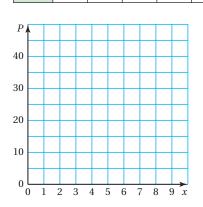
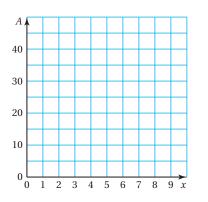

4.4

Essential Question How can you recognize when a pattern

in real life is linear or nonlinear?


ACTIVITY: Finding Patterns for Similar Figures

Work with a partner. Copy and complete each table for the sequence of similar rectangles. Graph the data in each table. Decide whether each pattern is linear or nonlinear.


a. Perimeters of Similar Rectangles

2 1 3 4 5 X Ρ

b. Areas of Similar Rectangles

x	1	2	3	4	5
Α					

2 ACTIVITY: Comparing Linear and Nonlinear Functions

Work with a partner. The table shows the height *h* (in feet) of a falling object at *t* seconds.

- Graph the data in the table.
- Decide whether the graph is linear or nonlinear.
- Compare the two falling objects. Which one has an increasing speed?
- **a.** Falling parachute jumper
- **b.** Falling bowling ball

1	t	0	1	2	3	4
	h	300	285	270	255	240

t	0	1	2	3	4
h	300	284	236	156	44
	_				

Parachute Jumper

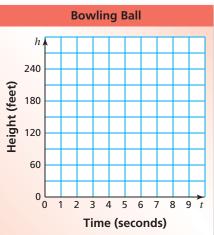
1 2 3 4 5 6 7 8

Time (seconds)

h

240

180


120

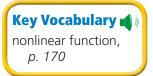
60

0 L

Height (feet)

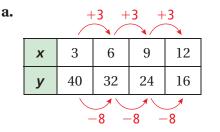
-What Is Your Answer?

3. IN YOUR OWN WORDS How can you recognize when a pattern in real life is linear or nonlinear? Describe two real-life patterns: one that is linear and one that is nonlinear. Use patterns that are different from those described in Activities 1 and 2.

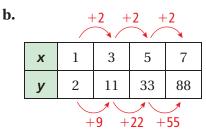

9 t

Use what you learned about comparing linear and nonlinear functions to complete Exercises 3–6 on page 172.

4.4 Lesson


The graph of a linear function shows a constant rate of change. A **nonlinear function** does not have a constant rate of change. So, its graph is not a line.

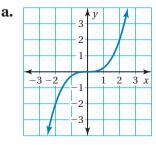
EXAMPLE


ฦ

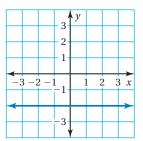
Identifying Functions from Tables

Does the table represent a *linear* or *nonlinear* function? Explain.

As x increases by 3, y decreases by 8. The rate of change is constant. So, the function is linear.



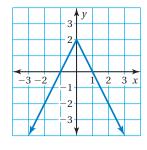
As *x* increases by 2, *y* increases by different amounts. The rate of change is not constant. So, the function is nonlinear.


2 **Identifying Functions from Graphs** EXAMPLE

Does the graph represent a *linear* or *nonlinear* function? Explain.

b.

The graph is *not* a line. So, the function is nonlinear.


The graph is a line. So, the function is linear.

3.

On Your Own

Now You're Ready Does the table or graph represent a linear or nonlinear function? Explain.

•	x	У	2.	x	У
	0	25		2	8
	7	20		4	4
	14	15		6	0
	21	10		8	-4

Exercises 3–11

EXAMPLE

3

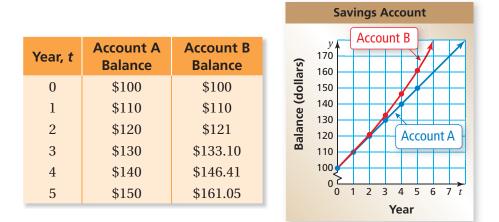
Д

Standardized Test Practice

Which equation represents a nonlinear function?

A	<i>y</i> = 4.7	B	$y = \pi x$
(C)	$y = \frac{4}{x}$		y = 4(x - 1)

The equations y = 4.7, $y = \pi x$, and y = 4(x - 1) can be rewritten in slope-intercept form. So, they are linear functions.


The equation $y = \frac{4}{x}$ cannot be rewritten in slope-intercept form. So, it is a nonlinear function.

• The correct answer is **(C**).

EXAMPLE

Real-Life Application

Account A earns simple interest. Account B earns compound interest. The table shows the balances for 5 years. Graph the data and compare the graphs.

The balance of Account A has a constant rate of change of \$10. So, the function representing the balance of Account A is linear.

The balance of Account B increases by different amounts each year. Because the rate of change is not constant, the function representing the balance of Account B is nonlinear.

On Your Own

Does the equation represent a *linear* or *nonlinear* function? Explain.

4.
$$y = x + 5$$
 5. $y = \frac{4x}{3}$ **6.** $y = 1 - x^2$

Remember

The simple interest formula is given by l = Prt.

- *I* is the simple interest
- P is the principal
- *r* is the annual interest rate
- *t* is the time in years

4.4 Exercises

Vocabulary and Concept Check

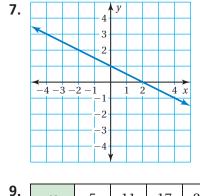
- **1. VOCABULARY** Describe the difference between a linear function and a nonlinear function.
- **2.** WHICH ONE DOESN'T BELONG? Which equation does *not* belong with the other three? Explain your reasoning.

5y = 2x $y =$	$\frac{2}{5}x \qquad 10y = 4x$	5xy = 2
---------------	--------------------------------	---------

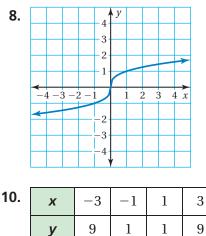
1

2

> Practice and Problem Solving


Graph the data in the table. Decide whether the function is *linear* or *nonlinear*.

3.	x	0	1	2	3
	у	4	8	12	16
5.	x	6	5	4	3
	V	21	15	10	6


y 1 2 6 24	4.	x	1	2	3	4
		У	1	2	6	24

6.	x	-1	0	1	2
	У	-7	-3	1	5

Does the table or graph represent a *linear* or *nonlinear* function? Explain.

-	x	5	11	17	23
	У	7	11	15	19

11. VOLUME The table shows the volume *V* (in cubic feet) of a cube with a side length of *x* feet. Does the table represent a linear or nonlinear function? Explain.

Side Length, x	1	2	3	4	5	6	7	8
Volume, V	1	8	27	64	125	216	343	512

Does the equation represent a *linear* or *nonlinear* function? Explain.

3 12.
$$2x + 3y = 7$$

13. y + x = 4x + 5

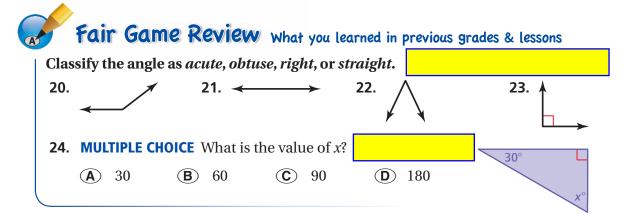
- Pounds, x
 Cost, y

 2
 2.80

 3
 ?

 4
 5.60
- **15. SUNFLOWER SEEDS** The table shows the cost *y* (in dollars) of *x* pounds of sunflower seeds.
 - **a.** What is the missing *y*-value that makes the table represent a linear function?
 - **b.** Write a linear function that represents the cost *y* of *x* pounds of seeds.
 - **16. LIGHT** The frequency *y* (in terahertz) of a light wave is a function of its wavelength *x* (in nanometers). Does the table represent a linear or nonlinear function? Explain.

Color	Red	Yellow	Green	Blue	Violet	
Wavelength, <i>x</i>	660	595	530	465	400	
Frequency, <i>y</i>	454	504	566	645	749	


17. LIGHTHOUSES The table shows the heights *x* (in feet) of four Florida lighthouses and the number *y* of steps in each. Does the table represent a linear or nonlinear function? Explain.

Lighthouse	Height, x	Steps, y
Ponce de Leon Inlet	175	213
St. Augustine	167	219
Cape Canaveral	145	179
Key West	86	98

14. $y = \frac{8}{r^2}$

- **18. PROJECT** The wooden bars of a xylophone produce different musical notes when struck. The pitch of a note is determined by the length of the bar. Use the Internet or some other reference to decide whether the pitch of a note is a linear function of the length of the bar.
- **9.** Geometry: The radius of the base of a cylinder is 3 feet. Is the volume of the cylinder a linear or nonlinear function of the height of the cylinder?

