y – G (‘Green difference’ chrominance)

Then: CR = 0.66R – 0.33G – 0.33B

and: CG = 0.33R – 0.66G + 0.33B

• Instead: Y = 0.3 R + 0.59 G + 0.11 B

I = 0.6 R – 0.28 G – 0.32 B

Q = 0.21 R – 0.52 G + 0.31B

(PAL & SECAM use different numbers but similar idea).

Lecture 4 COMP28512 10

In matrix formIn matrix form




















































B

G

R

Q

I

Y

31.052.021.0

32.028.06.0

11.059.03.0

To convert from YIQ back to RGB form, invert the matrix:




















































Q

I

Y

B

G

R

73.11.11

64.028.01

62.095.01

Lecture 4 COMP28512 11

Demo: Demo: ‘‘bigDCT2bigDCT2’’ methodmethod

• Apply DCT2 to Y, I & Q

• Huge matrices, but DCT2 is efficient (like fft)

• Run ‘Lecture4imageBigDCT2.m’ & observe the graphs.

• Note: Have tried to avoid the use of functions in the

‘Image Processing Toolbox’.

• Own versions of dct2 & idct2 provided.

Lecture 4 COMP28512 12

peppers.bmppeppers.bmp

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

16/03/2015

Mobile Systems '14 (COMP28512) 3

Lecture 4 COMP28512 13

Luminance (Y)Luminance (Y)
Luminance (Y)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0

50

100

150

200

250

Lecture 4 COMP28512 14

I & Q I & Q chominancechominance

Chrominance (I+128) in range [0 255]

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0

50

100

150

200

250

Chrominance (Q) in range [0 255]

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0

50

100

150

200

250

Lecture 4 COMP28512 15

DCT2 Luminance spectrum (DCT2 Luminance spectrum (linlin scale)scale)

Lecture 4 COMP28512 16

CommentComment

• Observe how energy is concentrated a the lower

frequencies.

• In fact there seems little energy at higher frequencies

in either direction.

• Look at the spectrum on a log scale with colour

representing amplitude.

Lecture 4 COMP28512 17

Luminance DCT2 spectrum (logLuminance DCT2 spectrum (log--scale)scale)

O riginal DCT2 spec trum of lum inanc e (Y) on log s c ale

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

-15

-10

-5

0

5

Lecture 4 COMP28512 18

Set small amplitudes to zeroSet small amplitudes to zero

16/03/2015

Mobile Systems '14 (COMP28512) 4

Lecture 4 COMP28512 19

Resulting luminanceResulting luminance

Lecture 4 COMP28512 20

Do the same for I & QDo the same for I & Q

Lecture 4 COMP28512 21

Comments on demoComments on demo

• Coloured picture converted to Y, I & Q.

• Take DCT2 of each & plot mag-spectrum.

• Notice concentration of energy in top corner.

• Set to zero any values < some threshold.

• Creates lots of zeros.

• Go back to an image via an inverse DCT2.

• Can see reconstructed image

& its modified spectrum (with lots of blue).

• Any perceivable loss of quality?

Lecture 4 COMP28512 22

Data reductionData reduction

• Number of non-zero coeffs for Y reduced from 262,000 to

8,692.

• About 3% are left

• All the rest are now zero.

• Similar for I & Q ??

• Send only the non-zero values - quite a reduction!

• Coding the non-zero values is hard – where do they occur?

• Image compression is not done like this.

• Let’s see how JPEG does it:

Lecture 4 COMP28512 23

JPEG image compression: Step 1JPEG image compression: Step 1

• Divide image into 88 coloured pixel ‘tiles’.

• For each tile, convert each RGB pixel to:
– a measure of luminance (Y) plus

– two chrominance measurements (I,Q or U,V).

• Reduce 88 chrominance to 44 by averaging 2x2 blocks.

Lecture 4 COMP28512 24

One way of reducing the bitOne way of reducing the bit--raterate

• 8 x 8 red chrominance tiles reduced to 4 x 4

16/03/2015

Mobile Systems '14 (COMP28512) 5

Lecture 4 COMP28512 25

AlsoAlso

• 8 x 8 green chrominance tiles reduced to 4 x 4

Lecture 4 COMP28512 26

Red chrominance back to 8x8Red chrominance back to 8x8

• 8 x 8 red chrominance tiles reduced to 4 x 4

Lecture 4 COMP28512 27

Green chrominance back to 8x8Green chrominance back to 8x8

Lecture 4 COMP28512 28

JPEG compression: Step 2JPEG compression: Step 2

• Use 2D Discrete Cosine Transform (DCT2)

• Apply it to 88 tiles of Y & tiles of I & Q
• Get 2 frequency axes: Fx & Fy

• High-frequency components usually small.

Lecture 4 COMP28512 29

• Quantize DCT coeffs using quantisation table below.

• Divide each coeff by table entry, then round to integer.

• Controls number of bits per coeff needed  accuracy

JPEG image compression: Step 3JPEG image compression: Step 3

Lecture 4 COMP28512 30

QuantisationQuantisation

• Encoder integer divides DCT coeffs by 2n to ‘lose’ n bits.

• 21  4 = 5 (rem 1 discarded)

• 10101 101

• At decoder:

• 5 x 4 = 20

• 10100

• ‘Quantisation error’ incurred

16/03/2015

Mobile Systems '14 (COMP28512) 6

Lecture 4 COMP28512 31

• Bottom corner DCT component of each 8x8 tile has both
frequencies zero.

• Sorry – it’s the top corner in some graphs

• Represents average value of tile.

• Also known as the ‘DC-DC component’

• Changes slowly from tile to tile.

• Differences often small but very noticeable

• Encode differences in DC-DC components between tiles

• Uniform luminance area then has all zero differences.

JPEG image compression: Step 4JPEG image compression: Step 4

Lecture 4 COMP28512 32

JPEG image compression: Step 5JPEG image compression: Step 5

• ‘zig-zag’ scan to read
out coeffs

• Count the number of
successive zeros

• Here there are 38.

• Record ’38’ as ‘run
length code.

Lecture 4 COMP28512 33

• Run length encoding

– (Z0, N0), (Z1, N1), (Z2, N2), (Z3, N3), …

• Zi: number of consecutive zeros

• Ni: next non-zero number

• Example

• 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 1

• (5,2), (0,3), (8,1)

Step 5 (continued)Step 5 (continued)

Lecture 4 COMP28512 34

• Apply Huffman encoding to the quantised numbers.

• Assume there are just four: 95, 16, 13, 9

• We could just allocate an 8-bit integer to each.

• But we can do much better.

• Call these numbers A, B, C, D (or A1, A2, A3, A4)

• Idea is to use fewer bits for common numbers & more
bits for less common numbers.

• A bit like ‘Morse code’, but codes are ‘self terminating’.

• Always know when each Huffman code-word ends.

• Can use a default Huffman coding look-up table.

• Or we can generate our own ‘image specific’ table.

• Latter incurs overhead but may save bits overall.

JPEG image compression: Step 6JPEG image compression: Step 6

Lecture 4 COMP28512 35

Huffman coding 1Huffman coding 1
• Variable length, self-terminating codes.

• Given 4 numbers: A1, A2, A3, A4 occurring
with probabilities: 0.05, 0.25, 0.1, 0.6

A4: 0.6

A2: 0.25

A3: 0.1

A1: 0.05

0.15

0.4

1

• Arrange in decreasing order of probabilities

• Then link two with lowest probability.

• Add probs & repeat. Sometimes ordering changes.
Lecture 4 COMP28512 36

Huffman coding 2Huffman coding 2

• Label corners 0 or 1 as shown below:

A4: 0.6

A2: 0.25

A3: 0.1

A1: 0.05

0.25

0.6

1

0

1

0

1

0

1

16/03/2015

Mobile Systems '14 (COMP28512) 7

Lecture 4 COMP28512 37

Huffman coding 3Huffman coding 3

• Read backwards from end of tree to each of A1, A2, A3, A4

A4: 0.6

A2: 0.25

A3: 0.1

A1: 0.05

0.15

0.4

1

0

1

0

1

0

1

A4: 0 A2: 10 A3 110 A1: 111

Lecture 4 COMP28512 38

Huffman coding resultHuffman coding result
A1 111

A2 10

A3 110

A4 0

• Self terminating & more efficient than:

A1 00

A2 01

A3 10

A4: 11

for the given probabilities.

But more difficult to decode. See [wiki]

Lecture 4 COMP28512 39

Another exampleAnother example

A4: 0.31

A2: 0.25

A3: 0.24

A1: 0.2

0.44

0.56
1

0

1

0

1

1

0

A1 = 11 A2=01 A3 = 10 A4 = 00

Ha! Ha! Not variable length for this example

Lecture 4 COMP28512 40

Yet another exampleYet another example

A4: 0.6

A2: 0.13

A3: 0.12

A1: 0.1

0.15

0.4

A5: 0.05

0.25

1

0

1

0

1

0

1

0

1

A1: 110; A2: 100; A3: 101; A4: 0; A5: 111

Lecture 4 COMP28512 41

Disadvantage of Huffman codingDisadvantage of Huffman coding

• Huffman coding is used for both image compression & mp3
music encoding.

• It is highly efficient & lossless

• Other aspects of mp3, JPEG & MPEG make them ‘lossy’.

• Disadvantage of Huffman is its sensitivity to bit-errors.

• Due to its variable length & self terminating code-words.

• If one code-word has a bit-error it may be mis-interpreted as
part of a longer or shorter code-word.

• On previous slide 010110100…encodes A4 A3 A3 A4,A4…

• If first 0  1, we get 110110100 which is A1 A1 A4 ,A2 …

• Many symbols after the bit-error may be affected.

• Whole mp3 or JPEG file may be unusable.

Lecture 4 COMP28512 42

Reminder about mp3Reminder about mp3

Music Transform to
frequency

domain

Derive

psychoacoustic

masking

function

Devise quantisation
scheme according

to masking

Apply run-

length &

Huffman
coding

20 20k5k1k

6

0
dB_SPL

0 f Hz

16/03/2015

Mobile Systems '14 (COMP28512) 8

Lecture 4 COMP28512 43

JPEG image compression: SummaryJPEG image compression: Summary

step 1 step 3step 2 step 5step 4 step 6

Lecture 4 COMP28512 44

MATLAB demonstrationMATLAB demonstration

• Course web-site has the following progs:
– Lecture4tiledimageEncoder.m

– Lecture4tiledimageDecoder.m

• Also a selection of image files.

• Encoder implements steps 1-3 & stores the resulting
data in a file: ‘imageData.dat’.

– ‘4x4’ I-tiles are combined in fours to give 8x8 I-tiles.

– Similarly for Q-tiles.

• Decoder reads the data & reconstructs the image.

• No run-length coding has been implemented yet.

• No Huffman coding yet.

• Other aspects are shown to work.

Lecture 4 COMP28512 45

JPEG image compressionJPEG image compression

97KB, 698 x 658 18KB, 356 x 336 4KB, 160 x 151

Lecture 4 COMP28512 46

Analog TVs: video schemeAnalog TVs: video scheme

• Scanning pattern used for NTSC video & TV

• (PAL is similar)

Lecture 4 COMP28512 47

FrameFrame--rate & interleavingrate & interleaving

• Films capture 24 frames per second & display each

frame for  (1/24) s.

• TVs display 25 frames/s with each image scanned

from top to bottom

• 25 Hz ‘flicker’ would be visible & annoying!

– so ‘interleave’ the scan at 50 Hz

– even & odd lines updated in alternate frames

• Computers display full image at 60+ frames/s

– ‘progressive scan’

Lecture 4 COMP28512 48

Digitally encoding moving picturesDigitally encoding moving pictures

• Encoding each frame as JPEG would be inefficient

• Would not exploit temporal redundancy due to similarity

of each frame to those before & after.

• Could we send differences between complete frames?

– OK for static scenes

– Not so efficient where frames ‘pan’ from side to side or ‘zoom’

• Best to use ‘motion compensation’

– Find similarity between parts of images in successive frames

– send motion information where similarity is strong

– then encode any remaining differences as JPEG

– (when parts of images are similar, they are ‘correlated’)

16/03/2015

Mobile Systems '14 (COMP28512) 9

Lecture 4 COMP28512 49

Motion compensationMotion compensation

• Consider three consecutive frames

• Notice similarity of the figure walking towards the tree.

• Search for matching block in consecutive frames.

• Encode the movement & remaining differences.

• MPEG standard does not specify search algorithm

Lecture 4 COMP28512 50

MPEG video compressionMPEG video compression

• Encode each frame as an ‘I-frame’, ‘P-frame’ or ‘B-frame’.

• I-frame is an Image encoded as JPEG

• P-frame encodes positions of moving blocks predicted

from Previous I & P frames, & remaining differences.

• B-frame encodes positions of moving blocks estimated from

Both previous & next I & P frames, & remaining differences.

Lecture 4 COMP28512 51

MPEG video with audioMPEG video with audio

Synchronization of the audio & video streams in MPEG-1.

Lecture 4 COMP28512 52

SummarySummary

• Uncompressed images use a lot of data

• Moving images (video) even more so

• Compression can save memory, & comms bandwidth

• Also saves download time & cost of storage media.

• JPEG compresses images by ~10x

• MPEG compresses video by ~100x

• In both cases, compression is ‘lossy’. Not like ‘zip’.

• Perceived loss of quality is small, but not zero.

• Built-in quality/compression trade-off
– in choice of coefficient quantization matrix

– other steps are largely lossless

• Sensitivity to bit-errors is greatly increased because of HC

Lecture 4 COMP28512 53

Extra problemExtra problem

• Symbols A,B,C,D E,F,G have probabilities:

0.12, 0.13, 0.07, 0.07, 0.1, 0.36, 0.15

• Devise a Huffman code & consider how it would be

decoded.

