Physics ← Math Worksheet - Algebra and Substitution

Solve the following equations for the variable indicated. There should be enough room to do one step at a time.

1.
$$v = \frac{x}{t}$$
 (for t)

2.
$$\frac{1}{2}mv^2 = \frac{1}{2}kx^2$$
 (for k) 3. $mgh = \frac{1}{2}mv^2$ (for v)

3.
$$mgh = \frac{1}{2}mv^2$$
 (for v)

4.
$$\frac{m_1 v^2}{r} = m_2 gh \quad (for \ r)$$
5.
$$T = 2 \pi \sqrt{\frac{L}{g}} \quad (for \ g)$$

5.
$$T=2\pi\sqrt{\frac{L}{g}}$$
 (for g)

6.
$$m_1 v_1 + m_2 v_2 = m_1 v_f + m_2 v_f$$
 (for v_f)

7.
$$x = v_i t + \frac{1}{2} a t^2$$
 (for a)

7.
$$x = v_i t + \frac{1}{2} a t^2$$
 (for a) 8. $\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_{eq}}$ (for R_2) 9. $m_1(x) = m_2(3-x)$ (for x)

9.
$$m_1(x) = m_2(3-x)$$
 (for x)

Evaluate the following using the information given. Try algebraically solving for the unknown variable first.

1.
$$v_f = v_i + at$$
 (find a, if $v_i = 2$, $v_f = 16$, $t = 2$)

2.
$$F = \frac{mv^2}{r}$$
 (find r, if $F = 10$, $m = 5$, $v = 4$)

3.
$$T = 2\pi \sqrt{\frac{m}{k}}$$
 (find m, if $T = 3$, $k = 50$)

4.
$$\frac{P_1^2}{d_1^3} = \frac{P_2^2}{d_2^3}$$
 (find d_2 , if $P_1 = 10$, $P_2 = 8$, $d_1 = 2$)

5.
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$
 (find d_o , if $d_i = 20$, $f = 12$)

6.
$$x=v_i t + \frac{1}{2}at^2$$
 (find t, if $v_i=0$, $x=125$, $a=10$)

Hint: Do any terms drop out?

Solve the following word problems using the information and steps (I, II, III) provided.

- 7. If an airplane travels at 120 m/s (v), how long would it take (t) for the plane to travel a distance (x) of 300 meters?
- (I) List givens: Concept Equation: $v = \frac{x}{t}$ x =(II) Derive Equation (solve for t) t = ?
- (III) Substitute the given values into your derived equation for time and evaluate.

- 8. A toy car accelerates from an initial velocity (v_i) of 5 m/s, to a final velocity (v_f) of 17 m/s, in 6 seconds. Find the acceleration of the car?
- (I) List Givens: Concept Equation: $v_f = v_i + at$ $v_i =$ (II) Derive Equation (solve for a) $v_f =$ t = a = 2
- (III) Substitute the given values into your derived equation for acceleration and evaluate.