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Abstract. Species occurrence and its dynamic components, extinction and colonization
probabilities, are focal quantities in biogeography and metapopulation biology, and for
species conservation assessments. It has been increasingly appreciated that these parameters
must be estimated separately from detection probability to avoid the biases induced by non-
detection error. Hence, there is now considerable theoretical and practical interest in dynamic
occupancy models that contain explicit representations of metapopulation dynamics such as
extinction, colonization, and turnover as well as growth rates. We describe a hierarchical
parameterization of these models that is analogous to the state-space formulation of models in
time series, where the model is represented by two components, one for the partially
observable occupancy process and another for the observations conditional on that process.
This parameterization naturally allows estimation of all parameters of the conventional
approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g.,
to modeling heterogeneity or latent structure in model parameters. We also highlight the
important distinction between population and finite sample inference; the latter yields much
more precise estimates for the particular sample at hand. Finite sample estimates can easily be
obtained using the state-space representation of the model but are difficult to obtain under the
conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the
model to two examples. In a standard analysis for the European Crossbill in a large Swiss
monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic
parameters varied greatly among years, highlighting the irruptive population dynamics of that
species. In the second example, we analyze route occupancy of Cerulean Warblers in the North
American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in
model parameters. The results indicate relatively low turnover and a stable distribution of
Cerulean Warblers which is in contrast to analyses of counts of individuals from the same
survey that indicate important declines. This discrepancy illustrates the inertia in occupancy
relative to actual abundance. Furthermore, the model reveals a declining patch survival
probability, and increasing turnover, toward the edge of the range of the species, which is
consistent with metapopulation perspectives on the genesis of range edges. Given
detection/non-detection data, dynamic occupancy models as described here have considerable
potential for the study of distributions and range dynamics.

Key words: Bayesian analysis; detection probability; heterogeneity; hierarchical models; presence/
absence data; range dynamics; site occupancy; state-space models; turnover; WinBUGS.

INTRODUCTION

Species distribution and patch occupancy are funda-

mental concepts in biogeography, landscape ecology and

metapopulation biology and are also of considerable

interest in the conservation and management of animal

and plant species. Moreover, studies of factors that

influence occurrence and distribution, such as habitat or

landscape structure, are the focus of many ecological

investigations. However, in surveys of most species it is

not possible to observe occurrence without error. That

is, a species may go undetected where it is present

yielding a false negative (detection) error. For instance,

in breeding bird surveys in North America and

Switzerland, only ;76% and 89%, respectively, of all

avian species present were estimated to be detected in a

year (Boulinier et al. 1998b, Kéry and Schmid 2006).

Thus, explicit attention to imperfect detection in animal

sampling is necessary in order to obtain summaries of

occurrence or distribution that have a clear conceptual

interpretation. The problem of estimating occurrence

probability, proportion of area occupied, or ‘‘site

occupancy,’’ of a species subject to imperfect detection

is a problem that has received considerable attention

recently (Bayley and Peterson 2001, Kéry 2002, Mac-

Kenzie et al. 2002, Nichols and Karanth 2002, Royle

and Nichols 2003, Tyre et al. 2003, Wintle et al. 2003,

Gu and Swihart 2004, Pellet and Schmidt 2005, Royle

and Link 2005, Schmidt 2005, Weir et al. 2005). Site

occupancy models are becoming widely adopted in
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many survey and monitoring activities due to, at least in

part, the ease of establishing surveys based on pres-

ence/absence (or rather, detection/non-detection) data,

that such models facilitate an explicit accounting for

detectability of the species in question, and the

extensibility of the site occupancy modeling framework.

In addition, site occupancy models can be used as a

framework for estimating or modeling abundance either

in a model-based framework (He and Gaston 2000a, b,

Royle and Nichols 2003) or if the area of sample units

approximates the home range of individuals. This

greatly extends the range of their application.

A basic class of models can be developed (e.g.,

MacKenzie et al. 2002) under the assumption that the

occupancy status of sample sites does not change across

replicate (temporal) samples, i.e., that sites are closed to

local extinction and colonization events. While such

models are sufficient for many applications, there exists

considerable interest in dynamic attributes of metapop-

ulations. For example, colonization and extinction are

central to metapopulation theory (Hanski 1999) and

overlap and turnover are important summaries of

community similarity and stability (Boulinier et al.

1998a, 2001, Nichols et al. 1998a, b, Doherty et al.

2003a, b). Thus, one important extension of the site

occupancy modeling framework is to the situation in

which a site’s occupancy status may change through

time, i.e., to the situation in which the metapopulation

system is ‘‘open’’ to local extinction and colonization

events. MacKenzie et al. (2003) provided a general

characterization of open models, and described a

likelihood-based framework for inference about model

parameters. Under these open models, the metapopula-

tion system is assumed to be closed within, but not

across primary periods. The primary periods have been

colloquially referred to as ‘‘seasons,’’ and the models are

commonly referred to as ‘‘multi-season’’ occupancy

models. Here we adopt the adjective dynamic as being

more descriptive because it reflects the fact that the

models explicitly incorporate the metapopulation dy-

namical processes of extinction and colonization.

Conversely, the term ‘‘multi-season’’ can equally well

apply to a model that does not explicitly acknowledge

these dynamic processes, i.e., one that has a time-varying

occupancy probability, in which occupancy status is

assumed to be independent across time.

In this paper, we describe a hierarchical, or state-

space, representation of dynamic models for site

occupancy in which the model for the observed

detection/non-detection data is expressed as the product

of two component models, first a submodel for the data

conditional on the latent (unobserved or partially

observed) process, and, secondly, a submodel for the

latent occupancy process. We refer to this representation

of the model as the state-space representation, as it is

conceptually equivalent to that found in time series and

similar settings (Jones 1993, Berliner 1996).

Whereas classical likelihood-based solutions to the

problem (e.g., MacKenzie et al. 2003) carry out

inference by removing the latent state process from the

model by marginalization, we retain the state process as

this representation yields itself naturally to several

important extensions, such as the incorporation of

random effects to accommodate spatial or temporal

variation and structure in model parameters. In

addition, inference in many applications of site occu-

pancy models does not focus on some larger statistical

population of sites, but rather on the particular sample

of sites at hand. This is an instance wherein estimation

of finite sample quantities is of interest, and it has

perhaps not been widely appreciated in the ecological

community that this is an inference problem distinct

from the estimation of the parameters in a larger

population. Explicitly accounting for a finite sample

results in greatly improved precision of estimators and is

easily achieved with a state-space formulation of

dynamic occupancy models. While we believe this

hierarchical representation of dynamic site occupancy

models yields a more general formulation of such

models, it is also a simple and natural way to express

the models, and a Bayesian analysis of the hierarchical

parameterization can be achieved directly with popular

software for Bayesian analysis (WinBUGS).

We provide examples using avian survey data from

the Swiss Survey of Common Breeding Birds, and an

example with North American Breeding Bird Survey

(BBS) data on Cerulean Warblers in which the model

allows for spatial heterogeneity in parameters among

sites. While such models have great biological appeal,

they have not been explicitly addressed in the literature

because of the absence of a practical framework for the

analysis of these complex models. Therefore, we also

include scripts to fit several versions of our models using

freely available software.

SAMPLING DESIGN AND THE DYNAMIC MODEL

We consider data obtained from repeated pres-

ence/absence surveys of i ¼ 1, 2, . . . , R spatial units

(patches or ‘‘sites’’). We suppose that each site is

surveyed j ¼ 1, 2, . . . , J times within each of t ¼ 1,

2, . . . , T primary periods and that each site is closed

with respect to its occupancy status within but not

across primary periods. A typical case would be surveys

repeated several times both within the breeding season

of a species and over several years. This situation is that

for which the ‘‘robust design’’ (Pollock 1982, Kendall et

al. 1995, Williams et al. 2002: chapter 19) has been

developed in conventional capture-recapture applica-

tions, and has also been exploited by MacKenzie et al.

(2003) for developing site occupancy models for open

populations.

Denote the observed occupancy status of site i for

survey j within primary period t as yj(i, t). We suppose

that yj(i, t), j ¼ 1, 2, . . . , J are independent and

identically distributed for each site (i) and primary
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period (t). Let z(i, t) denote the true occupancy status of

unit i during primary period t, having possible states

‘‘occupied’’ (z ¼ 1) or ‘‘not occupied’’ (z ¼ 0). One

parameter of interest is the probability of site occupancy

(or the probability of occurrence) for period t, wt ¼
Pr(z(i, t) ¼ 1). Changes in occupancy over time can be

parameterized explicitly in terms of local extinction and

colonization processes, analogous to population demo-

graphic processes of survival and recruitment. Let /t be

the probability that an occupied site ‘‘survives’’ (i.e.,

remains occupied) from period t to tþ 1, i.e., /t¼Pr(z(i,

tþ 1)¼ 1 j z(i, t)¼ 1). Local extinction probability (et) in

the parameterization used by MacKenzie et al. (2003), is

the complement of /t, i.e., et ¼ 1 � /t. In metapopu-

lation systems, local colonization is the analog of the

recruitment process. Let ct be the local colonization

probability from period t to tþ 1, i.e., ct¼Pr(z(i, tþ1)¼
1 j z(i, t) ¼ 0).

State-space representation

This model is naturally formulated as a state-space

model, in which we express the model by its two

component processes: a submodel for the observations

conditional on the unobserved state process, i.e., y (i,

t) j z(i, t) and, secondly, a submodel for the unobserved

or partially observed state process z(i, t); i¼ 1, 2, . . . , t¼
1, 2, . . . . The classical likelihood formulation of this

problem exploits an identical model structure, but

removes the latent indicators of occupancy from the

likelihood by integration. In adopting a Bayesian

framework for analysis and inference (described in

Bayesian Analysis), retention of the latent variables in

the model does not pose any difficulty. This is attractive

since for many inference problems, retaining the latent

z(i, t)’s in the model is necessary because they are

fundamental to the object of inference. Discussion of

specific examples when this is the case is given in

Metapopulation summaries, below.

State model.—The state model has a simple formu-

lation in terms of initial occupancy probability, i.e., at

t ¼ 1, which we will designate w1, local survival

probability, /tf gT�1
t¼1 , and the recruitment (coloniza-

tion) parameters ctf gT�1
t¼1 . The initial occupancy states

are assumed to be iid Bernoulli random variables,

denoted as

zði; 1Þ;Bernoulliðw1Þ for i ¼ 1; 2; . . . ;R ð1Þ

whereas, in subsequent periods

zði; tÞjzði; t � 1Þ

;Bernoulli zði; t � 1Þ/t�1 þ ½1� zði; t � 1Þ�ct�1f g ð2Þ

for t¼ 2, 3, . . . , T. Thus, for a site that is occupied at t

� 1 (i.e., z(i, t� 1)¼ 1), the survival component in Eq.

2 is operative (the first component of the Bernoulli

success probability), and z(i, t) is a Bernoulli outcome

with probability /t�1. Conversely, if a site is not

occupied at time t � 1, then the recruitment

component in Eq. 2 becomes operative and z(i, t) is

a Bernoulli outcome with parameter ct�1. The expres-

sions in Eqs. 1 and 2 define the state process model.

Generalizations, where / and c may be structured

spatially or temporally, for instance, are described

later.

Observation model.—The observation model, specified

conditional on the latent process fz(i, t)g, is given by

yjði; tÞjzði; tÞ;Bernoulli½zði; tÞpt�:

Thus, if a site is occupied at time t, the data are Bernoulli

trials with parameter pt. If a site is unoccupied at time t,

then the data are Bernoulli trials with Pr(y(i, t)¼ 1)¼ 0.

Obvious generalizations to accommodate structure in p

can be obtained directly. For example, in many

applications, sampling covariates are measured during

each survey such as search effort, weather, or other

environmental conditions. In this case, the observation

model is Bernoulli with index z(i, t)pit and covariate

effects are modeled on a suitable transformation of pit.

Metapopulation summaries

The primary parameters of the dynamic occupancy

model are the initial occupancy probability, w1, the

survival probabilities /tf gT�1
t¼1 , the colonization proba-

bilities ctf gT�1
t¼1 and the detection probabilities fptg. In

addition, a number of derived parameters are of interest.

First of all, the occupancy probability at t can be

computed recursively according to

wt ¼ wt�1/t�1 þ ð1� wt�1Þct�1 ð3Þ

for t ¼ 2, . . . , T. MacKenzie et al. (2003) defined the

growth rate as

kt ¼
wtþ1

wt

:

Nichols et al. (1998a) define ‘‘turnover’’ as ‘‘the

probability that an occupied quadrat picked at random

is a newly occupied one.’’ That is, turnover is the

probability Pr(z(t� 1)¼0 j z(t)¼1). Bayes’ rule yields an

expression for this in terms of previously defined model

parameters:

st ¼
ct�1ð1� wt�1Þ

ct�1ð1� wt�1Þ þ /t�1wt�1

ð4Þ

for t¼ 2, . . . , T. The denominator here is equal to wt, by

Eq. 3.

One useful summary of the dynamical system is the

equilibrium occupancy probability (Hanski 1994,

MacKenzie et al. 2005: chapter 7; Brander et al 2007),

i.e., the stable-state (occupancy) distribution. This is

related to local survival and colonization according to

w
ðeqÞ
t ¼

ct
ct þ ð1� /tÞ

:

This is the leading element of the dominant eigenvector

of the state transition matrix. When c and / are year
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specific, the associated collection of year-specific values

of weq provide a convenient summary of occupancy

dynamics, e.g., w
ðeqÞ
tþ1 =w

ðeqÞ
t summarizes the change in

equilibrium occupancy as a result of the change in

survival and colonization from t to tþ 1.

Finite sample estimation

It is perhaps not widely understood that there is a

distinction between estimation of population parameters

(e.g., the probability that a site is occupied, occupancy),

and estimation of finite-sample manifestations of those

quantities such as the number of occupied sites in the

actual sample (Dorazio and Royle 2005, MacKenzie et

al. 2005: section 4.5).

Site occupancy parameters, wt, as defined previously,

are population averages and associated estimates apply

to a theoretically infinite population of sites from which

the sample of size R was drawn. However, given a

sample of R sites, the actual proportion of sample sites

occupied is a function of the latent state variables:

w
ðfsÞ
t ¼

1

R

X

i

zði; tÞ ð5Þ

where ‘‘fs’’ is for finite sample. While the expected values

of the two quantities may be equivalent, the uncertainty

of the point estimates will typically be very different (we

demonstrate this in an example, below).

Finite-sample equivalents of occupancy or of other

quantities can easily be computed as functions of the

state-variables, z, whereas estimation of such quantities

is difficult in the conventional framework of MacKenzie

et al. (2002, 2003). For example, the estimator of sample

growth rate is

k
ðfsÞ
t ¼

PR
i¼1 zði; t þ 1ÞP

i zði; tÞ
ð6Þ

and the sample turnover rate is

s
ðfsÞ
t ¼

PR
i¼1½1� zði; t � 1Þ�zði; tÞ

PR
i¼1 zði; tÞ

: ð7Þ

One of the main benefits of the state-space parame-

terization of occupancy models is that it permits the

construction of these finite-sample estimators, as func-

tions of the latent z(i, t) variables. That some of the z(i,

t) are unobserved does not pose any difficulty in

estimating w
ðfsÞ
t and related quantities using common

methods of Bayesian analysis based on Markov chain

Monte Carlo (MCMC). Using MCMC, one obtains a

Monte Carlo sample of each model parameter, and each

latent variable, from the target posterior distribution.

The Monte Carlo samples are then used to obtain the

desired summaries of the posterior distribution, such as

the mean, standard deviation, or quantiles used to

construct confidence intervals. Details are provided in

Estimation by Markov chain Monte Carlo. Conversely,

estimation and inference of these finite-sample esti-

mands is difficult using conventional likelihood-based

methods. Typically, one must resort to empirical Bayes

estimators of such quantities (Dorazio and Royle 2005).

The distinction between wt and w
ðfsÞ
t has to do

primarily with the scope of inference. If one is interested

in the particular sites for which data were collected, then

the estimator should be the finite-sample estimator of

the proportion of occupied sites. Conversely, if one is

interested in a (much) larger collection of sites from

which the sampled sites are representative (e.g., ran-

domly selected), then the estimator wt is appropriate.

While the distinction may seem subtle or esoteric, there

can be very important consequences. If the scope of

inference is restricted to the sites for which data are

available, we can expect the variance of the estimate of

the proportion of occupied sites to be much smaller

because some of the occupancy state variables were

observed, and they do not contribute to the variance of

the estimated total (number of occupied sites). In other

words, in Eq. 5, some of the z(i, t) are known (i.e., at

sites where the species was observed) and so the

variation of this quantity is less than that of R

independent Bernoulli trials. This problem of estimating

sample quantities is analogous to classical small-area

estimation and the estimation of random effects

common throughout statistics (Laird and Ware 1982,

Robinson 1991).

In European Crossbill: Variation among years we

illustrate the distinction between population quantities

and their finite-sample manifestations with a brief

example using data on the crossbill from the Swiss

Survey of Common Breeding Birds.

BAYESIAN ANALYSIS

The simple conditional specification of the dynamic

site occupancy model yields easily to Bayesian analysis

using conventional methods of Markov chain Monte

Carlo (MCMC). MCMC implementation can be

achieved using Gibbs sampling (Geman and Geman

1984), which is based on drawing samples of each

unknown quantity (i.e., parameters and latent variables)

from their ‘‘full-conditional’’ distributions, i.e., the

distribution of a parameter conditional on all other

unknown quantities and the data. For the dynamic

occupancy models, the Gibbs sampler is remarkably

simple when certain natural prior distributions are used.

Details are provided in the Appendix for the case where

survival and colonization probabilities are allowed to

vary by primary period. For the applications described

subsequently, we use the freely available software

package WinBUGS 1.4. (Gilks et al. 1994) to conduct

the analyses, and we provide the WinBUGS model

specification for those examples.

Implementation in WinBUGS

While the simple structure of the MCMC algorithm

outlined in the Appendix is potentially useful, in

practice, the dynamic model can be implemented easily

in the popular software package WinBUGS, with little
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more effort required than providing a ‘‘pseudo-code’’

description of the model. For example, the WinBUGS

model specification for a model in which all parameters

vary by year, say fw1, pt, /t, ctg, is given in the

Supplement, along with code for calculation of the year-

specific occupancy probabilities, growth rates, and also

the (finite) sample occupancy rates.

For the analysis in the example of the next section, the

data were organized in the free software package R

version 2.2 (Ihaka and Gentleman 1996, R Development

Core Team 2005) and WinBUGS 1.4 was executed in

batch mode using the R add-on library R2WinBUGS.

APPLICATIONS

We provide two examples of dynamic site occupancy

models. First is a basic example, part of which could as

well be done by conventional likelihood methods in the

widely used programs PRESENCE or MARK. Second-

ly, we provide a more complicated example for which

likelihood analysis is not straightforward. We consider

an occupancy analysis of Cerulean Warblers (Dendroica

cerulea) from the North American Breeding Bird Survey

(BBS) using models in which demographic parameters

are regarded as spatially and temporally varying random

effects.

European Crossbill: Variation among years

We consider data from the Swiss Survey of Common

Breeding Birds (Monitoring Häufige Brutvögel; MHB)

over four years (2001–2004) for the European Crossbill

(Loxia curvirostra). This program has been conducucted

annually since 1999 by the Swiss Ornithological Institute

(Schmid et al. 2004, Kéry et al. 2005, Kéry and Schmid

2006). A systematic random sample of 267 1-km2

quadrats across Switzerland is surveyed three times

during the breeding season (15 April–15 July) on a

quadrat-specific, irregular, transect route averaging 5

km using the territory mapping method (Bibby et al.

1992). The Crossbill is a medium-sized (34 g) pine-seed-

eating finch widespread in Switzerland. Its abundance

and occurrence depend greatly on the cone set of

conifers, and in mast years, Crossbills appear irruptively

in many regions where otherwise they do not occur or

are scarce. This species may have the greatest dynamics

in site occupancy among all regular Swiss breeding

birds.

We fitted the model in which each of site survival rate,

colonization and detection probability were year specif-

ic, and computed the year-specific occupancy, growth,

and turnover rates. The WinBUGS model specification

is given in the Supplement. Posterior summaries were

based on 20 000 MCMC iterations after discarding 2000

samples as ‘‘burn-in.’’ The canonical parameter esti-

mates and certain derived parameters, as well as both

population and finite sample occupancy estimates are

given in Table 1.

There were large interannual changes in Crossbill

occupancy in Switzerland with strong growth between

2001–2002 and 2002–2003, followed by a decline in

occupancy between 2003 and 2004. Correspondingly,

the growth rate declined steadily between 2001–2002 and

2003–2004. Estimation of survival and colonization

rates enabled one to decompose this rate of change:

patch survival probability remained high during years

when the population expanded (2001 through 2003) and

declined in 2003–2004, while colonization probabilities

declined steadily over the years considered.

The high turnover rates confirm the highly erratic

occupancy pattern of the Crossbill. Detection probabil-

ity, p, did not change much across years, and this insight

might be useful in the interpretation of surveys that do

not correct for variations of detection probability. These

results indicate that in the Swiss program, the number of

quadrats found occupied by the crossbill may be a

somewhat valid index to true occupancy by that species.

TABLE 1. Posterior summaries of model and derived param-
eters (beginning with w2 and below) from the dynamic
occupancy model fitted to the Swiss Breeding Bird Survey
occupancy data on the European Crossbill (Loxia curviros-
tra) from 2001 to 2004.

Parameter Mean SD q0.025 q0.500 q0.975

p1 0.584 0.044 0.493 0.584 0.666

p2 0.493 0.037 0.422 0.493 0.564

p3 0.566 0.033 0.504 0.566 0.629

p4 0.574 0.037 0.499 0.574 0.643

/1 0.806 0.069 0.656 0.812 0.931

/2 0.855 0.046 0.758 0.858 0.938

/3 0.682 0.053 0.576 0.682 0.791

c1 0.259 0.037 0.189 0.257 0.334

c2 0.190 0.041 0.114 0.189 0.273

c3 0.071 0.029 0.022 0.068 0.133

w1 0.242 0.029 0.190 0.241 0.300

w2 0.391 0.035 0.323 0.390 0.461

w3 0.450 0.034 0.386 0.450 0.517

w4 0.346 0.032 0.286 0.345 0.409

w
ðfsÞ
1 0.240 0.0124 0.222 0.237 0.271

w
ðfsÞ
2 0.389 0.0210 0.353 0.387 0.436

w
ðfsÞ
3 0.449 0.0149 0.425 0.447 0.481

w
ðfsÞ
4 0.345 0.0148 0.320 0.342 0.380

k1 1.635 0.201 1.284 1.619 2.085

k2 1.157 0.099 0.978 1.153 1.371

k3 0.770 0.065 0.651 0.768 0.908

s1 0.499 0.058 0.384 0.500 0.610

s2 0.259 0.056 0.151 0.258 0.371

s3 0.113 0.046 0.032 0.110 0.213

s
ðfsÞ
1 0.498 0.032 0.429 0.500 0.555

s
ðfsÞ
2 0.254 0.041 0.170 0.256 0.328

s
ðfsÞ
3 0.104 0.034 0.034 0.103 0.170

Note: For the column headings, qx is the 1003xth percentile
of the posterior distribution.
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In comparing the annual estimates of wt for the four

years, along with the estimated proportion of sample

sites occupied (i.e., w
ðfsÞ
t ), we note that the point

estimates are equivalent (to within Monte Carlo error),

though this need not generally be the case when the

posterior distribution of these quantities is asymmetric.

The main difference is that the finite-sample estimates

are typically about 50% more precise, e.g., the 95%

posterior interval for w1 is (0.190, 0.300), whereas the

interval for w
ðfsÞ
1 is (0.222, 0.271). In Table 2, we have

also provided both estimates of turnover: the population

estimate st, in Eq. 4, and also the finite population

estimator, s
ðfsÞ
t given by Eq. 7. As before, the finite-

sample point estimate is not very different from the

population analog, but it is much more precise.

Cerulean Warblers: Heterogeneity among sites

Here we consider data on Cerulean Warbler (Den-

droica cerulea) from the North American Breeding Bird

Survey (BBS) using 40 years of data (1966–2005), and

446 BBS routes covering substantially all of the

Cerulean Warbler range. For more details on the species

and the data see Link and Sauer (2002) and Thogmartin

et al. (2004) and the references therein. Cerulean

Warblers are experiencing population declines through-

out most of their range and there has been considerable

attention focused on assessing the nature and cause of

such declines. Here, we develop a model of route level

occupancy. Following Boulinier et al. (1998b) and

Nichols et al. (1998a, b) (among others), we use

detection/non-detection observations at the observation

level which yields 50 replicate observations (subsamples)

per route. The use of spatial subsamples as replicates

yields a definition of occupancy as a route-level attribute

(Nichols et al. 1998a, b), i.e., relevant to the aggregation

of spatial subsamples.

Models with so-called ‘‘individual heterogeneity’’ are

of some interest in classical population size estimation

problems (Dorazio and Royle 2003), and have been

considered also in the context of site occupancy models

(Royle 2006). In the present situation, we expect that

heterogeneity in parameters among sites should exist due

to geographic variation in abundance across the species’

range. For example, survival probability should be

higher in regions of relatively higher abundance. The

abundance-induced mechanism underlying heterogene-

ity (and also correlation among parameters) was also

used in multi-species occupancy by Dorazio and Royle

(2005). Various other ecological hypotheses could be

developed that imply structure among parameters of the

model. Indeed, a recent focus in metapopulation studies

has been on the spatial structuring of metapopulations

(González-Megı́as et al. 2005, Johnson 2005).

We consider a model for the Cerulean Warbler data

which allows for heterogeneity among sites in all model

parameters (detection, survival, and colonization prob-

abilities), in addition to fixed year effects. Specifically,

we suppose that

logitð/itÞ ¼ at þ ui

and

logitðcitÞ ¼ bt þ vi

where (ui, vi) are the site effects, assumed to be normal

with standard deviations r/ and rc. The parameters at
and bt are the fixed year effects for each year interval t¼

1, 2, . . . , T � 1. The observation model is

yjði; tÞjzði; tÞ;Bernoulli½zði; tÞpi;t�

and we have assumed a similar site and year-effects

structure on the logit-transform of pi,t. Specifically, the

logit-transformed pi,t is additive in year and site effects:

logitðpi;tÞ ¼ ct þ wi

where ct are the fixed year effects and wi ; Normal(0,

r2
p). For the fat, bt, ctg parameters, we assume priors

that are customarily regarded as being suitably vague.

Specifically, logit�1(at) ; Uniform(0, 1), and similarly

for bt and ct. Standard inverse-gamma priors were

assumed for the inverse of all variance components. The

WinBUGS model specification is given in the Supple-

ment.

The MCMC algorithm was used to obtain 100 000

posterior draws of model parameters after a 10 000

burn-in period. Every third draw was retained for

summarization. Posterior summaries of some model

parameters are displayed in Table 2. In this table, the

year-specific parameters at and bt are summarized by

their inverse-logits, e.g., /�t ¼ expfatg/(1þ expfatg), for

TABLE 2. Estimates of parameters from the year- and site-
effects model fit to the Cerulean Warbler data.

Parameter Mean SD q0.025 q0.500 q0.975

w 0.600 0.068 0.465 0.600 0.737

r/ 1.909 0.535 1.066 1.833 3.204

rc 1.620 0.322 1.016 1.613 2.280

rp 1.453 0.070 1.319 1.453 1.592

/�
min; t ¼ 3 0.647 0.132 0.365 0.415 0.878

/�
med; t ¼ 4 0.874 0.107 0.607 0.664 0.996

/�
max; t ¼ 31 0.976 0.025 0.908 0.929 0.999

c�min; t ¼ 34 0.128 0.128 0.003 0.006 0.478

c�med; t ¼ 29 0.321 0.192 0.026 0.049 0.751

c�max; t ¼ 4 0.528 0.138 0.261 0.300 0.795

k
ðfsÞ
min; t ¼ 32 0.850 0.063 0.731 0.851 0.973

k
ðfsÞ
med; t ¼ 8 0.988 0.103 0.817 0.977 1.227

kðfsÞmax; t ¼ 16 1.174 0.159 0.914 1.162 1.53

Notes: For the column headings, qx is the 100 3 xth
percentile of the posterior distribution. For parameters that are
year specific, the minimum, median, and maximum values are
given. The realized change in occupancy from year t to tþ 1 is
k
ðfsÞ
t .
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the minimum, median, and maximum values of at across

the 39 annual periods.

The network of sampling locations, when viewed as a

metapopulation, is characterized by very high survival

probabilities across years (/�med ¼ 0.874), relatively low

colonization probabilities (c�med ¼ 0.321), but consider-

able spatial heterogeneity (among routes) in both

survival (Fig. 1) and colonization probability (Fig. 2).

Annual changes in occupancy as measured by the

sample growth rate (Eq. 6) were fairly stable. Disre-

garding the first six years which were highly variable and

imprecise due to small sample sizes, occupancy growth

rate has ranged from 0.851 (1997) to 1.174 (1981) with

the median growth rate of 0.99 occurring in 1973. There

appears to be little systematic change in occupancy on

the sample of 446 BBS routes. This suggests that the

distribution or range of Cerulean warblers is fairly static

which is not necessarily inconsistent with previous

findings that the ‘‘average count’’ is decreasing through-

out most of the Cerulean range (Link and Sauer 2002,

Thogmartin et al. 2004). This is apparently not being

accompanied by a contraction in apparent range (when

range is determined by the collection of BBS routes).

The posterior probability of detecting Cerulean

Warblers on a hypothetical ‘‘new’’ route, given that

the route is occupied, was computed for each year from

1 � (1 � pt)
50, where pt is obtained by integrating the

expression

pt ¼
exp ct þ wif g

1þ exp ct þ wif g

over the posterior distribution of ct and also the

posterior predictive distribution of wi, which is Nor-

mal(0, r2
p). The resulting posterior means are depicted in

Fig. 3.

We note that the detection probability has declined

over time, from about 0.85 in 1966 to 0.55 in 2005,

consistent with decreasing average local population sizes

under the model described by Royle and Nichols (2003).

It is the ecologists’ never-ending passion to explain

such variation as depicted by Figs. 1 and 2 explicitly.

Models allowing for spatial heterogeneity can help

elucidate metapopulation effects. For example, the mean

across years of the 446 site-specific survival probabilities

(/it) are plotted as a function of distance from the center

of the range in Fig. 4 (top panel). The corresponding

plot of site-specific colonization (omitted) was less

FIG. 1. Variation in patch- or site-survival probability among sites and across years for the Cerulean Warbler data. Solid lines
are the mean (center, thick medium-gray line) and quartiles (black lines). Site-specific time-series are given in light gray.

FIG. 2. Variation in patch- or site-colonization probability among sites and across years for the Cerulean Warbler data. Solid
lines are the mean (center, thick medium-gray line) and quartiles (black lines). Site-specific time-series are given in light gray.
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pronounced. This structure is manifest also in the

derived parameters, yielding a corresponding increase

in turnover probability (Fig. 4, lower panel) toward the

periphery of the range. These observations are consis-

tent with niche centered notions about the determination

of ranges. At the range edge conditions may not allow a

positive population growth rate (Crozier 2004), and this

may also be associated with lower survival and greater

turnover of occupied areas (Mehlman 1997). The

turnover result is also consistent with that reported by

Doherty et al. (2003a) and Karanth et al. (2006) (see

Discussion).

DISCUSSION

Occupancy and distribution are important state

variables in biogeography, metapopulation biology,

landscape ecology, and conservation biology. In addi-

tion, the components of change in occupancy, i.e.,

probabilities of colonization and survival, and derived

quantities such as rates of growth or turnover are all a

primary focus in many such studies. However, a

pervasive problem in all such studies is our acute

inability to observe occupancy status of patches or

spatial sample units free of error. It has been shown

FIG. 3. Estimated probability of detecting a Cerulean Warbler on an occupied route, for each year 1966–2005. Plotted values
are 1� (1� pt)

50, where pt was obtained by integrating (using the Markov chain Monte Carlo output) the expression pt¼ (expfctþ
wig)/(1þ expfctþwig) over the posterior distribution of ct and also the posterior predictive distribution of wi, which is Normal(0,
r2
p).

FIG. 4. Mean (across years) site-specific survival (top panel) and turnover (bottom panel) probabilities for Cerulean Warblers
as a function of distance from center of range (average location of sample routes). Plotted values are batch means, computed by
averaging the site-specific 40-year means in 30-mile intervals (1 mile¼ 1.6 km).
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(Moilanen 2002) that zero detection error of occupancy

is the most critical assumption for metapopulation

models and is also essential for habitat suitability and

other species distribution models (Gu and Swihart

2004). A likelihood-based framework for modeling

occupancy dynamics (local extinction, colonization) in

the presence of imperfect detection was described by

MacKenzie et al. (2003).

In this paper, we propose a natural and more general

state-space formulation of dynamic occupancy models.

In this formulation, the model is described by two

component models: one for the latent (unobserved, or

only partially so) occupancy state variable (the ‘‘process

model’’) and another for the observations conditional on

the state variable (the ‘‘observation model’’). Both

constituent models have remarkably simple forms,

yielding a clear segregation of parameters governing

ecological processes of interest from those which are

responsible for dealing with nuisance sampling artifacts.

The resulting conditional probability structure of the

state-space formulation is ideally suited for Bayesian

analysis, and implementation of these models is easily

achieved in the freely available software package Win-

BUGS.

The state-space formulation of the model yields

several important inferential advantages over the

likelihood-based approach described by MacKenzie et

al. (2003). First, it yields a generic, flexible and practical

framework for modeling individual (‘‘site’’) effects, or

other latent structure in parameters (e.g., random year

effects), in dynamic occupancy models. Similar problems

are of some interest in more conventional demographic

models (Burnham and Rexstad 1993, Cam et al. 2001,

2004) of animal populations, but flexible and practical

solutions to the analysis of such models have proven to

be elusive.

Second, although the main object of inference may be

the parameters of the process model (i.e., local

extinction and colonization probabilities), sometimes

summaries of the partial realization of the latent process

itself will be of interest. One example is the number of

occupied sites from among those that were sampled, a

summary that is distinct from the site occupancy

parameter, the distinction being that of random

variables and realizations of random variables. There

can be a large difference in precision between estimators

of population parameters, and those of sample occu-

pancy summaries, with sample quantities typically being

estimated more precisely. The distinction between the

population and finite-sample quantities has generally

been disregarded in the literature, both in the develop-

ment of methods, and also applications where the

distinction might be important. The finite-sample

estimator would generally be preferred when the number

of sample sites is small, or the sample constitutes a large

fraction of available sites, or when their selection was

non-random, arbitrary, or opportunistic such that they

are not representative of the population of potential

sample sites. In this case, generalizing the inference to a

large, theoretically infinite, population might be unwar-

ranted, whereas interpreting the sample occupancy as a

detection-bias adjusted ‘‘index’’ to metapopulation

structure might be adequate for some practical purposes.

Finally, the state-space approach generalizes recent

advances in species distribution models. Hierarchical

models have recently been described for analysis of

species distributions (e.g., for an example with plants see

Latimer et al. [2006]), where the true occupancy and

detection in response to variations in sampling effort are

dealt with at different levels of the hierarchy of a spatial

model. These models outperformed more conventional,

non-spatial and non-hierarchical models such as GLMs

and GAMs in terms of the prediction of observed

occurrences. The model framework we describe here

generalizes in two dimensions these static occupancy

models. First, variation in sampling intensity is modeled

explicitly via incorporation of detection probability and

hence, not relative but absolute patterns in occurrence

are modeled. And second, the dynamic process of

colonization and extinction that is at the root of any

change in occupancy patterns can be studied directly. In

addition, all advantages of hierarchical models (Latimer

et al. 2006) such as spatially correlated random effects

for the parameters can be incorporated as well.

Analysis of quadrat occupancy dynamics over four

years for the Crossbill fully confirmed the erratic

population dynamics of that species and enabled to

decompose the overall changes in occupancy into

contributions of patch survival and patch colonization

probability. We note here that the crossbill does not

display a classical metapopulation where patches are

separated by unsuitable or inferior habitat. Instead, it

could perhaps be called a sampling metapopulation, that

is, spatially separate samples are drawn from a more or

less continuous distribution. Therefore, the scope of

inference would be the population of all possible

quadrats and in the crossbill example, the population

estimates for occupancy and dynamic parameters are

more appropriate than the finite sample estimates of

these quantities. However, for instance in the case of a

classical metapopulation consisting of an amphibian

occupying a series of ponds, the desired scope of

inference might be exactly this set of ponds. Conse-

quently, use of the finite sample estimators for these

quantities would bring great benefits in terms of

precision.

In the Cerulean Warbler, we found fairly low turnover

in general. That the range extent is rather static contrasts

with the earlier finding of a population decline (Link and

Sauer 2002, Thogmartin et al. 2004). It may indicate that

most of the decline has taken place at high density areas

in the interior of the range. This pattern has been found

for a majority of declining American bird species

(Rodriguez 2002). From a survey design standpoint, it

shows that abundance is more sensitive to population

changes than occupancy. In addition, there was greater
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instability in site occupancy, i.e., declining survival

probabilities and increasing turnover, toward the range

edge. This result is consistent with findings by Doherty

et al. (2003a) and Karanth et al. (2006), who both used

methods that account for imperfect species detection.

For example, Doherty et al. (2003a) found that, for

groups of species classified as being interior or edge-of-

range, local extinction probabilities (among species)

were higher at the edges than the interiors. They also

noted that such differences are artificially magnified if

imperfect detection is not taken into consideration in the

estimation. The distinction of our study, however, is that

we demonstrate this result ‘‘organically,’’ i.e., by fitting a

model to the particular species in question. Both

Doherty et al. (2003a) and Karanth et al. (2006) generate

replication by defining a pool of species that are all

assumed to have the same survival and colonization

probabilities. More specifically, the community dynam-

ics modeling problem is represented as a conventional

population capture-recapture problem, wherein species

identity takes the role of an individual animal. The

model used by them for estimation allows for heteroge-

neity in detection probability among species (so-called

‘‘model Mh’’). Our result also concurs with a similarly

greater variability in abundance at the edge of ranges

(Williams et al. 2003). Altogether, these patterns provide

support for a metapopulation view of range limits

(Lennon et al. 1997, Holt and Keitt 2000).

The state-space formulation of dynamic occupancy

models yields a flexible and practical framework for

modeling spatial and temporal variation in occupancy

dynamics. Analysis of these models is easily implement-

ed in the freely available software WinBUGS. We

believe that where multi-year detection/nondetection

data are available, dynamic occupancy models as

described here have an enormous potential for the study

of distributions and range dynamics of animals, plants

and diseases.
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APPENDIX

Development of an MCMC algorithm by Gibbs sampling for a simple model (Ecological Archives E088-108-A1).

SUPPLEMENT

WinBUGS model specification for European Crossbill and Cerulean Warbler examples in the paper (Ecological Archives E088-
108-S1).
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