\qquad
\qquad

Aim

- use the periodic table to draw atomic diagrams

Notes

Atomic Diagrams (using the Periodic Table)

\star Atomic number $(\mathrm{Z})=$ number of protons

* Atomic mass number (A) = number of protons and number of neutrons
\star Number of neutrons = Atomic mass number - Atomic number
* Number of Electrons = number of protons
is Higher energy levels have room for more electrons * maximum number of electrons per energy level

Energy Level	Maximum Number of Electrons
1	2
2	8
3	18
4	32
5	(50)
6	(72)
7	(98)

\star an outer shell usually does not have more than 8 electrons

Bohr Diagrams

* Example - the atomic number of magnesium is 12 and the mass is approximately 24 . This means the number of neutrons is 12 . The electron configuration is 2-8-2. This information can be used to draw a diagram of magnesium. See next column.

Example: Magnesium

Atomic Mass 24
-Atomic Number 12
Neutrons 12
Electrons 12
(2-8-2)

Electron-dot Symbols

show valence electrons as dots at 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock and the kernel as a symbol
is valence electrons
数 electrons in the outermost principal energy level

* responsible for properties of elements
is kernel - the rest of the atom (nucleus and other electrons)
examples
$\dot{L i} \quad \ddot{\mathrm{Be}} \quad \ddot{\mathrm{B}} \quad \ddot{\mathrm{C}} \cdot \ddot{\mathrm{N}} \cdot \ddot{\mathrm{O}}: . \ddot{\mathrm{F}}:: \ddot{\mathrm{Ne}}:$

Answer the multiple choice questions below by circling the number of the correct response

1. What is the electron configuration of a sulfur atom in the ground state? (1) 2-4 (2) 2-6 (3) 2-8-4 (4) 2-8-6
2. A neutral atom always has an equal number of (1) neutrons and electrons, (2) neutrons and protons, (3) protons and electrons, (4) protons, electrons, and neutrons.
3. Below is a Bohr-Rutherford diagram of an element.
2 e
8 e
8 e
2 e
20 P
20 N

Which element could be represented by this diagram? (1) calcium (2) cadmium (3) chlorine (4) no known element
4. In the box provided, draw the electron-dot (Lewis) structure of an atom of calcium.

5. In the box provided, draw the electron-dot (Lewis) structure of an atom of chlorine.

6. Which is the electron dot structure for the atom whose electronic structure is $2-8-7$? (1) $\dot{\mathrm{X}} \cdot($ (2) $\dot{\mathrm{X}} . \quad$ (3) $\cdot \dot{\mathrm{X}} \cdot(4) \cdot \dot{\mathrm{X}}$:
7. What is the total number of electrons in the second principal energy level of a calcium atom in the ground state? (1) 6 (2) 2 (3) 8 (4) 18
8. If $\cdot \ddot{\mathrm{X}} \cdot$ represents the electron-dot symbol of an element, that element could be (1) C (2) O (3) B (4) N

