

Doc. A/100-3
09 March 2003

DTV APPLICATION SOFTWARE ENVIRONMENT LEVEL 1 (DASE-1)
PART 3: PROCEDURAL APPLICATIONS AND ENVIRONMENT

ATSC Standard

Advanced Television Systems Committee

1750 K Street, N.W.
Suite 1200
Washington, D.C. 20006
www.atsc.org

Note that this documents is past the customary 5-year

review point. No update of the document is in process.

Blank Page

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE III

Table of Contents

DASE-1 PROCEDURAL APPLICATIONS AND ENVIRONMENT1

1. SCOPE..1

1.1 Status .. 1

1.2 Purpose... 1

1.3 Application.. 2

1.4 Organization ... 2

2. REFERENCES..3

2.1 Normative References ... 3

2.2 Informative References ... 5

2.3 Reference Acquisition ... 5

3. DEFINITIONS..7

3.1 Conformance Keywords.. 7

3.2 Acronyms and Abbreviations ... 7

3.3 Terms .. 7

4. BEHAVIOR ...8

4.1 State and Status Management.. 8

4.1.1 State Attributes .. 8

4.1.1.1 operational state ... 8

4.1.1.2 usage state ... 9

4.1.1.3 administrative state... 9

4.1.2 Status Attributes... 10

4.1.2.1 alarm status .. 10

4.1.2.2 procedural status .. 11

4.1.2.3 availability status... 12

4.2 Xlet Lifecycle Management ... 13

4.3 Trigger Processing .. 13

4.3.1 Event Processing ... 14

4.3.2 Generic Event Processing ... 14

4.4 Relative Identifier Resolution ... 15

4.5 Relative Name Resolution... 15

4.5.1 File System Names.. 15

4.5.2 Java Class Names... 15

4.5.3 Java Resource Names... 16

4.6 Local File System... 16

5. FACILITIES...17

5.1 Active Object Content ... 17

5.1.1 application/java .. 17

5.1.1.1 Java Virtual Machine .. 17

5.1.1.1.1 Byte Code Verification .. 18

5.1.1.1.2 Java Native Interface (JNI) ... 18

5.1.1.1.3 Classpath.. 18

5.1.1.2 Java Application Programming Interfaces.. 19

5.1.1.2.1 Personal Java Application Environment (PJAE) Interfaces.......................... 20

5.1.1.2.2 Java Media Framework (JMF) Interfaces... 43

5.1.1.2.3 Java Television (Java TV) Interfaces ... 52

5.1.1.2.4 Home Audio Video Interoperability User Interface (HAVi UI) Interfaces 56

5.1.1.2.5 Digital Audio Video Council (DAVIC) Interfaces... 57

5.1.1.2.6 W3C Document Object Model (DOM) Interfaces ... 61

5.1.1.2.7 DASE Specific (ATSC) Interfaces .. 63

5.1.1.3 Interface Implementation Constraints... 64

5.1.1.3.1 Instance Sharing... 64

5.1.1.3.2 Finalizers .. 64

5.1.1.3.3 Class Loaders... 64

5.1.2 application/javatv-xlet... 64

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE IV

5.2 Application Defined Content... 64

5.2.1 application/octet-stream... 64

5.3 Text Content ... 64

5.3.1 text/plain... 65

5.4 Java Archive Content .. 65

5.4.1 application/jar... 65

ANNEX A. REQUIRED JAVA TYPES...67

A.1 java.awt ... 67

A.2 java.awt.event... 67

A.3 java.awt.image.. 67

A.4 java.beans... 68

A.5 java.io .. 68

A.6 java.lang.. 68

A.7 java.lang.reflect .. 69

A.8 java.net.. 69

A.9 java.security ... 69

A.10 java.security.cert.. 69

A.11 java.text... 69

A.12 java.util .. 69

A.13 java.util.zip.. 69

A.14 javax.media... 70

A.15 javax.media.protocol ... 70

A.16 javax.tv.carousel .. 70

A.17 javax.tv.graphics.. 70

A.18 javax.tv.locator ... 70

A.19 javax.tv.media... 70

A.20 javax.tv.media.protocol ... 70

A.21 javax.tv.net.. 70

A.22 javax.tv.service... 70

A.23 javax.tv.service.guide.. 71

A.24 javax.tv.service.navigation ... 71

A.25 javax.tv.service.selection.. 71

A.26 javax.tv.service.transport.. 71

A.27 javax.tv.util.. 71

A.28 javax.tv.xlet... 71

A.29 org.atsc.application ... 71

A.30 org.atsc.carousel ... 71

A.31 org.atsc.dom... 72

A.32 org.atsc.dom.environment.. 72

A.33 org.atsc.dom.events .. 72

A.34 org.atsc.dom.html .. 72

A.35 org.atsc.dom.views.. 72

A.36 org.atsc.graphics ... 72

A.37 org.atsc.management.. 72

A.38 org.atsc.net... 72

A.39 org.atsc.preferences.. 72

A.40 org.atsc.registry... 72

A.41 org.atsc.security .. 72

A.42 org.atsc.system.. 73

A.43 org.atsc.trigger... 73

A.44 org.atsc.user... 73

A.45 org.atsc.xlet .. 73

A.46 org.davic.media.. 73

A.47 org.davic.resources... 73

A.48 org.havi.ui ... 73

A.49 org.havi.ui.event... 74

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE V

A.50 org.w3c.dom... 74

A.51 org.w3c.dom.css.. 74

A.52 org.w3c.dom.events .. 74

A.53 org.w3c.dom.html2 .. 74

A.54 org.w3c.dom.stylesheets .. 74

A.55 org.w3c.dom.views .. 75

ANNEX B. JAVA CONSTANTS ..76

ANNEX C. JAVA SYSTEM PROPERTIES..84

ANNEX D. XLET CONTEXT PROPERTIES..85

D.1 javax.tv.xlet.args .. 85

D.2 org.atsc.trigger.source.default ... 85

D.3 org.atsc.util.locales.. 85

D.4 org.atsc.xlet.obj.codebase.. 86

D.5 org.atsc.xlet.obj.data ... 86

D.6 org.atsc.xlet.obj.type ... 86

ANNEX E. INTERNATIONAL RESOURCES ..87

E.1 External Character Encodings.. 87

E.2 Built-In Locales .. 87

CHANGES ..88

Changes from Candidate Standard to Standard... 88

Table of Tables

Table 1 Application Lifecycle State Mapping... 13

Table 2 Asynchronous Data Piping Data Source Parameters .. 47

Table 3 Asynchronous Data Piping, Raw Packet Data Source Parameters................................. 47

Table 4 Asynchronous Download, Non-Flow Controlled Data Source Parameters...................... 48

Table 5 Asynchronous Digital Television Closed Captioning Data Source Parameters 49

Table 6 DTVCC Frame Format ... 49

Table 7 Player Parameters: video/mpeg ... 51

Table 8 Player Parameters: video/mpv ... 51

Table 9 Player Parameters: audio/ac3 .. 52

Table 10 Java Archive Content Types .. 65

Table 11 Java Constants... 76

Table 12 Java System Properties.. 84

Table 13 Xlet Context Properties... 85

Table 14 External Character Encodings.. 87

Table 15 Built-In Locales ... 87

Table 16 Changes from Candidate Standard.. 88

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE VI

Blank Page

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 1

DASE-1 Procedural Applications and Environment

ATSC Standard

1. SCOPE

1.1 Status

This section describes the status of this document at the time of its publication. Other

documents may supersede this document. The latest status of this document series is maintained

by the ATSC.

This specification is an ATSC Standard, having passed ATSC Member Ballot on September

16, 2002. This document is an editorial revision of the Approved Proposed Standard (PS/100-3)

dated November 5, 2002.

The ATSC believes that this specification is stable, that it has been substantially

demonstrated in independent implementations, and that it defines criteria that are necessary for

effective implementation and interoperability of Advanced Television Systems. A list of cumulative

changes made to this specification may be found at the end of this document.

A list of current ATSC Standards and other technical documents can be found at

http://www.atsc.org/standards.html.

1.2 Purpose

This specification defines an architecture and a collection of facilities by means of which

procedural applications may be delivered in an ATSC data broadcast service to a procedural

application environment embodied by a compliant receiver.
1

A procedural application is an organization of information which primarily uses procedural as

opposed to declarative mechanisms to express its information content and behavior. An example

of a procedural application is a Java TV™ Xlet composed of Java™ class files and embedded

graphics, video, and audio.

A procedural application environment is a software environment which decodes and

executes a procedural application. An example of a procedural application environment is a

Java™ Virtual Machine and its associated APIs. An alternate name for a procedural application

environment is application execution engine.

Note: In addition to supporting procedural applications, a procedural application

environment supports features of declarative applications as defined by DASE-1 Part 2:

Declarative Applications and Environment. In particular, a declarative application may

make use of one or more embedded Xlets which make use of facilities defined by this

specification.

1
 The user’s attention is called to the possibility that compliance with this standard may require

use of an invention covered by patent rights. By publication of this standard, no position is taken
with respect to the validity of this claim, or of any patent rights in connection therewith. The patent
holder has, however, filed a statement of willingness to grant a license under these rights on
reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a
license. Details may be obtained from the publisher.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 2

1.3 Application

The architecture and facilities of this specification are intended to apply to terrestrial (over-

the-air) broadcast systems and receivers. In addition, the same architecture and facilities may be

applied to other transport systems (such as cable or satellite).

1.4 Organization

This specification is organized as follows:

• Section 1 Describes purpose, application and organization of this specification

• Section 2 Enumerates normative and informative references

• Section 3 Defines acronyms, terminology, and conventions

• Section 4 Specifies procedural application and environment behavior

• Section 5 Specifies procedural application and environment facilities

• Annex A Specifies Java types

• Annex B Specifies Java constants

• Annex C Specifies Java system properties

• Annex D Specifies Xlet context properties

• Annex E Specifies international resource support

• Changes Cumulative changes to specification

Unless explicitly indicated otherwise, all annexes shall be interpreted as normative parts of

this specification.

This specification makes use of certain notational devices to provide valuable informative

and explanatory information in the context of normative and, occasionally, informative sections.

These devices take the form of paragraphs labeled as Example or Note. In each of these cases,

the material is to be considered informative in nature.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 3

2. REFERENCES

This section defines the normative and informative references employed by this

specification. With the exception of Section 2.1, this section and its subsections are informative;

in contrast, Section 2.1 is normative.

2.1 Normative References

The following documents contain provisions which, through reference in this specification,

constitute provisions of this standard. At the time of publication, the editions indicated were valid.

All referenced documents are subject to revision, and parties to agreements based on this

standard are encouraged to investigate the possibility of applying the most recent edition of the

referenced document.

When a conflict exists between this specification and a referenced document, this

specification takes precedence.

Note: This specification uses a reference notation based on acronyms or convenient

labels for identifying a reference (as opposed to using numbers).

[A/53]

 ATSC Digital Television Standard, A/53, ATSC

[DASE]

 DASE-1 Part 1: Introduction, Architecture, and Common Facilities, A/100-1, ATSC

[DASE-API]

 DASE-1 Part 4: Application Programming Interface, A/100-4, ATSC

[DASE-ZIP]

 DASE-1 Part 5: ZIP Archive Resource Format, A/100-5, ATSC

[DOM2]

 Document Object Model (DOM) Level 2 Core, Recommendation, W3C

[DOM2-EVENTS]

 Document Object Model (DOM) Level 2 Events, Recommendation, W3C

[DOM2-HTML]

 Document Object Model (DOM) Level 2 HTML, Recommendation, W3C

[DOM2-STYLE]

 Document Object Model (DOM) Level 2 Style, Recommendation, W3C

[DOM2-VIEWS]

 Document Object Model (DOM) Level 2 Views, Recommendation, W3C

[HAVI-UI]

The HAVi Specification, Chapter 8, Level 2 User Interface, Version 1.1, May 15,

2001, http://www.havi.org/home.html, HAVi Consortium

[HAVI-UI-API]

HAVi Level 2 User Interface APIs 1.1, May 15, 2001, http://www.havi.org/home.html,

HAVi Consortium

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 4

[JAR]

JAR File Specification, http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html, Sun

Microsystems

[JAVATV]

Java TV API Specification, Version 1.0, http://java.sun.com/products/javatv/, Sun

Microsystems

[JAVATV-INTRO]

Java TV™ API Technical Overview, Version 1.0, http://java.sun.com/products/javatv/,

Sun Microsystems

[JDK1.1.8]

Java Development Kit, Version 1.1.8,

http://java.sun.com/products/jdk/1.1/, Sun Microsystems

[JDK1.2.2]

Java Development Kit, Version 1.2.2,

http://java.sun.com/products/jdk/1.2/, Sun Microsystems

[JMF]

Java Media Framework Specification, Version 1.0,

http://java.sun.com/products/java-media/jmf/1.0/, Sun Microsystems

[JLS1]

Java Language Specification, First Edition, James Gosling et al., Addison Wesley,

1996, ISBN 0-201-63451-1

[JVM1]

Java Virtual Machine Specification, First Edition, Tim Lindholm and Frank Yellin,

Addison Wesley, 1996, ISBN 0-201-63452-X

[JVM1-ERRATA]

Errata for the Java Virtual Machine Specification, Tim Lindholm and Frank Yellin,

http://java.sun.com/docs/books/vmspec/errata.html, Sun Microsystems

[JVMX]

Inner Classes Specification, February 4, 1997,

http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/, Sun Microsystems

[LANG-TAGS]

 Tags for the Identification of Languages, RFC3066, IETF

[MIME-MEDIA]

Multimedia Internet Mail Extensions (MIME) Part Two: Media Types, RFC2046, IETF

[PJAE]

PersonalJava™ Application Environment Specification, Version 1.2A,

http://java.sun.com/products/personaljava/, Sun Microsystems

[UNICODE]

 Unicode Character Encoding Standard, Version 3.2, Unicode Consortium

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 5

[URI]

 Uniform Resource Identifiers: Generic Syntax, RFC2396, IETF

[UTF-8]

UTF-8, A Transformation Format of ISO 10646, RFC2279, IETF

[X.731]

Information Technology – Open Systems Interconnection – Systems Management:

State Management Function, ITU-T Recommendation X.731, ITU

2.2 Informative References

[JNI]

Java Native Interface Specification, Version 1.1, May 16, 1997,

http://java.sun.com/products/jdk/1.1/docs/guide/jni/, Sun Microsystems

[JLS1-ERRATA]

Clarifications and Amendments to The Java Language Specification,

http://java.sun.com/docs/books/jls/clarify.html, Sun Microsystems

[JVM2]

Java Virtual Machine Specification, Second Edition, Tim Lindholm and Frank Yellin,

Addison Wesley, 1999, ISBN 0-201-43294-3

2.3 Reference Acquisition

ATSC Standards

Advanced Television Systems Committee (ATSC), 1750 K Street N.W., Suite

1200 Washington, DC 20006 USA; Phone: +1 202 828 3130; Fax: +1 202 828

3131; http://www.atsc.org/.

IETF Standards

Internet Engineering Task Force (IETF), c/o Corporation for National Research

Initiatives, 1895 Preston White Drive, Suite 100, Reston, VA 20191-5434, USA;

Phone: +1 703 620 8990; Fax: +1 703 758 5913; http://www.ietf.org/.

HAVi Standards

The HAVi Organization, 2694 Bishop Drive, Suite 275, San Ramon, CA 94583,

USA; Phone: +1 925 275 6615; Fax: +1 925 275 6691; http://www.havi.org/.

ITU Standards

International Telecommunication Union (ITU), Place des Nations, CH-1211

Geneva 20, Switzerland; Phone: +41 22 730 51 11; Fax: +41 22 733 72 56;

http://www.itu.ch/.

Java Standards

Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 USA;

http://java.sun.com/.

Unicode Standards

The Unicode Consortium, P.O. Box 391476, Mountain View, CA 94039-1476,

USA; Phone: +1 650 693 3921; Fax: +1 650 693 3010; http://www.unicode.org/.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 6

W3C Standards

World Wide Web Consortium (W3C), Massachusetts Institute of Technology,

Laboratory for Computer Science, 200 Technology Square, Cambridge, MA

02139, USA; Phone: +1 617 253 2613; Fax: +1 617 258 5999;

http://www.w3.org/.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 7

3. DEFINITIONS

This section defines conformance keywords, acronyms and abbreviations, and terms as

employed by this specification.

All acronyms, abbreviations, and terms defined by [DASE] apply to this specification. Only

those acronyms, abbreviations, and terms specific to this document and not common to DASE in

its entirety are defined herein.

3.1 Conformance Keywords

As used in this document, the conformance keyword shall denotes a mandatory provision of

the standard. The keyword should denotes a provision that is recommended but not mandatory.

The keyword may denotes a feature whose presence does not preclude compliance, that may or

may not be present at the option of the content author or the procedural application environment

implementer.

3.2 Acronyms and Abbreviations

bslbf Bit Serial Leftmost Bit First
DAVIC Digital Audio Video Council
HAVi Home Audio Video Interoperability
JDK Java Development Kit
JMF Java Media Framework
PTS Presentation Time Stamp
STC System Time Clock
uimsbf Unsigned Integer Most Significant Bit First

3.3 Terms

active object content: a category of content types which includes both application/java and

application/javatv-xlet content types.

embedded Xlet: an Xlet that was loaded as a result of processing a markup content entity
referenced by a declarative application; an embedded Xlet is specified by means of an XDML
object element.

primary Xlet: the first Xlet that was loaded as a result of processing a procedural application’s
initial entity.

secondary Xlet: any Xlet explicitly registered and started by a primary Xlet, an embedded Xlet or
another secondary Xlet.

Xlet: an element of active object content expressed as a Java class which implements the

javax.tv.xlet.Xlet interface; a collection of Java class files and possibly related resources,

one class file of which implements the javax.tv.xlet.Xlet interface; a collection of resources
packaged as a Java archive which embodies the functionality of an Xlet.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 8

4. BEHAVIOR

This section describes certain normative behavior for DASE Applications and Systems

which employ the facilities defined by this specification.

4.1 State and Status Management

A procedural application environment shall support generic state and status management

functions in adherence with [X.731] as extended and restricted by this specification. Furthermore,

any DASE application which employs a Java TV Xlet shall maintain and report Xlet state and

status information as described in the following subsections.

4.1.1 State Attributes

A procedural application environment shall support the following state attributes in

accordance with [X.731] Clauses 7.1 and 8.1.1:

• operational

• usage

• administrative

State attributes are scalar valued. The value of a state attribute shall be exactly one of the

values permitted for the attribute.

4.1.1.1 operational state

The operational state shall support the semantics of the following values in accordance with

[X.731] Clauses 7.1.1 and 8.1.1.1:

• enabled

• disabled

Unless specified otherwise, the initial value of the operational state shall be enabled.

Note: See [DASE-API] interface org.atsc.management.OperationalState for

information on support of the operational state.

4.1.1.1.1 Use with Xlets

An Xlet should report changes in its operational state to the procedural application

environment. The procedural application environment and other Xlets shall not rely upon an Xlet

reporting changes in its operational state.

4.1.1.1.2 Use with Environment Resources

Every environment resource provided by a procedural application environment which

implements state management facilities shall maintain and report changes in its operational state.

Note: See [DASE-API], org.atsc.management.ObjectStates, for information on

how an environment resource maintains and reports state changes.

A procedural application environment shall provide an interface to determine the overall

operational state of the procedural application environment.

Note: See [DASE-API], org.atsc.system.Receiver, for information on how an

environment’s operational status is exposed to DASE applications.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 9

4.1.1.2 usage state

The usage state shall support the semantics of the following values in accordance with

[X.731] Clauses 7.1.2 and 8.1.1.2:

• idle

• active

• busy

Unless specified otherwise, the initial value of the usage state shall be idle.

Note: See [DASE-API] interface org.atsc.management.UsageState for information

on support of the usage state.

4.1.1.2.1 Use with Xlets

An Xlet should report changes in its usage state to the procedural application environment.

The procedural application environment and other Xlets shall not rely upon an Xlet reporting

changes in its usage state.

An Xlet whose operational state is enabled but which is not providing a service should report

a usage status of idle. If an Xlet is enabled and is busy providing service or is otherwise not able

to provide service, it should report a usage status of busy. If an Xlet is enabled, able to provide a

service, but awaiting a client for its service, it should report a usage status of active.

An enabled Xlet whose purpose is not to provide a service to a client should report a

constant usage state of busy.

Note: See [DASE-API], org.atsc.xlet.XletContextExt.stateChanged, for

information on how an Xlet reports state changes.

4.1.1.2.2 Use with Environment Resources

Every environment resource provided by a procedural application environment which

implements state management facilities shall maintain and report changes in its usage state.

Note: See [DASE-API], org.atsc.management.ObjectStates, for information on

how an environment resource maintains and reports state changes.

A procedural application environment shall provide an interface to determine the overall

usage state of the procedural application environment.

Note: See [DASE-API], org.atsc.system.Receiver, for information on how an

environment’s usage status is exposed to DASE applications.

4.1.1.3 administrative state

The administrative state shall support the semantics of the following values in accordance

with [X.731] Clauses 7.1.3 and 8.1.1.3:

• locked

• unlocked

• shutting down

Unless specified otherwise, the initial value of the administrative state shall be unlocked.

Note: See [DASE-API] interface org.atsc.management.AdministrativeState for

information on support of the administrative state.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 10

4.1.1.3.1 Use with Xlets

A procedural application environment shall maintain the administrative state of each Xlet; an

Xlet shall not be permitted to alter its administrative state.

Note: The determination of when a procedural application environment can or must

transition the administrative state of an Xlet is not defined by this specification;

furthermore, an Xlet is not required to take any action as a result of a transition in this

state.

4.1.1.3.2 Use with Environment Resources

Every environment resource provided by a procedural application environment which

implements state management facilities shall maintain and report changes in its administrative

state.

Note: See [DASE-API], org.atsc.management.ObjectStates, for information on

how an environment resource maintains and reports state changes.

A procedural application environment shall provide an interface to determine the overall

administrative state of the procedural application environment.

Note: See [DASE-API], org.atsc.system.Receiver, for information on how an

environment’s administrative status is exposed to DASE applications.

4.1.2 Status Attributes

A procedural application environment shall support the following status attributes in

accordance with [X.731] Clauses 7.2 and 8.1.2:

• alarm

• procedural

• availability

Status attributes are set valued. If none of the specified attribute values applies, then a

status attribute shall have the special value none.

4.1.2.1 alarm status

The alarm status shall support the semantics of the following values in accordance with

[X.731] Clause 8.1.2.1:

• under repair

• critical

• major

• minor

• alarm outstanding

Unless specified otherwise, the initial value of the alarm status shall be none.

Note: See [DASE-API] interface org.atsc.management.AlarmStatus for information

on support of the alarm status.

4.1.2.1.1 Use with Xlets

An Xlet should report changes in its alarm status to the procedural application environment.

The procedural application environment and other Xlets shall not rely upon an Xlet reporting its

alarm status.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 11

Note: See [DASE-API], org.atsc.xlet.XletContextExt.statusChanged, for

information on how an Xlet reports status changes.

4.1.2.1.2 Use with Environment Resources

Every environment resource provided by a procedural application environment which

implements status management facilities shall maintain and report changes in its alarm status.

Note: See [DASE-API], org.atsc.management.ObjectStates, for information on

how an environment resource maintains and reports status changes.

A procedural application environment shall provide an interface to determine the overall

alarm status of the procedural application environment.

Note: See [DASE-API], org.atsc.system.Receiver, for information on how an

environment’s alarm status is exposed to DASE applications.

4.1.2.2 procedural status

The procedural status shall support the semantics of the following values in accordance with

[X.731] Clause 8.1.2.2:

• initializing

• initialization required

• not initialized

• reporting

• terminating

Unless specified otherwise, the initial value of the procedural status shall be none.

Note: See [DASE-API] interface org.atsc.management.ProceduralStatus for

information on support of the procedural status.

4.1.2.2.1 Use with Xlets

An Xlet should report changes in its procedural status to the procedural application

environment. The procedural application environment and other Xlets shall not rely upon an Xlet

reporting its procedural status.

Prior to performing Xlet.initXlet, a procedural application environment shall initialize an

Xlet’s procedural status to not initialized.

During the performance of Xlet.initXlet, an Xlet should report its procedural status as

initializing. Upon successful completion of initialization, an Xlet should report an empty procedural

status.

During the performance of Xlet.destroyXlet, an Xlet should report its procedural status

as terminating.

Note: See [DASE-API], org.atsc.xlet.XletContextExt.statusChanged, for

information on how an Xlet reports status changes.

4.1.2.2.2 Use with Environment Resources

Every environment resource provided by a procedural application environment which

implements status management facilities shall maintain and report changes in its procedural

status.

Note: See [DASE-API], org.atsc.management.ObjectStates, for information on

how an environment resource maintains and reports status changes.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 12

A procedural application environment shall provide an interface to determine the overall

procedural status of the procedural application environment.

Note: See [DASE-API], org.atsc.system.Receiver, for information on how an

environment’s procedural status is exposed to DASE applications.

4.1.2.3 availability status

The availability status shall support the semantics of the following values in accordance with

[X.731] Clause 8.1.2.3:

• in test

• failed

• power off

• off line

• off duty

• dependency

• degraded

• not installed

• log full

Unless specified otherwise, the initial value of the availability status shall be none.

Note: See [DASE-API] interface org.atsc.management.AvailabilityStatus for

information on support of the availability status.

4.1.2.3.1 Use with Xlets

An Xlet should report changes in its availability status to the procedural application

environment. The procedural application environment and other Xlets shall not rely upon an Xlet

reporting its availability status.

An Xlet which cannot provide its intended service(s) due to unavailability of a critical

resource should report dependency in its availability status. An Xlet which can provide limited

service due to unavailability of a critical resource should report degraded in its availability status.

An Xlet which performs a periodic function should report off duty in its availability status

when not performing its intended function.

An Xlet which is undergoing testing should report in test in its availability status. An Xlet

which has incurred a non-recoverable error should report failed in its availability status.

An Xlet should not report power off in its availability status.

Note: See [DASE-API], org.atsc.xlet.XletContextExt.statusChanged, for

information on how an Xlet reports status changes.

4.1.2.3.2 Use with Environment Resources

Every environment resource provided by a procedural application environment which

implements status management facilities shall maintain and report changes in its availability

status.

Note: See [DASE-API], org.atsc.management.ObjectStates, for information on

how an environment resource maintains and reports status changes.

A procedural application environment shall provide an interface to determine the overall

availability status of the procedural application environment.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 13

Note: See [DASE-API], org.atsc.system.Receiver, for information on how an

environment’s availability status is exposed to DASE applications.

4.2 Xlet Lifecycle Management

An Xlet shall exhibit a lifecycle as prescribed by [JAVATV-INTRO], Chapter 7, Application

Lifecycle.

Note: The terminology used by [JAVATV-INTRO] assumes that an individual Xlet

corresponds one-to-one with an individual application. This correspondence does not

necessarily hold within a DASE Application, which permits the use of multiple Xlets.

The overall lifecycle of a DASE Application is specified in [DASE], Section 5.1.3, Application

Lifecycle. Transitions in a DASE Application’s lifecycle shall affect the lifecycle of individual Xlets

loaded by the application in accordance with Table 1 Application Lifecycle State Mapping.

Table 1 Application Lifecycle State Mapping

Application Lifecycle Xlet Lifecycle Action

during initialized state initXlet()

enter active state startXlet()

enter suspended state pauseXlet()

enter uninitialized state destroyXlet()

Note: No necessary relationship holds between an Xlet’s lifecycle state and its X.731 state

attribute values.

If a DASE Application makes use of multiple Xlets, then the pause and destroy mappings

described above shall be applied to each secondary Xlet followed by each embedded Xlet or the

primary Xlet, depending upon whether the application is a declarative or procedural application,

respectively.

Note: The internal order of applying this mapping in the case of multiple secondary Xlets

or multiple embedded Xlets is not defined.

Note: See Section 3.3 for definitions of primary, secondary, and embedded Xlets.

An Xlet may directly change its lifecycle state in certain cases: (1) an Xlet may pause itself

by invoking XletContext.notifyPaused(); and (2) it may cause its destruction by invoking

XletContext.notifyDestroyed().

An Xlet which is paused may request that it be resumed (i.e., transitioned from paused to

active states) by invoking XletContext.resumeRequest(). A procedural application environment

is not required to satisfy a resume request, and may, instead, choose to leave the Xlet in a

paused state or transition it to the destroyed state. However, if a procedural application

environment can resume an Xlet which requests resumption and no administrative reason exists

for keeping it suspended, then it should honor the request.

If a primary Xlet is destroyed, then the procedural application environment shall terminate

the procedural application which resulted in the loading of this Xlet. Otherwise, Xlet state changes

need not have a direct impact on a DASE Application’s lifecycle.

4.3 Trigger Processing

A procedural application environment shall process trigger content as defined by [DASE],

Section 6.9. Trigger content may declare one or more events of a specific type which require

processing by a procedural application environment. A procedural application environment shall

process all events with a type attribute of the following value:

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 14

• generic

4.3.1 Event Processing

An event whose type is defined as requiring processing by a procedural application

environment is processed by creating an instance of the org.atsc.trigger.TriggerEvent

class and dispatching this instance to applicable event listeners which implement the

org.atsc.trigger.TriggerListener interface.

Note: No synchronization semantics hold for triggers as defined herein; that is, the

decoding of triggers as well as any presentation side effects are considered to be

asynchronous with respect to the application delivery system’s clock.

Note: See [DASE-API] for the definition of the org.atsc.trigger package.

4.3.1.1 bubbles attribute

This attribute shall be ignored by a procedural application environment.

Note: See [DASE], Section 6.9.1.6.1.1, for more information on this attribute.

4.3.1.2 cancelable attribute

This attribute shall be ignored by a procedural application environment.

Note: See [DASE], Section 6.9.1.6.1.2, for more information on this attribute.

4.3.1.3 target attribute

This attribute shall have a value of which takes the form of a non-empty, application-defined

string. The event shall be dispatched to (1) all trigger event listeners which specified an identical

target string when the listener was registered and (2) all trigger event listeners which were

registered without a target string.

The value of this attribute shall be treated as case-insensitive for the purpose of determining

value equality.

Note: See [DASE], Section 6.9.1.6.1.3, for more information on this attribute.

Note: In the case of a DASE Application which makes use of multiple Xlets, a trigger event

is dispatched to all appropriate trigger listeners of each Xlet. The order of dispatching to

multiple Xlets is not defined by this specification.

4.3.2 Generic Event Processing

An event whose type attribute has a value of "generic" shall be processed as a generic

event.

The generic event type provides support for arbitrary, pre-defined actions to be triggered in

active object content under the control of the application emitter. The parameter set of an event of

this type is not restricted in either names or values.

When a generic event is processed, the following steps shall occur:

(1) all event parameters consisting of name and value pairs shall be extracted from trigger

content and used to instantiate an instance of java.util.Properties;

(2) the event’s target attribute shall be extracted from trigger content;

(3) an instance of org.atsc.trigger.TriggerEvent shall be instantiated using the above

information;

(4) the trigger event instance shall be dispatched to all applicable listeners.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 15

4.4 Relative Identifier Resolution

A procedural application employs resource identifiers in order to reference various types of

application resources in a variety of contexts. These identifiers take a form as described by

[DASE], Section 5.1.2.3.1, Resource Identifiers. A reference to a resource may take an absolute

or a relative form as described by [DASE], Section 5.1.2.3.2, Resource References. When a

resource reference takes a relative form, the following interpretive rules shall be applied.

Given a relative identifier, the base identifier to be used to absolutize the relative identifier

shall be determined by the following rules:

(1) for a relative identifier used with the constructor java.net.URL(String), use the base
identifier of the URI which corresponds to the external form of the current Xlet's locator;

(2) for a relative identifier used with the constructor java.net.URL(URL,String), use the
rules described by this constructor’s defining specification;

(3) for a relative identifier used with the constructor javax.media.MediaLocator(String),
use the base identifier of the URI which corresponds to the external form of the current
Xlet's locator;

(4) for a relative identifier used with the method javax.tv.locator.LocatorFactory.-

createLocator(String), use the base identifier of URI which corresponds to the
external form of the current Xlet's locator.

If none of the above rules permits resolution of a relative identifier, then an attempt shall be

made to use rule three as specified by [DASE], Section 5.1.2.3.2.1, Relative Resource Identifiers.

4.5 Relative Name Resolution

A procedural application may directly or indirectly make use of relative names for referring to

certain application resources or system defined resources. The procedures for resolving these

relative names are described in the following subsections.

4.5.1 File System Names

Certain constructors of the java.io.File class as well as certain methods, e.g., java.-

awt.Toolkit.getImage(String), permit the use of a relative name in order to designate a

pathname with respect to some explicit or implied directory. If no directory context is provided,

then a relative file name shall be resolved as follows:

(1) if the application is associated with exactly one application delivery file system, then a
relative file name shall be resolved with respect to the mount point of that application
delivery file system;

(2) if the application is associated with multiple application delivery file systems, then a
relative file name shall be resolved with respect to the mount point of the first mounted
application delivery file system;

(3) otherwise, a relative file name shall be resolved with respect to the root directory of the
local file system.

4.5.2 Java Class Names

The resolution of Java types requires the implied loading of Java class files. When resolving

a reference to an application-defined Java class or interface, the value of the application’s

classpath parameter shall be used to create a search list for resolving the fully qualified class

name.

Note: See Section 5.1.1.1.3 for more information on resolving class names using the

classpath.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 16

When resolving a reference to a system-defined Java class or interface, the value of the

application’s classpath parameter shall not be used; rather, a separate, implementation-defined

classpath shall be used to create a search list for resolving the fully qualified class name.

For the purpose of mapping a fully qualified Java class name to a file name or resource

identifier, each "." appearing in the class name shall be changed to an appropriate separator

character and the extension ".class" shall be appended as a suffix.

Note: The appropriate separator character will depend upon the file or resource access

protocol being employed; e.g., when the class file is being loaded from a file system, the

value of java.lang.System.getProperty("file.separator") is used, when the

class file is being loaded from an archive resource, the file or pathname separator

employed by the archive resource format is used, etc.

4.5.3 Java Resource Names

When a relative name is used with one of the following methods, the same rules used to

resolve an application-defined Java class name (as described above in Section 4.5.2) shall apply:

• java.lang.ClassLoader.getResource(String)

• java.lang.ClassLoader.getResourceAsStream(String)

When a relative name is used with one of the following methods, the same rules used to

resolve a system-defined Java class name (as described above in Section 4.5.2) shall apply:

• java.lang.ClassLoader.getSystemResource(String)

• java.lang.ClassLoader.getSystemResourceAsStream(String)

4.6 Local File System

A procedural application environment should provide local file system storage for use by

DASE Applications which employ active object content types.

A DASE System may purge local file system storage usage at the discretion of either the

end-user or the system itself. A purge of the local file system shall not occur during a period that a

DASE Application is in a state other than the uninitialized state.

Note: This specification does not define either the minimum local file system size or the

minimum persistence of files created within this file system beyond the lifecycle of an

application.

If a DASE Application creates a directory or file in a local file system, then it should employ

the following convention to reduce potential collisions of directory and file names: an application

should create files in a directory whose pathname corresponds to the reversed namespace and

path of the base identifier of the application’s root resource; for example, if the base identifier is

"lid://xyz.com/app1/", then the pathname "/com/xyz/app1/" should be used.

If a local file system is employed by a DASE System to retain persistent information other

than directories or files explicitly created by a DASE Application, then this persistent information

shall not be exposed to a DASE Application by means of local file system functionality. Any

attempt by a DASE Application to access such information shall cause a runtime exception to be

raised.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 17

5. FACILITIES

This specification defines a number of facilities, each of which defines a category of content

types by enumerating a set of one or more specific content types. The following categories are

defined:

• active object content

• application defined content

• text content

• java archive content

A procedural application environment shall implement all the facilities specified in this

section, and both procedural application and declarative application entities may use these

facilities.

Note: See DASE-1 Part 2: Declarative Applications and Environment, Section 5.1.1.6.8.1,

Active Content Object Element, for more information on the use of these facilities by a

declarative application.

5.1 Active Object Content

This facility consists of a primary active object content type, application/java, and a

specialized form of this content type, application/javatv-xlet. Every procedural application

shall contain one or more application entities which take the form of these active object content

types. In particular, the initial entity of a procedural application shall take the form of the

specialized active object content type, application/javatv-xlet.

If the initial entity of a procedural application is a content type other than

application/javatv-xlet and this application is invoked, then the procedural application

environment shall abort the application.

5.1.1 application/java

This active object content type shall adhere to [JVM1], Chapter 4, Class File Format, as

extended and restricted below and shall be identified as content type application/java.

An application resource of this content type shall specify a Java class file version number in

the range 45.3 through 45.65535.

A Java class file whose version is 45.4 or higher may make use of the following extensions

as defined by [JVMX]:

• InnerClasses attribute

• Synthetic attribute

5.1.1.1 Java Virtual Machine

A procedural application environment shall execute active object content in a manner

consistent with [JVM1], as amended by [JVM1-ERRATA] and [JVMX], and as further clarified and

constrained below.

The Java Virtual Machine shall support Java class files whose version numbers are in the

range 45.3 through 45.65535.

When a class is resolved by the Java Virtual Machine, all superclasses (or superinterfaces)

shall be resolved.

The Java Virtual Machine may use either eager (early or static) or lazy (late) resolution of

symbolic references; however, if eager resolution would result in an error condition, then any

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 18

exception produced by such condition shall not be raised until the execution of the first Java

virtual machine instruction which requires resolution to succeed.

Note: A Java Virtual Machine which performs eager resolution must appear to applications

to operate as if it performs lazy resolution. See [JLS1], Section 12.3, Linking of Classes

and Interfaces, for additional information.

If the target of an invokeinterface instruction does not support the referenced interface

and the instruction is executed, then a java.lang.IncompatibleClassChangeError shall be

raised as described by [JLS1] Section 13.1.

The Java Virtual Machine is not required to support class finalization as required by [JVM1],

Section 2.16.8.

Note: Implementers are advised to carefully review [JLS1-ERRATA], Java Language

Specification Clarifications, and [JVM2], Summary of Clarifications and Amendments, for

important information regarding Java Virtual Machine semantics.

A procedural application environment is not required to implement support for Java to native

compilation services. If a procedural application environment does implement such services, then

it shall do so in a manner that is transparent to the processing of an application entity with the

exception of differences in elapsed execution time.

5.1.1.1.1 Byte Code Verification

A procedural application environment shall verify application/java content as a Java

class file according to [JVM1], Section 4.9, Verification of Class Files, and [JLS1], Sections 12.1.2

and 12.3.1.

If an entity of an Xlet uses content type application/java, does not correctly verify

according to [JVM1], Section 4.9, then the procedural application environment shall not execute

the entity, shall raise an appropriate runtime exception, and, if the exception is not caught, shall

destroy the Xlet.

5.1.1.1.2 Java Native Interface (JNI)

The Java Native Interface may be, but need not be implemented by a procedural application

environment; furthermore, an application entity shall not rely on the presence of support for this

functionality.

Note: See [JNI] for further information on the Java Native Interface.

5.1.1.1.3 Classpath

A procedural application environment shall load application-defined Java class files, i.e.,

application resources of active object content types, by performing an ordered search of the

entries specified by an Xlet's effective classpath, as partially determined by the containing

application’s classpath parameter.

Note: See [DASE], Section 6.1.1.6.13.2, for more information on how an application’s

classpath parameter is specified in a DASE Application.

The value of an application’s classpath parameter shall take the form of a (possibly empty)

list of entries, where each entry specifies either (1) a base URI or (2) the URI of a resource of an

archive content type, and where multiple entries are separated by the token ";".

Note: The token used to delimit entries in the application specified classpath parameter is

typically converted to an implementation dependent path separator token during the

process of parsing the parameter.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 19

If no classpath parameter is specified or if its value is an empty string, then it shall be

considered to have been specified with a value taking the form of a single entry consisting of the

base URI of the application’s root resource.

For a primary Xlet, the effective classpath shall be the value of the classpath parameter as

determined above.

For an embedded Xlet, the non-empty value of the codebase attribute of the referencing

XDML object element shall be prepended to the value of the classpath parameter as determined

above with an appropriate, intervening path separator token. The resulting value shall be treated

as the effective classpath of the embedded Xlet.

Note: See DASE-1 Part 2: Declarative Applications and Environment, Section 5.1.1.6.8,

for more information about the XDML object element and its codebase attribute.

For a secondary Xlet, the effective classpath shall be the same as the effective classpath of

the Xlet which starts the secondary Xlet.

A procedural application environment shall not use an Xlet’s effective classpath to search

for or load system (non-application) defined Java class files. Furthermore, a procedural

application environment shall not load any Java class file from any portion of a local file system

which is exposed to a DASE application for read or write access.

Note: See Section 5.4 below for more information on Java archive content types.

Example: Given the fully qualified Java class name com.acme.Class, and given the

following effective classpath:

"lid://acme.com/myxlet.jar;lid://acme.com/myxlet/"

then the procedural application environment would search for the class file using the following

URIs in the order indicated:

1. "lid://acme.com/myxlet.jar!/com/acme/Class.class"

2. "lid://acme.com/myxlet/com/acme/Class.class"

5.1.1.2 Java Application Programming Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall implement the following application programming interfaces (APIs)

as specified in the following subsections:

• Personal Java Application Environment (PJAE)

• Java Media Framework (JMF)

• Java Television (Java TV)

• Home Audio Video Interoperability User Interface (HAVi UI)

• Digital Audio Video Council (DAVIC)

• W3C Document Object Model (DOM)

• DASE Specific (ATSC)

A procedural application environment is not required to implement any deprecated Java

class, interface, method, or field; furthermore, an application entity shall not rely upon the

presence of support for such deprecated functionality.

An application entity shall not synchronize on any system class or upon any system static

object.

If the specification of a Java class does not define any constructor, then the implementation

of the class shall explicitly define either a package or private constructor in order to prevent the

generation of a default constructor.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 20

5.1.1.2.1 Personal Java Application Environment (PJAE) Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall support the use of Personal Java Application Environment APIs in a

manner consistent with [PJAE], [JDK1.1.8], and [JDK1.2.2] as extended and restricted below.

If an application entity of this content type requires resolution of a reference to a PJAE class

for which support is not required and which is not present in a procedural application

environment, then the procedural application environment shall raise a java.lang.NoClassDef-

FoundError, and, if the exception is not caught by the application, shall destroy the Xlet in whose

context this reference occurs.

If an application entity of this content type invokes a PJAE method for which support is not

required and which is not present in a procedural application environment, then the procedural

application environment shall raise a java.lang.NoSuchMethodError, and, if the exception is

not caught by the application, shall destroy the Xlet in whose context this reference occurs.

If an application entity of this content type invokes a PJAE method for which support is not

required and which is partially implemented in the sense that the method is present in, but its

semantics are not supported by a procedural application environment, then the procedural

application environment should raise a java.lang.UnsupportedOperationException, and, if

the exception is not caught by the application, shall destroy the Xlet in whose context this

reference occurs.

If an application entity of this content type requires resolution of a reference to a PJAE field

for which support is not required and which is not present in a procedural application

environment, then the procedural application environment shall raise a java.lang.NoSuch-

FieldError, and, if the exception is not caught by the application, shall destroy the Xlet in whose

context this reference occurs.

If a PJAE optional class or method designated to be not required by this specification is

implemented, then it shall be implemented according to [PJAE].

Note: See [PJAE], Section 3, Definitions, for the meaning of optional as used in the above

paragraph.

A procedural application environment shall use the values of constants defined in ANNEX B

in the case that a PJAE defined constant field does not specify a value.

Note: See Annexes A.1 through A.13 for all required PJAE types.

5.1.1.2.1.1 Modified PJAE Required Features

The following PJAE required features are modified or restricted by this specification:

• java.awt package, [PJAE], Section 5.2

• java.awt.event package, [PJAE], Section 5.4

• java.awt.image package, [PJAE], Section 5.5

• java.beans package, [PJAE], Section 5.7

• java.io package, [PJAE], Section 5.8

• java.lang package, [PJAE], Section 5.9

• java.net package, [PJAE], Section 5.12

• java.security package, [PJAE], Section 5.17

• java.text package, [PJAE], Section 5.23

• java.util package, [PJAE], Section 5.25

• java.util.zip package, [PJAE], Section 5.27

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 21

5.1.1.2.1.1.1 Modifications to and Constraints on java.awt package

The following types in the java.awt package are not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these types:

• Button

• Canvas

• Checkbox

• CheckboxGroup

• CheckboxMenuItem

• Choice

• Dialog

• Event

• FileDialog

• Frame

• GridBagLayoutInfo

• Label

• List

• Menu

• MenuBar

• MenuComponent

• MenuContainer

• MenuItem

• MenuShortcut

• Panel

• PopupMenu

• PrintGraphics

• PrintJob

• Scrollbar

• ScrollPane

• SystemColor

• TextArea

• TextComponent

• TextField

• Window

Note: The above excluded functionality is satisfied by HAVi UI functionality. See Section 0.

5.1.1.2.1.1.1.1 Modifications to java.awt.AWTEvent class

The following constructor in the java.awt.AWTEvent class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this constructor:

• AWTEvent(Event)

5.1.1.2.1.1.1.2 Modifications to java.awt.AWTEventMulticaster class

The following methods in the java.awt.AWTEventMulticaster class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• save(ObjectOutputStream,String)

• saveInternal(ObjectOutputStream,String)

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 22

5.1.1.2.1.1.1.3 Modifications to java.awt.BorderLayout class

The following deprecated method in the java.awt.BorderLayout class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• addLayoutComponent(String, Component)

5.1.1.2.1.1.1.4 Modifications to java.awt.CardLayout class

The following deprecated method in the java.awt.CardLayout class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• addLayoutComponent(String, Component)

5.1.1.2.1.1.1.5 Constraints on java.awt.Color class

The following constraints shall apply to the constant fields specified by java.awt.Color:

• black == new Color (0, 0, 0)

• blue == new Color (0, 0, 255)

• cyan == new Color (0, 255, 255)

• darkGray == new Color (64, 64, 64)

• gray == new Color (128, 128, 128)

• green == new Color (0, 255, 0)

• lightGray == new Color (192, 192, 192)

• magenta == new Color (255, 0, 255)

• orange == new Color (255, 200, 0)

• pink == new Color (255, 175, 175)

• red == new Color (255, 0, 0)

• white == new Color (255, 255, 255)

• yellow == new Color (255, 255, 0)

5.1.1.2.1.1.1.6 Modifications to java.awt.Component class

The java.awt.Component class is not required to implement the java.awt.MenuContainer

interface; however, the getFont() method specified by java.awt.Component shall be

implemented by a procedural application environment.

The following deprecated methods in the java.awt.Component class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• action(Event,Object)

• bounds()

• deliverEvent(Event)

• disable()

• enable()

• enable(boolean)

• getPeer()

• gotFocus(Event,Object)

• handleEvent(Event)

• hide()

• inside(int,int)

• keyDown(Event,int)

• keyUp(Event,int)

• layout()

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 23

• locate(int,int)

• location()

• lostFocus(Event,Object)

• minimumSize()

• mouseDown(Event,int,int)

• mouseDrag(Event,int,int)

• mouseEnter(Event,int,int)

• mouseExit(Event,int,int)

• mouseMove(Event,int,int)

• mouseUp(Event,int,int)

• move(int,int)

• nextFocus()

• postEvent(Event)

• preferredSize()

• reshape(int,int,int,int)

• resize(Dimension)

• resize(int,int)

• show()

• show(boolean)

• size()

The following methods in the java.awt.Component class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• add(PopupMenu)

• list()

• list(PrintStream)

• list(PrintStream,int)

• list(PrintWriter)

• list(PrintWriter,int)

• paramString()

• print(Graphics)

• printAll(Graphics)

• remove(MenuComponent)

The following method in the java.awt.Component class shall be present in a procedural

application environment; however, its semantics are not required to be fully implemented by a

procedural application environment. Furthermore, an application entity shall not rely on the

presence of support for the full semantics of this method:

• setCursor(Cursor)

If a procedural application environment cannot fulfill the semantics of this method and this

method is invoked, then a java.lang.UnsupportedOperationException should be raised, and,

if the exception is not caught by the application, the application shall be aborted.

5.1.1.2.1.1.1.7 Modifications to java.awt.Container class

The following deprecated methods in the java.awt.Container class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• add(String,Component)

• countComponents()

• deliverEvent(Event)

• insets()

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 24

• layout()

• locate(int,int)

• minimumSize()

• preferredSize()

The following methods in the java.awt.Container class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• addImpl(Component,Object,int)

• list(PrintStream,int)

• list(PrintWriter,int)

• printComponents(Graphics)

5.1.1.2.1.1.1.8 Modifications to java.awt.Dimension class

The java.awt.Dimension class should override the method java.lang.Object.-

hashCode() in order to conform to semantic interdependencies with java.lang.Object.-

equals(Object).

5.1.1.2.1.1.1.9 Modifications to java.awt.Font class

The following method in the java.awt.Font class is not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for this method:

• getPeer()

5.1.1.2.1.1.1.10 Modifications to and Constraints on java.awt.FontMetrics class

The following deprecated method in the java.awt.FontMetrics class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• getMaxDecent()

The following method shall employ the default platform character encoding system when

interpreting the byte array represented by the first argument:

• bytesWidth(byte[],int,int)

Note: The default platform character encoding system may be determined by evaluating

the expression new InputStreamReader(System.in).getEncoding().

5.1.1.2.1.1.1.11 Modifications to and Constraints on java.awt.Graphics class

The following deprecated method in the java.awt.Graphics class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• getClipRect()

The following method in the java.awt.Graphics class shall be present in a procedural

application environment; however, its semantics are not required to be fully implemented by a

procedural application environment. Furthermore, an application entity shall not rely on the

presence of support for the full semantics of this method:

• setXORMode(Color)

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 25

If a procedural application environment cannot fulfill the semantics of this method and this

method is invoked, then a java.lang.UnsupportedOperationException should be raised, and,

if the exception is not caught by the application, the application shall be aborted.

The following method shall employ the default platform character encoding system when

interpreting the byte array represented by the first argument:

• drawBytes(byte[],int,int,int,int)

5.1.1.2.1.1.1.12 Modifications to java.awt.GridBagLayout class

The following protected fields in the java.awt.GridBagLayout class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these fields:

• comptable

• defaultConstraints

• layoutInfo

• MAXGRIDSIZE

• MINSIZE

• PREFERREDSIZE

The following protected methods in the java.awt.GridBagLayout class are not required to

be implemented by a procedural application environment; furthermore, an application entity shall

not rely on the presence of support for these methods:

• AdjustForGravity(GridBagConstraints,Rectangle)

• ArrangeGrid(Container)

• GetLayoutInfo(Container,int)

• GetMinSize(Container,GridBagLayoutInfo)

5.1.1.2.1.1.1.13 Constraints on java.awt.Image class

The java.awt.Image.getProperty(String) method provides a mechanism for querying a

variety of image specific or image category specific properties. The following subsections

describe a set of predefined properties, including their values and semantics. An implementation

may make use of additional, non-standard properties provided the non-standard property name is

prefixed with a reversed domain name or with "x-".

5.1.1.2.1.1.1.13.1 comment image property

The "comment" property may be used to provide a description of an image, its author, or

source. If a value other than Image.UndefinedProperty or null is returned, it shall be an

instance of java.lang.String. No other constraints are placed on the value.

5.1.1.2.1.1.1.13.2 croprect image property

The "croprect" property may be used to indicate what crop rectangle has been applied to

the original image.

Note: See Section 5.1.1.2.1.1.3.2 for additional information on this property.

5.1.1.2.1.1.1.13.3 filters image property

The "filters" property may be used to provide a description of a set of image filters which

are applied to an image.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 26

Note: See Section 5.1.1.2.1.1.3.4 for additional information on this property.

5.1.1.2.1.1.1.13.4 rescale image property

The "rescale" property may be used to indicate what scaling transformations have been

applied to the original image.

Note: See Section 5.1.1.2.1.1.3.6 for additional information on this property.

5.1.1.2.1.1.1.14 Modifications to java.awt.Insets class

The java.awt.Insets class should override the method java.lang.Object.hashCode()

in order to conform to semantic interdependencies with java.lang.Object.equals(Object).

5.1.1.2.1.1.1.15 Modifications to java.awt.Polygon class

The following deprecated methods in the java.awt.Polygon class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• getBoundingBox()

• inside(int,int)

5.1.1.2.1.1.1.16 Modifications to java.awt.Rectangle class

The following deprecated methods in the java.awt.Rectangle class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• inside(int,int)

• move(int,int)

• reshape(int,int,int,int)

• resize(int,int)

5.1.1.2.1.1.1.17 Modifications to and Constraints on java.awt.Toolkit class

The following methods in the java.awt.Toolkit class are not required to be implemented

by a procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these methods:

• createButton(Button)

• createCanvas(Canvas)

• createCheckbox(Checkbox)

• createCheckboxMenuItem(CheckboxMenuItem)

• createChoice(Choice)

• createComponent(Component)

• createDialog(Dialog)

• createFileDialog(FileDialog)

• createFrame(Frame)

• createLabel(Label)

• createList(List)

• createMenu(Menu)

• createMenuBar(MenuBar)

• createMenuItem(MenuItem)

• createPanel(Panel)

• createPopupMenu(PopupMenu)

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 27

• createScrollbar(Scrollbar)

• createScrollPane(ScrollPane)

• createTextArea(TextArea)

• createTextField(TextField)

• createWindow(Window)

• getFontPeer(String,int)

• getMenuShortcutKeyMask()

• getNativeContainer(Component)

• getPrintJob(Frame,String,Properties)

• getScreenResolution()

• getSystemClipboard()

• getSystemEventQueue()

• getSystemEventQueueImpl()

• loadSystemColors(int[])

Note: The above excluded functionality is satisfied by HAVi UI functionality or is not

required for application interoperability. See Section 5.1.1.2.4.

The value returned by the java.awt.Toolkit.getScreenSize() method shall be

equivalent to the pixel resolution of the current configuration of the default screen device returned

by the org.havi.ui.HScreen.getDefaultGraphicsDevice() method.

The first argument to the java.awt.Toolkit.createImage(byte[]) and

createImage(byte[],int,int) methods shall be a byte array containing the contents of an

application resource which conforms to one of the following content types as constrained by

[DASE], Sections 6.2 and 6.3:

• image/jpeg

• image/png

• video/mng

Due to the lack of content type information provided to these two methods, an

implementation shall determine the content type by employing implementation dependent

heuristics. A procedural application environment may optionally support the heuristic detection

and decoding of content types other than those specified above; however, an application shall not

rely upon support for the detection or decoding of any other image content types.

Note: If an image format error is detected when parsing the image data associated with an

instance of java.awt.Image created by one of the createImage(…) methods, then

the error is reported through an applicable ImageObserver.

Note: See [PJAE], Section 5.2, for more information on methods createImage(String)

and createImage(URL), which are adopted from [JDK1.2.2]. Note that the text in [PJAE]

is not clear that these methods are to be implemented by the java.awt.Toolkit class.

The java.awt.Toolkit.getProperty(String) method provides a mechanism for

querying a variety of toolkit properties. No predefined properties are defined by this specification.

An implementation may make use of additional, non-standard properties provided the non-

standard property name is prefixed with a reversed domain name or with "x-".

A procedural application environment is not required to support any specific toolkit property;

furthermore, an application entity shall not rely on the presence of support for any specific toolkit

property.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 28

5.1.1.2.1.1.2 Modifications to java.awt.event package

5.1.1.2.1.1.2.1 Modifications to java.awt.event.KeyEvent class

The following deprecated constructor in the java.awt.event.KeyEvent class is not

required to be implemented by a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for this constructor:

• KeyEvent(Component,int,long,int,int)

The method java.awt.event.KeyEvent.isAction() shall return true for the following key

codes:

• VK_F1 through VK_F12

• VK_LEFT, VK_RIGHT, VK_UP, VK_DOWN, VK_HOME, VK_END

• VK_PAGE_UP, VK_PAGE_DOWN

• VK_PRINTSCREEN, VK_PAUSE

• VK_INSERT

• VK_SCROLL_LOCK, VK_CAPS_LOCK, VK_NUM_LOCK

5.1.1.2.1.1.2.2 Modifications to java.awt.event.WindowEvent class

The following constructor in the java.awt.event.WindowEvent class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this constructor:

• WindowEvent(Window,int)

The following method in the java.awt.event.WindowEvent class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• getWindow()

5.1.1.2.1.1.3 Modifications to and Constraints on java.awt.image package

5.1.1.2.1.1.3.1 Modifications to java.awt.image.ColorModel class

The method java.awt.image.ColorModel.finalize() need not be overridden by an

implementation of a procedural application environment.

5.1.1.2.1.1.3.2 Constraints on java.awt.image.CropImageFilter class

The method setProperties(Hashtable) shall add a property with the name "croprect"

and a value that is an instance of java.awt.Rectangle initialized to the crop rectangle.

5.1.1.2.1.1.3.3 Modifications to java.awt.image.DirectColorModel class

The method java.awt.image.DirectColorModel.getRGB() need not be overridden by an

implementation of a procedural application environment if it is implemented generically in a base

class in such a manner as to respect the indicated semantics.

5.1.1.2.1.1.3.4 Constraints on java.awt.image.ImageFilter class

The following methods of the java.awt.image.ImageFilter class and its direct and

indirect subclasses are intended to be used only by the image producer of the image being

filtered. An application should not invoke any of these methods directly except in the limited case

that the application implements a subclass of an existing image filter.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 29

• getFilterInstance(ImageConsumer)

• imageComplete(int)

• setColorModel(ColorModel)

• setDimensions(int,int)

• setHints(int)

• setPixels(int,int,int,int,ColorModel,byte[],int,int)

• setPixels(int,int,int,int,ColorModel,int[],int,int)

• setProperties(Hashtable)

The method setProperties(Hashtable) shall add a property with the name "filters"

and a value that is an instance of java.awt.String which adheres to the following syntax:

[previous-value ", "] filter

where previous-value is the previous value of the "filters" property, if non-null, and

where filter is the result of invoking java.lang.Object.toString() on the current filter.

5.1.1.2.1.1.3.5 Modifications to java.awt.image.PixelGrabber class

The following deprecated method in the java.awt.image.PixelGrabber class is not

required to be implemented by a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for this method:

• status()

5.1.1.2.1.1.3.6 Constraints on java.awt.image.ReplicateScaleFilter class

The method setProperties(Hashtable) shall add a property with the name "rescale"

and a value that is an instance of java.awt.String which adheres to the following syntax:

width "x" height [", " previous-value]

where width and height are the new scaled width and height, and where previous-value is the

previous value of the "rescale" property, if non-null.

5.1.1.2.1.1.4 Modifications to java.beans package

The following types in the java.beans package are not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these types:

• BeanDescriptor

• BeanInfo

• Customizer

• EventSetDescriptor

• FeatureDescriptor

• IndexedPropertyDescriptor

• IntrospectionException

• Introspector

• MethodDescriptor

• ParameterDescriptor

• PropertyDescriptor

• PropertyEditor

• PropertyEditorManager

• PropertyEditorSupport

• SimpleBeanInfo

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 30

Note: The above functionality is excluded on the basis that it is intended solely for design-

time support of beans, which is not required by DASE applications.

5.1.1.2.1.1.4.1 Modifications to and Constraints on java.beans.Beans class

The following methods in the java.beans.Beans class are not required to be implemented

by a procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these methods:

• getInstanceOf(Object,Class)

• isInstanceOf(Object,Class)

• setDesignTime(boolean)

• setGuiAvailable(boolean)

The following method in the java.beans.Beans class shall not instantiate a bean which is a

subclass of java.applet.Applet:

• instantiate(ClassLoader,String)

The method java.beans.Beans.isDesignTime()shall always return false.

The method java.beans.Beans.isGuiAvailable()shall always return true.

5.1.1.2.1.1.5 Modifications to and Constraints on java.io package

The following deprecated classes in the java.io package are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these classes:

• LineNumberInputStream

• StringBufferInputStream

5.1.1.2.1.1.5.1 Constraints on java.io.BufferedInputStream class

When the java.io.BufferedInputStream class is constructed using the constructor

BufferedInputStream(InputStream), the size of the input buffer shall be implementation

dependent.

5.1.1.2.1.1.5.2 Modifications to java.io.ByteArrayOutputStream class

The following deprecated method in the java.io.ByteArrayOutputStream class is not

required to be implemented by a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for this method:

• toString(int)

5.1.1.2.1.1.5.3 Modifications to java.io.DataInput interface

The deserialization semantics of the java.io.DataInput interface shall adhere to those

specified by [JDK1.2.2].

The following method in the java.io.DataInput interface is not required in any class

implementing this interface in a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for this method:

• readLine()

5.1.1.2.1.1.5.4 Modifications to java.io.DataInputStream class

The following deprecated method in the java.io.DataInputStream class is not required to

be implemented by a procedural application environment; furthermore, an application entity shall

not rely on the presence of support for this method:

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 31

• readLine()

5.1.1.2.1.1.5.5 Modifications to java.io.DataOutput interface

The serialization semantics of the java.io.DataOutput interface shall adhere to those

specified by [JDK1.2.2].

5.1.1.2.1.1.5.6 Modifications to java.io.File class

The method lastModified() shall return a value which represents the number of

milliseconds from 00:00:00 GMT, January 1, 1970.

5.1.1.2.1.1.5.7 Constraints on java.io.FileInputStream class

A procedural application environment shall support the fine-grained access control

semantics specified by [JDK1.2.2] for the java.io.FileInputStream class.

5.1.1.2.1.1.5.8 Constraints on java.io.FileOutputStream class

A procedural application environment shall support the fine-grained access control

semantics specified by [JDK1.2.2] for the java.io.FileOutputStream class.

5.1.1.2.1.1.5.9 Modifications to and Constraints on java.io.ObjectInputStream class

The following method in the java.io.ObjectInputStream class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• readLine()

An application entity shall not rely on interoperability of serialized objects between distinct

implementations of a procedural application environment; nevertheless, a procedural application

environment shall support local serialization and deserialization.

The external, serialized format of an object is not defined by this specification.

Note: Support for implementation independent exchange of serialized objects is not

required due to lack of specificity of the external, serialized object format such that two

independent implementations would be able to serialize and deserialize in an

interoperable manner.

Note: Even without an interoperable interchange format for serialized objects, an

application entity may nevertheless serialize and deserialize objects within a specific

procedural application environment implementation provided it supports the semantics of

the above types. For example, an application may serialize an object to a persistent file on

a receiver’s local file storage system, then deserialize that object at a later time.

A procedural application environment shall support the fine-grained access control

semantics specified by [JDK1.2.2] for the java.io.ObjectInputStream class.

Note: The ObjectInputStream(InputStream) constructor and the enableResolve-

Object(boolean) method check for permission using the SerializablePermission

class and its enableSubclassImplementation and enableSubstitution targets,

respectively.

5.1.1.2.1.1.5.10 Constraints on java.io.ObjectOutputStream class

A procedural application environment shall support the fine-grained access control

semantics specified by [JDK1.2.2] for the java.io.ObjectOutputStream class.

Note: The ObjectOutputStream(OutputStream) constructor and the enableReplace-

Object(boolean) method check for permission using the SerializablePermission

class and its enableSubclassImplementation and enableSubstitution targets,

respectively.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 32

5.1.1.2.1.1.5.11 Clarifications to java.io.PipedInputStream class

The following fields of the java.io.PipedInputStream class shall adhere to the semantics

specified in [JDK1.2.2]:

• in

• out

• PIPE_SIZE

5.1.1.2.1.1.5.12 Modifications to java.io.PrintStream class

The following deprecated constructors in the java.io.PrintStream class are not required

to be implemented by a procedural application environment; furthermore, an application entity

shall not rely on the presence of support for these constructors:

• PrintStream(OutputStream)

• PrintStream(OutputStream,boolean)

5.1.1.2.1.1.5.13 Modifications to java.io.RandomAccessFile class

The following method in the java.io.RandomAccessFile class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• readLine()

5.1.1.2.1.1.5.14 Modifications to java.io.StreamTokenizer class

The following deprecated constructor in the java.io.StreamTokenizer class is not

required to be implemented by a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for this constructor:

• StreamTokenizer(InputStream)

5.1.1.2.1.1.6 Modifications to and Constraints on java.lang package

The following classes in the java.lang package are not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these classes:

• Compiler

• Process

5.1.1.2.1.1.6.1 Modifications to java.lang.Character class

The following deprecated methods in the java.lang.Character class are not required to

be implemented by a procedural application environment; furthermore, an application entity shall

not rely on the presence of support for these methods:

• isJavaLetter(char)

• isJavaLetterOrDigit(char)

• isSpace(char)

5.1.1.2.1.1.6.2 Clarifications to java.lang.Class class

The following methods in the java.lang.Class class are not required to be implemented

by a procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these methods:

• getClasses()

• getDeclaredClasses()

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 33

The methods required by java.lang.Class class shall adhere to the semantics specified

by [JDK1.2.2].

5.1.1.2.1.1.6.3 Modifications to java.lang.ClassLoader class

The following deprecated method in the java.lang.ClassLoader class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• defineClass(byte[],int,int)

Note: The [JDK1.2.2] method defineClass(String,byte[],int,int,java.-

security.ProtectionDomain) is to be added to this class as described in [PJAE],

Section 5.9.

The method java.lang.ClassLoader.loadClass(String,boolean) may be concrete,

and not abstract. In the case that an implementation of this class does not implement the

semantics of this method, then a default implementation shall be provided which, if invoked, shall

cause a java.lang.ClassNotFoundException to be raised.

The method java.lang.ClassLoader.findLoadedClass(String) shall adhere to the

semantics specified by [JDK1.2.2].

5.1.1.2.1.1.6.4 Constraints on java.lang.Double class

The following constraints shall apply to the constant fields specified by java.lang.Double:

• MIN_VALUE == longBitsToDouble(0x0000000000000001L)

• MAX_VALUE == longBitsToDouble(0x7FEFFFFFFFFFFFFFL)

• NaN == longBitsToDouble(0x7FF8000000000000L)

• NEGATIVE_INFINITY == longBitsToDouble(0xFFF0000000000000L)

• POSITIVE_INFINITY == longBitsToDouble(0x7FF0000000000000L)

5.1.1.2.1.1.6.5 Constraints on java.lang.Float class

The following constraints shall apply to the constant fields specified by java.lang.Float:

• MIN_VALUE == intBitsToFloat(0x00000001)

• MAX_VALUE == intBitsToFloat(0x7F7FFFFF)

• NaN == intBitsToFloat(0x7FC00000)

• NEGATIVE_INFINITY == intBitsToFloat(0xFF800000)

• POSITIVE_INFINITY == intBitsToFloat(0x7F800000)

5.1.1.2.1.1.6.6 Constraints on java.lang.Math class

Non-strict floating point rules shall apply to the functions supported by java.lang.Math.

5.1.1.2.1.1.6.7 Constraints on java.lang.Object class

Unless explicitly defined by a subclass of java.lang.Object, the form taken by the return

value of the method java.lang.Object.toString() is implementation dependent.

5.1.1.2.1.1.6.8 Modifications to java.lang.Runtime class

The following deprecated methods in the java.lang.Runtime class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• getLocalizedInputStream(InputStream)

• getLocalizedOutputStream(OutputStream)

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 34

The following methods in the java.lang.Runtime class are not required to be implemented

by a procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these methods:

• runFinalizersOnExit(boolean)

• traceInstructions()

• traceMethodCalls()

The following methods in the java.lang.Runtime class are not required be implemented by

a procedural application environment; if they are implemented, then they shall cause a

SecurityException to be raised if invoked by an application:

• exec(String)

• exec(String,String[])

• exec(String[])

• exec(String[],String[])

• exit(int)

• load(String)

• loadLibrary(String)

5.1.1.2.1.1.6.9 Modifications to java.lang.SecurityManager class

The following deprecated methods in the java.lang.SecurityManager class are not

required to be implemented by a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for these methods:

• classDepth(String)

• classLoaderDepth()

• currentClassLoader()

• currentLoadedClass()

• getInCheck()

• inClass(String)

• inClassLoader()

The following deprecated field in the java.lang.SecurityManager class is not required to

be implemented by a procedural application environment; furthermore, an application entity shall

not rely on the presence of support for this field:

• inCheck

5.1.1.2.1.1.6.10 Modifications to java.lang.String class

The following deprecated constructors in the java.lang.String class are not required to

be implemented by a procedural application environment; furthermore, an application entity shall

not rely on the presence of support for these constructors:

• String(byte[],int)

• String(byte[],int,int,int)

The following constructor shall employ the default platform character encoding system when

interpreting the byte array represented by the first argument:

• String(byte[],int,int)

The following deprecated method in the java.lang.String class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• getBytes(int,int,byte[],int)

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 35

A procedural application environment shall support the character encodings specified by

Annex E.1 for those methods of the java.lang.String class which use a parameter that

specifies a character encoding name.

5.1.1.2.1.1.6.11 Modifications to java.lang.System class

The following deprecated method in the java.lang.System class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this method:

• getenv(String)

The following field in the java.lang.System class shall be implemented by a procedural

application environment; however, an application entity shall not reference this field:

• in

Note: This field is solely provided for use by the implementation of a procedural

application environment or other components of a DASE System implementation.

The following fields in the java.lang.System class shall be implemented by a procedural

application environment. Any output produced as a side effect of writing to the PrintStream

values of these fields shall not affect the system display; however, a procedural application

environment may provide an implementation defined means for displaying such output.

• err

• out

The following method in the java.lang.System class is not required to be implemented by

a procedural application environment; furthermore, an application entity shall not rely on the

presence of support for this method:

• runFinalizersOnExit(boolean)

The following methods in the java.lang.System class are not required to be implemented

by a procedural application environment; if they are implemented, then they shall cause a

SecurityException to be raised if invoked by an application:

• exit(int)

• load(String)

• loadLibrary(String)

• setIn(InputStream)

• setErr(PrintStream)

• setOut(PrintStream)

5.1.1.2.1.1.6.12 Modifications to java.lang.Thread class

The following methods in the java.lang.Thread class are not required to be implemented

by a procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these methods:

• countStackFrames()

• destroy()

• resume()

• stop()

• stop(Throwable)

• suspend()

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 36

5.1.1.2.1.1.6.13 Modifications to java.lang.ThreadGroup class

The following methods in the java.lang.ThreadGroup class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• allowThreadSuspension(boolean)

• list()

• resume()

• stop()

• suspend()

5.1.1.2.1.1.6.14 Addition of java.lang.UnsupportedOperationException class

The java.lang.UnsupportedOperationException class defined by [JDK1.2.2] shall be

implemented by a procedural application environment.

5.1.1.2.1.1.7 Modifications to java.net package

The following types in the java.net package are not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these types:

• ConnectException

• ContentHandler

• ContentHandlerFactory

• DatagramSocketImpl

• FileNameMap

• HttpURLConnection

• NoRouteToHostException

• ServerSocket

• Socket

• SocketImpl

• SocketImplFactory

• UnknownServiceException

• URLConnection

• URLStreamHandler

• URLStreamHandlerFactory

Note: The above functionality is excluded on the basis that DASE-1 does not require

support for a return channel, and, consequently, no reliable use may be made of

connection oriented network facilities. In contrast, DASE-1 does support unidirectional,

connection-less networking facilities through the DatagramSocket and Multicast-

Socket types.

5.1.1.2.1.1.7.1 Modifications to java.net.MulticastSocket class

The following deprecated methods in the java.net.MulticastSocket class are not

required to be implemented by a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for these methods:

• getTTL()

• send(DatagramPacket,byte)

• setTTL(byte)

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 37

5.1.1.2.1.1.7.2 Modifications to java.net.URL class

When constructing an instance of the java.net.URL class, a stream protocol handler object

need not be constructed.

Note: A stream protocol handler is an instance of java.net.URLStreamHandler,

whose support is not required by this specification.

The following methods in the java.net.URL class are not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these methods:

• getContent()

• openConnection()

• openStream()

• sameFile(URL)

• setURLStreamHandlerFactory(URLStreamHandlerFactory)

5.1.1.2.1.1.8 Modifications to java.security package

5.1.1.2.1.1.8.1 Modifications to java.security.Key interface

The following field in the java.security.Key interface is not required to be implemented by

a procedural application environment; furthermore, an application entity shall not rely on the

presence of support for this field:

• serialVersionUID

5.1.1.2.1.1.8.2 Modifications to java.security.Provider class

The following methods in the java.security.Provider class shall adhere to the semantics

specified by [JDK1.2.2]:

• clear()

• put(Object,Object)

• remove(Object)

5.1.1.2.1.1.8.3 Modifications to java.security.PublicKey interface

The following field in the java.security.PublicKey interface is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this field:

• serialVersionUID

5.1.1.2.1.1.8.4 Modifications to java.security.Security class

The following deprecated method in the java.security.Security class is not required to

be implemented by a procedural application environment; furthermore, an application entity shall

not rely on the presence of support for this method:

• getAlgorithmProperty(String,String)

5.1.1.2.1.1.9 Modifications to java.text package

The following types in the java.text package are not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for these types:

• BreakIterator

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 38

• CharacterIterator

• CollationElementIterator

• CollationKey

• Collator

• RuleBasedCollator

• StringCharacterIterator

5.1.1.2.1.1.10 Modifications to java.util package

5.1.1.2.1.1.10.1 Modifications to and Constraints on java.util.Calendar class

If the argument to the method java.util.Calendar.after(Object) or before(Object) is

not an instance of java.util.Calendar, then this method shall return false.

If the java.util.Calendar class or a subclass overrides the method java.lang.Object.-

equals(Object), then the method java.lang.Object.hashCode() should also be overridden.

5.1.1.2.1.1.10.2 Modifications to java.util.Date class

The following deprecated constructors in the java.util.Date class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these constructors:

• Date(String)

• Date(int,int,int)

• Date(int,int,int,int,int)

• Date(int,int,int,int,int,int)

The Date() constructor should derive time of day from accurate time information available

from the application delivery system.

The following deprecated methods in the java.util.Date class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• getDate()

• getDay()

• getHours()

• getMinutes()

• getMonth()

• getSeconds()

• getTimezoneOffset()

• getYear()

• parse(String)

• setDate(int)

• setHours(int)

• setMinutes(int)

• setMonth(int)

• setSeconds(int)

• setYear(int)

• toGMTString()

• toLocaleString()

• UTC(int,int,int,int,int,int)

An implementation of the java.util.Date class should override the method

java.lang.Object.clone().

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 39

5.1.1.2.1.1.10.3 Modifications to java.util.Locale class

A procedural application environment shall support all locales specified in Annex E.2. Any

Locale typed field of the Locale class which is not required by Annex E.2 is not required to have

a value other than null. Except for the predefined Locale fields specified by Annex E.2, an

application entity which uses a Locale typed field of the Locale class shall not rely on its value

being any value other than null.

The method java.util.Locale.getDefault() shall return a clone of the default locale

instance, which shall reflect the current value of the Java system properties "user.language"

and "user.region".

The method java.util.Locale.setDefault(Locale) shall check for permission to write

the Java system property "user.language"; if denied, a java.lang.SecurityException shall

be raised.

Note: In order to obtain information about available locales supported by a procedural

application environment, the org.atsc.util.locales Xlet context property may be used.

See Annex D.3 for further information.

5.1.1.2.1.1.10.4 Modifications to java.util.Properties class

The following methods in the java.util.Properties class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• save(OutputStream,String)

• list(PrintStream)

• list(PrintWriter)

If an application entity invokes the method java.util.Properties.load(InputStream),

then the content of the referenced input stream shall consist of a sequence of US-ASCII

characters encoded as individual octets that adhere to the following property list resource syntax:

properties: line*

line: (empty | comment | property) nl

empty: sp*

comment: ("#" | "!") pchar*

property: key sp* value-separator [sp* value]

nl: "\n" | "\r" | "\r\n"

sp: " " | "\t"

key: kchar+

value-separator: "=" | ":"

value: vchar*

char: { any ascii character except NUL, LF, CR }

kchar: char - { '\\', '=', ':', ' ', '\t' } | escape

vchar: char - { '\\' } | escape

escape: "\\n" | "\\r" | "\\t" | unicode-escape | ascii-escape

unicode-escape: "\\u" 4*[0-9a-fA-F]

ascii-escape: "\\" { char - { 'n', 'r', 't', 'u' } }

Prior to parsing a line according to the above syntax, any line continuations shall first be

appended together to form a whole continued line in accordance with the following syntax. When

appending line continuations to form a continued line, the sequence matching the remove-on-

append syntactic token shall be removed at the boundary between a line and its subsequent

continuation.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 40

continued-line: line-start line-continuation

line-start: char* "\\" nl

line-continuation: sp* char* (nl | "\\" nl line-continuation)

remove-on-append: "\\" nl sp*

The content type of a property list resource encoded shall be specified as a plain text

content type as described below in Section 5.3.1. When a file or resource name extension is used

to identify a property list resource, the extension ".properties" should be used.

If the content of the input stream provided to the java.util.Properties.load(Input-

Stream) method does not adhere to the above syntax, then a procedural application environment

may cause an IllegalArgumentException to be raised.

The semantics of the method of java.util.Properties.put(Object,Object), as

inherited from java.util.Hashtable, shall be constrained as follows: if the first or the second

argument is non-null and the type of the argument is not java.lang.String, then an

IllegalArgumentException may be raised.

5.1.1.2.1.1.10.5 Clarifications to java.util.PropertyResourceBundle class

The constructor PropertyResourceBundle(InputStream) shall employ

Properties.load(InputStream) to effect the deserialization of a property resource bundle.

5.1.1.2.1.1.10.6 Modifications to java.util.ResourceBundle class

A resource bundle should contain a key whose value is "LocaleString" and whose value

is a locale identifier adhering to the syntax of the value of java.util.Locale.toString().

Note: The presence of this key permits the user of a resource bundle to determine if the

bundle returned by java.util.ResourceBundle.getBundle(…) corresponds to the

requested bundle.

5.1.1.2.1.1.10.7 Constraints on java.util.TimeZone class

The value returned by java.util.TimeZone.getID() and the argument provided to

java.util.TimeZone.setID(String) shall adhere to the timezone-id syntax as follows:

timezone-id: tz-custom-id

tz-custom-id: "GMT" sign hours [[":"] minutes]

sign: "+" | "-"

hours: digit | digit digit

minutes: digit digit

digit: [0-9]

The method java.util.TimeZone.getDefault() shall return a clone of the default

timezone instance, which shall reflect the current value of the Java system property

"user.timezone". The method java.util.TimeZone.setDefault(TimeZone) shall check for

permission to write the Java system property "user.timezone"; if denied, a java.lang.-

SecurityException shall be raised.

5.1.1.2.1.1.11 Modifications to java.util.zip package

The following class in the java.util.zip package is not required to be implemented by a

procedural application environment; furthermore, an application entity shall not rely on the

presence of support for this class:

• GZIPInputStream

Note: The GZIP archive content type is not supported by DASE-1.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 41

5.1.1.2.1.1.11.1 Clarifications to java.util.zip.CRC32 class

The class java.util.zip.CRC32 shall implement the checksum algorithm specified in

[DASE-ZIP], Annex C.

5.1.1.2.1.1.11.2 Constraints on java.util.zip.Inflater class

The following constructor in the java.util.zip.Inflater class is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this constructor:

• Inflater()

The following methods in the java.util.zip.Inflater class are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these methods:

• getAdler()

• setDictionary(byte[])

• setDictionary(byte[],int,int)

The class java.util.zip.Inflater need not implement support for the ZLIB header or

checksum; furthermore, an application entity shall not rely on the presence of support for the ZLIB

header. In particular, the following constructor invocation should cause a java.lang.-

UnsupportedOperationException to be raised:

• new Inflater(false)

5.1.1.2.1.1.11.3 Constraints on java.util.zip.InflaterInputStream class

An implementation of the java.util.zip.InflaterInputStream class should override the

methods available() and close().

The java.util.zip.Inflater instance employed by the java.util.zip.Inflater-

InputStream class need not support the ZLIB header or syntax as specified in Section

 5.1.1.2.1.1.11.2 above.

5.1.1.2.1.2 Non-Required PJAE Features

The following PJAE required features are not required to be implemented by a procedural

application environment; furthermore, an application entity shall not rely on the presence of

support for these features:

• java.applet package, [PJAE], Section 5.1

• audio/au audio format, [PJAE], Section 5.1

• java.awt.datatransfer package, [PJAE], Section 5.3

• image/gif image format, [PJAE], Section 5.5

• image/xbm image format, [PJAE], Section 5.5

• java.awt.peer package, [PJAE], Section 5.6

• http protocol, [PJAE], Section 5.12

• java.text.resources package, [PJAE], Section 5.24

• com.sun.awt package, [PJAE], Section 6.2

• com.sun.lang package, [PJAE], Section 6.3

• com.sun.util package, [PJAE], Section 6.4

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 42

5.1.1.2.1.3 Required PJAE Optional Features

The following PJAE optional features shall be implemented by a procedural application

environment:

• java.io user-visible file system group, [PJAE], Section 5.8

5.1.1.2.1.3.1.1 Definition of java.util.zip.ZipConstants class

The class java.util.zip.ZipConstants is defined as follows:

interface ZipConstants {

 /* Header signatures */

 static long LOCSIG = 0x04034b50L; // "PK\003\004"

 static long EXTSIG = 0x08074b50L; // "PK\007\008"

 static long CENSIG = 0x02014b50L; // "PK\001\002"

 static long ENDSIG = 0x06054b50L; // "PK\005\006"

 /* Header sizes in bytes (including signatures) */

 static final int LOCHDR = 30; // LOC header size

 static final int EXTHDR = 16; // EXT header size

 static final int CENHDR = 46; // CEN header size

 static final int ENDHDR = 22; // END header size

 /* Local file (LOC) header field offsets */

 static final int LOCVER = 4; // version needed to extract

 static final int LOCFLG = 6; // general purpose bit flag

 static final int LOCHOW = 8; // compression method

 static final int LOCTIM = 10; // modification time

 static final int LOCCRC = 14; // uncompressed file crc-32 value

 static final int LOCSIZ = 18; // compressed size

 static final int LOCLEN = 22; // uncompressed size

 static final int LOCNAM = 26; // filename length

 static final int LOCEXT = 28; // extra field length

 /* Extra local (EXT) header field offsets */

 static final int EXTCRC = 4; // uncompressed file crc-32 value

 static final int EXTSIZ = 8; // compressed size

 static final int EXTLEN = 12; // uncompressed size

 /* Central directory (CEN) header field offsets */

 static final int CENVEM = 4; // version made by

 static final int CENVER = 6; // version needed to extract

 static final int CENFLG = 8; // encrypt, decrypt flags

 static final int CENHOW = 10; // compression method

 static final int CENTIM = 12; // modification time

 static final int CENCRC = 16; // uncompressed file crc-32 value

 static final int CENSIZ = 20; // compressed size

 static final int CENLEN = 24; // uncompressed size

 static final int CENNAM = 28; // filename length

 static final int CENEXT = 30; // extra field length

 static final int CENCOM = 32; // comment length

 static final int CENDSK = 34; // disk number start

 static final int CENATT = 36; // internal file attributes

 static final int CENATX = 38; // external file attributes

 static final int CENOFF = 42; // LOC header offset

 /* End of central directory (END) header field offsets */

 static final int ENDSUB = 8; // number of entries on this disk

 static final int ENDTOT = 10; // total number of entries

 static final int ENDSIZ = 12; // central directory size in bytes

 static final int ENDOFF = 16; // offset of first CEN header

 static final int ENDCOM = 20; // zip file comment length

}

The fields LOCSIG, EXTSIG, CENSIG, and ENDSIG shall be interpreted as if they have an

implicit, but unspecified final qualifier; i.e., they shall be interpreted as constants.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 43

5.1.1.2.1.4 Non-Required PJAE Optional Features

The following PJAE optional features are not required to be implemented by a procedural

application environment; furthermore, an application entity shall not rely on the presence of

support for these features:

• java.math package, [PJAE], Section 5.11

• ssl, gopher, ftp, mailto, file protocols, [PJAE], Section 5.12

• java.rmi package and subpackages, [PJAE], Section 5.13 through 5.16

• java.security code-signing group, [PJAE], Section 5.17

• java.security.cert code-signing group, [PJAE], Section 5.19

• java.security.interfaces package, [PJAE], Section 5.20

• java.security.spec package, [PJAE], Section 5.21

• java.sql package, [PJAE], Section 5.22

• java.util code-signing group, [PJAE], Section 5.25

• java.util.jar package, [PJAE], Section 5.26

The following PJAE optional classes in the java.util.zip package are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these classes:

• Adler32

• Deflater

• DeflaterOutputStream

• GZIPOutputStream

• ZipOutputStream

Note: These classes are not required to be supported even though [PJAE], Section 5.27,

Note 2 indicates that they are required when ZipFile is supported.

5.1.1.2.1.5 Default Cryptographic Service Provider

A procedural application environment is not required to provide a default cryptographic

service provider that implements the java.security.Provider abstract class.

5.1.1.2.2 Java Media Framework (JMF) Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall support the use of Java Media Framework, Version 1.0, APIs in a

manner consistent with [JMF] as extended and restricted below.

A procedural application environment shall use the values of constants defined in ANNEX B

in the case that a JMF defined constant field does not specify a value.

Note: See Annexes A.14 and A.15 for all required JMF types.

5.1.1.2.2.1 Clarifications

5.1.1.2.2.1.1 Clarifications to javax.media.MediaLocator class

If the external form of an instance of MediaLocator takes the form of a URI, then the

method getProtocol() shall return the scheme as defined by [URI]; otherwise, the returned

value shall be implementation defined.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 44

If the external form of an instance of MediaLocator takes the form of a URI, then the

method getRemainder() shall return the scheme-specific-part as defined by [URI]; otherwise, the

returned value shall be implementation defined.

The external form of an instance of MediaLocator shall be consistent with the external form

of an instance of javax.tv.media.Locator, and, in particular, shall satisfy the constraint

specified by Section 5.1.1.2.3.1.3.

5.1.1.2.2.1.1.1 Clarifications to javax.media.protocol.DataSource class

The method javax.media.protocol.DataSource.setLocator(MediaLocator) shall

cause an error to be raised in the case that a previous media locator was established.

5.1.1.2.2.2 Constraints

5.1.1.2.2.2.1 Constraints on javax.media.Clock interface

The following constraints shall apply to the constant fields specified by javax.media.Clock:

• RESET == new Time (java.lang.Long.MAX_VALUE)

5.1.1.2.2.2.2 Constraints on javax.media.Control interface

A class which implements Control need not implement a user interface component. If a

user interface component is not provided for a Control, then getControlComponent() shall

return null.

5.1.1.2.2.2.3 Constraints on javax.media.Controller interface

The following constraints shall apply to the constant fields specified by javax.media.-

Controller:

• LATENCY_UNKNOWN == new Time (java.lang.Long.MAX_VALUE)

5.1.1.2.2.2.4 Constraints on javax.media.Duration interface

The following constraints shall apply to the constant fields specified by javax.media.-

Duration:

• DURATION_UNBOUNDED == new Time (java.lang.Long.MAX_VALUE)

• DURATION_UNKNOWN == new Time (java.lang.Long.MAX_VALUE - 1)

5.1.1.2.2.2.5 Constraints on javax.media.ControllerListener interface

A class which implements ControllerListener shall implement java.util.-

EventListener.

5.1.1.2.2.2.6 Constraints on javax.media.GainChangeListener interface

A class which implements GainChangeListener shall implement java.util.-

EventListener.

5.1.1.2.2.2.7 Constraints on javax.media.Manager class

If the external form of a MediaLocator which would be used to construct a DataSource

takes a form which may map to multiple access methods (protocols) or which, by itself, does not

designate an access method, then the implementation of Manager shall determine a specific

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 45

access method (protocol) to be used in order to construct the class name to be used to instantiate

a DataSource.

The following constraints shall apply to the constant fields specified by javax.media.-

Manager:

• UNKNOWN_CONTENT_NAME == ContentDescriptor.CONTENT_UNKNOWN

The first entry in the java.util.Vector instance returned from javax.media.Manager.-

getDataSourceList(String) shall adhere to the following syntax:

media.protocol.protocol-name.DataSource

where the value of protocol-name corresponds to the argument to getDataSourceList(String).

The second and subsequent entries in the java.util.Vector instance returned from

javax.media.Manager.getHandlerClassList(String) shall adhere to the following syntax:

content-prefix.media.content.content-name.Handler

where the value of content-prefix corresponds to an entry of the value returned by

javax.media.PackageManager.getContentPrefixList() and the value of content-name

corresponds to the result of applying javax.media.protocol.ContentDescriptor.-

mimeTypeToPackageName(String) to the argument to getHandlerClassList(String).

5.1.1.2.2.2.8 Constraints on javax.media.MediaEvent interface

A class which implements MediaEvent shall be a subtype of the java.util.EventObject

class.

5.1.1.2.2.2.9 Constraints on javax.media.MediaHandler interface

When the method MediaHandler.setSource(DataSource) is invoked on an instance of a

built-in Player, an IncompatibleSourceException shall be raised.

5.1.1.2.2.2.10 Constraints on javax.media.PackageManager class

A runtime exception shall be raised upon any invocation of either of the following methods of

the PackageManager class by an application entity:

• commitContentPrefixList()

• commitProtocolPrefixList()

5.1.1.2.2.2.11 Constraints on javax.media.Player interface

A class which implements Player need not implement a visual component. If a visual

component is not provided for a Player, then getVisualComponent() shall return null.

If a Player does provide a visual component, then the component shall support the

semantics of java.awt.Component with respect to positioning and scaling.

Note: A Player that supports only background video presentation, as opposed to

component based video presentation, would not provide a visual component.

5.1.1.2.2.2.12 Constraints on javax.media.protocol.ContentDescriptor class

The value returned by the method getContentType() and the argument supplied to the

constructor ContentDescriptor(String) and the method mimeTypeToPackageName(String)

shall adhere to the content-type syntax specified by [DASE], Section 5.1.2.3. If one or more

optional content type parameters are present in the argument to mimeTypeToPackage-

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 46

Name(String), then they shall be ignored for the purpose of computing a corresponding package

name.

The value of ContentDescriptor.CONTENT_UNKNOWN shall be "application/octet-

stream".

5.1.1.2.2.2.13 Constraints on javax.media.protocol.DataSource class

The value returned by the method getContentType() shall adhere to the content-type

syntax specified by [DASE], Section 5.1.2.3.

5.1.1.2.2.3 Modifications

5.1.1.2.2.3.1 Modification to javax.media.ControllerEvent class

The class javax.media.ControllerEvent shall be a subtype of the java.util.Event-

Object class.

5.1.1.2.2.3.2 Modification to javax.media.GainChangeEvent class

The class javax.media.GainChangeEvent shall be a subtype of the java.util.Event-

Object class.

5.1.1.2.2.3.3 Modifications to javax.media.protocol package

The following class in the java.media.protocol package is not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for this class:

• URLDataSource

5.1.1.2.2.3.3.1 Modifications to javax.media.protocol.DataSource class

The following method in the javax.media.protocol.DataSource class is not required to

be implemented by a procedural application environment; furthermore, an application entity shall

not rely on the presence of support for this method:

• initCheck()

5.1.1.2.2.3.4 Modifications to javax.media.protocol.ContentDescriptor class

The method ContentDescriptor.mimeTypeToPackageName(String) shall be defined and

accessible as a public static method.

5.1.1.2.2.4 Extensions

5.1.1.2.2.4.1 Built-In Data Sources

A procedural application environment shall implement the following built-in data sources:

• asynchronous data piping data source

• asynchronous data piping, raw packet data source

• asynchronous download, non-flow controlled data source

• asynchronous digital television closed captioning data source

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 47

5.1.1.2.2.4.1.1 Asynchronous Data Piping Data Source

A procedural application environment shall implement a built-in data source as follows:

Table 2 Asynchronous Data Piping Data Source Parameters

Parameter Value Notes

protocol "atsc.async.piping"

controls none required

seekable no

rate configurable no

type push only

source stream single 1

stream content type not required 2

stream content length not required 3

stream controls none required

stream positionable no

stream format decapsulated data 4

minimum transfer size ≥ 1 5

Notes

1. Stream shall be instance of javax.tv.media.protocol.PushSourceStream2.

2. If content type of stream is not sniffed or not determined through out-of-band metadata, then

SourceStream.getContentDescriptor() shall return a value equivalent to new

ContentDescriptor(ContentDescriptor.CONTENT_UNKNOWN).

3. If content length cannot be determined by out-of-band metadata, then

SourceStream.getContentLength() shall return SourceStream.LENGTH_UNKNOWN.

4. Decapsulation of data piping shall extract and return payload from transport packets. If a

packet is duplicated, then its data shall not be returned. If the continuity counter is

discontinuous or an error indicator is present, then

javax.tv.media.protocol.DataLostException shall be raised upon the next invocation of

javax.tv.media.protocol.PushSourceStream2.readStream which would cause the lost

data to be read.

5. Minimum transfer size may be as few as one byte per read operation. Read operations shall

return the remainder of buffered data upon each read up to the requested transfer size. If

data arrives more quickly than read operations occur, buffer overflow may occur in which

case a DataLostException shall be raised upon the next read operation.

5.1.1.2.2.4.1.2 Asynchronous Data Piping, Raw Packet Data Source

A procedural application environment shall implement a built-in data source as follows:

Table 3 Asynchronous Data Piping, Raw Packet Data Source Parameters

Parameter Value Notes

protocol "atsc.async.piping.raw"

controls none required

seekable no

rate configurable no

type push only

source stream single 1

stream content type not required 2

stream content length not required 3

stream controls none required

stream positionable no

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 48

stream format raw transport stream packets 4

minimum transfer size 188 5

Notes

1. Stream shall be instance of javax.tv.media.protocol.PushSourceStream2.

2. If content type of stream is not sniffed or not determined through out-of-band metadata, then

SourceStream.getContentDescriptor() shall return a value equivalent to new

ContentDescriptor(ContentDescriptor.CONTENT_UNKNOWN).

3. If content length cannot be determined by out-of-band metadata, then

SourceStream.getContentLength() shall return SourceStream.LENGTH_UNKNOWN.

4. Each transport stream packet associated with the stream shall be returned without

modification and in its entirety. Each read from stream shall return exactly zero or one packet.

5. If fewer than 188 bytes are requested in a read, then zero bytes shall be returned irrespective

of whether one or more packets are buffered for reading. If greater than this number of bytes

are requested and this number is a non-zero integral multiple of 188, then either zero bytes or

some integral multiple of 188 bytes shall be returned depending upon how many packets

have been buffered for reading.

5.1.1.2.2.4.1.3 Asynchronous Download, Non-Flow Controlled Data Source

A procedural application environment shall implement a built-in data source as follows:

Table 4 Asynchronous Download, Non-Flow Controlled Data Source Parameters

Parameter Value Notes

protocol "atsc.async.download"

controls none required

seekable no

rate configurable no

type push only

source stream single 1

stream content type not required 2

stream content length not required 3

stream controls none required

stream positionable no

stream format decapsulated data 4

minimum transfer size ≥ 1 5

Notes

1. Stream shall be instance of javax.tv.media.protocol.PushSourceStream2.

2. If content type of stream is not sniffed or not determined through out-of-band metadata, then

SourceStream.getContentDescriptor() shall return a value equivalent to new

ContentDescriptor(ContentDescriptor.CONTENT_UNKNOWN).

3. If content length cannot be determined by out-of-band metadata, then

SourceStream.getContentLength() shall return SourceStream.LENGTH_UNKNOWN.

4. Decapsulation of non-flow controlled U-N download shall extract and return payload from

DSMCC sections. If data is discontinuous or an error indicator is present, then

javax.tv.media.protocol.DataLostException shall be raised upon the next invocation of

javax.tv.media.protocol.PushSourceStream2.readStream which would cause the lost

data to be read.

5. Minimum transfer size may be as few as one byte per read operation. Read operations shall

return the remainder of buffered data upon each read up to the requested transfer size. If

data arrives more quickly than read operations occur, buffer overflow may occur in which

case a DataLostException shall be raised upon the next read operation.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 49

Note: The use of an asynchronous download, non-flow controlled data source is explicitly

restricted for use with asynchronous streaming data and not for use for non-streaming

data (e.g., carousel data).

5.1.1.2.2.4.1.4 Asynchronous Digital Television Closed Captioning Data Source

A procedural application environment shall implement a built-in data source as follows:

Table 5 Asynchronous Digital Television Closed Captioning Data Source Parameters

Parameter Value Notes

protocol "atsc.async.dtvcc"

controls none required

seekable no

rate configurable no

type push only

source stream single 1

stream content type application/octet-stream

stream content length LENGTH_UNKNOWN 2

stream controls none required

stream positionable no

stream format decapsulated data 3

minimum transfer size 104 3

Notes

1. Stream shall be instance of javax.tv.media.protocol.PushSourceStream2.

2. SourceStream.getContentLength() shall return SourceStream.LENGTH_UNKNOWN.

3. See Section 5.1.1.2.2.4.1.4.1, DTVCC Stream Format.

Note: Access to closed captioning data provided by this mechanism is expressly not

intended to satisfy any regulatory requirements regarding the processing of closed

captioning data on a digital television receiver or any other terminal device.

5.1.1.2.2.4.1.4.1 DTVCC Stream Format

Each transfer operation performed upon an atsc.async.dtvcc data source shall take the

form of a data frame which adheres to Table 6 DTVCC Frame Format.

Table 6 DTVCC Frame Format

Syntax Number of bits Format

dtvcc_frame() {
 stc_valid 1 bslbf
 pts_valid 1 bslbf
 stc_high 1 uimsbf
 pts_high 1 uimsbf
 reserved 4 bslbf
 stc_low 32 uimsbf
 pts_low_ 32 uimsbf
 reserved 1 bslbf
 process_cc_data_flag 1 bslbf
 reserved 1 bslbf
 cc_count 5 uimsbf
 reserved 8 bslbf
 for (i=0; i<cc_count; i++) {
 marker_bits 5 '1111 1'
 cc_valid 1 bslbf
 cc_type 2 bslbf
 cc_data_1 8 bslbf

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 50

 cc_data_2 8 bslbf
 }
}

Note: A dtvcc_frame() consists of 11 to 104 octets of data, depending upon the value

of cc_count.

A dtvcc_frame() shall be constructed from picture user data contained in the active video

elementary stream of the data source specified by the media locator which was used to

instantiate this data source. If no video elementary stream is present in the active video

elementary stream or no picture user data is contained therein, then no dtvcc_frame() shall be

constructed. Only that picture user data whose user_data_type_code is the value 0x03 shall be

used to construct a dtvcc_frame().

Note: In order to specify a media locator to construct this data source, use the ?dtvcc

query component syntax with a "tv:" URI. See [DASE], Section 5.1.2.3.1.4, Television

Scheme, for further information.

The fields stc_valid, stc_high, and stc_low shall be determined as follows: if the 27MHz

system time clock (STC) is valid at the time the dtvcc_frame() is constructed, then stc_valid

shall be set to '1' and the 33 most significant bits of the 42-bit STC shall be extracted and placed

into stc_high (STC[41:41]) and stc_low (STC[40:9]); otherwise, stc_valid shall be set to '0'.

Note: The 33 most significant bits of the 42-bit STC represent the STC divided by 300, not

divided by 512; that is, the lower 9 bits of the 42-bit STC count up to 300, not to 512.

Consequently, the upper 33 bits of the 42-bit STC represent a 90,000 KHz clock.

The determination of the values of fields stc_valid, stc_high, and stc_low shall take

place during the read operation performed by the DASE Application; i.e., during the invocation of

the method javax.tv.media.protocol.PushSourceStream2.readStream(…). A DASE System

should minimize the latency between the determination of the values of these fields and the

completion of (return from) this method.

The fields pts_valid, pts_high, and pts_low shall be determined as follows: if a

presentation time stamp (PTS) is or can be associated with the picture user data from which the

dtvcc_frame() is constructed, then pts_valid shall be set to '1' and the 33 significant bits of

the associated PTS shall be extracted and placed into pts_high (PTS[32:32]) and pts_low

(PTS[31:0]); otherwise, pts_valid shall be set to '0'.

The values of the two fields marked as reserved are expressly not defined by this

specification; a DASE-1 Application shall not rely upon the values of these fields being any

specific value.

Note: The values of these reserved fields may be assigned a specific, standardized value

in a subsequent level of the DASE Standard.

The remaining fields of dtvcc_frame() shall be directly extracted from the identically

named fields of the user_data() structure as specified by [A/53], Section 5.2.2, User Data

Syntax.

A dtvcc_frame() instance shall correspond one-to-one with a user_data() instance; that

is, multiple user_data() instances shall not be combined to form a single dtvcc_frame().

A DASE System should minimize any system latency when constructing a dtvcc_frame()

from picture user data and when performing the subsequent invocation of SourceTransfer-

Handler.transferData(…).

At most one dtvcc_frame() shall be transferred in a single invocation of javax.tv.-

media.protocol.PushSourceStream2.readStream(…). If fewer than 104 bytes are requested in

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 51

a read, then zero bytes shall be returned irrespective of whether a dtvcc_frame() is available for

reading or not.

If data frames arrives more quickly than read operations occur, buffer overflow may occur, in

which case a javax.tv.media.protocol.DataLostException shall be raised upon the next

read operation.

5.1.1.2.2.4.2 Built-In Players

A procedural application environment shall implement the following built-in media players:

• video/mpeg

• video/mpv

• audio/ac3

Each built-in media player shall implement the interface javax.media.Clock; however, the

implementation need not expose a time base or media time which is derived from content being

controlled by the player. A DASE Application shall not rely upon the accuracy or synchronization

of time information returned by a built-in player’s javax.media.Clock interface.

5.1.1.2.2.4.2.1 video/mpeg

A procedural application environment shall implement a built-in data player as follows:

Table 7 Player Parameters: video/mpeg

Parameter Value Notes

content type "video/mpeg" 1

controls none required 2

data source access not required 3

Notes

1. See [DASE], Section 6.5.1.

2. If applicable, a procedural application environment should support the following controls on

this player: javax.media.GainControl, javax.tv.media.MediaSelectControl,

org.davic.media.AudioLanguageControl, and org.davic.media.SubtitlingLanguage-

Control.

3. Access to the data source for this player need not be provided to an application.

5.1.1.2.2.4.2.2 video/mpv

A procedural application environment shall implement a built-in data player as follows:

Table 8 Player Parameters: video/mpv

Parameter Value Notes

content type "video/mpv" 1

controls none required 2

data source access not required 3

Notes

1. See [DASE], Section 6.5.2.

2. If applicable, a procedural application environment should support the following controls on

this player: org.davic.media.SubtitlingLanguageControl.

3. Access to the data source for this player need not be provided to an application.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 52

5.1.1.2.2.4.2.3 audio/ac3

A procedural application environment shall implement a built-in data player as follows:

Table 9 Player Parameters: audio/ac3

Parameter Value Notes

content type "audio/ac3" 1

controls none required 2

data source access not required 3

Notes

1. See [DASE], Section 6.6.1.

2. If applicable, a procedural application environment should support the following controls on

this player: javax.media.GainControl and org.davic.media.AudioLanguageControl.

3. Access to the data source for this player need not be provided to an application.

5.1.1.2.3 Java Television (Java TV) Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall support the use of Java TV Specification, Version 1.0, APIs in a

manner consistent with [JAVATV] and [JAVATV-INTRO], as extended and restricted below.

Note: See Annexes A.16 through A.28 for all required Java TV types.

5.1.1.2.3.1 Constraints

5.1.1.2.3.1.1 Constraints on javax.tv.carousel.CarouselFile class

The following constructors of javax.tv.carousel.CarouselFile shall be used only to

access file or directory objects of an application delivery file system. If the CarouselFile

instance would fail to associate with an application delivery file system object, then a

java.io.IOException shall be raised.

• CarouselFile(java.lang.String)

• CarouselFile(java.lang.String, java.lang.String)

• CarouselFile(javax.tv.carousel.CarouselFile, java.lang.String)

Note: The constructor CarouselFile(javax.tv.locator.Locator) may be used to

construct a CarouselFile instance associated with an unbounded resource which is not

associated with an application delivery file system and which has no corresponding path in

the local file system; e.g., an unbounded resource encapsulated as a module in the data

carousel.

If an application entity invokes the inherited method canWrite(), then the value false shall

be returned; furthermore, a procedural application environment shall not permit any write or

modify operation to be performed by an application upon the underlying resource which

represents a carousel file or directory object.

In the case that a CarouselFile instance is associated with a file object that has no

corresponding path in the local file system, then invocation of the method CarouselFile.-

getCanonicalPath() shall cause a java.io.IOException or a subclass thereof to be raised.

When a method of CarouselFile would throw an instance of java.io.IOException, it

shall instead throw an instance of the class org.atsc.carousel.CarouselException or a

subclass thereof.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 53

5.1.1.2.3.1.2 Constraints on javax.tv.graphics.TVContainer class

When returning normally, the method getRootContainer() shall return an instance of

org.havi.ui.HScene.

If an embedded Xlet has an initial width or height of zero, then getRootContainer() shall

return null. If an Xlet ever returns null from this method, then it shall never subsequently return

a value which is not null.

Note: See Section 3.3 for the definition of embedded Xlet.

5.1.1.2.3.1.3 Constraints on javax.tv.locator.Locator interface

For any instance of Locator loc, the value of loc.toExternalForm() shall be a value

such that the following method returns true.

import javax.media.MediaLocator;

…

boolean testLocator (Locator loc)

{

 MediaLocator ml = new MediaLocator (loc.toExternalForm());

 Locator locTest = LocatorFactory.createLocator (ml.toExternalForm());

 return locTest.equals (loc);

}

Note: An application delivery system may impose additional constraints on the external

form of a Locator.

5.1.1.2.3.1.4 Constraints on javax.tv.media.protocol.PushSourceStream2 interface

An application entity shall not invoke the following method on a class which implements the

PushSourceStream2 interface:

• read(byte[],int,int)

An attempt by an application entity to invoke this method may cause a runtime exception to

be raised.

Note: The method read(byte[],int,int) is inherited from the super-interface

javax.media.protocol.PushSourceStream. An application entity using the derived

interface PushSourceStream2 is expected to use readStream(byte[],int,int).

5.1.1.2.3.1.5 Constraints on javax.tv.service.SIManager class

The following methods shall employ a language identifier which adheres to the syntax

prescribed by [LANG-TAGS]:

• getPreferredLanguage()

• setPreferredLanguage(java.lang.String)

5.1.1.2.3.1.6 Constraints on javax.tv.service.selection.ServiceContext interface

When selecting a service consisting of one or more Xlets and when returning normally, the

method getServiceContentHandlers() shall return an array of one or more objects which

implement org.atsc.xlet.XletComponentPresenterProxy. Furthermore, the Xlet whose proxy

is represented by this XletComponentPresenterProxy shall be the Xlet which invokes this

method.

Note: See [DASE-API] for further information on XletComponentPresenterProxy.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 54

The method getServiceContentHandlers() should return an object corresponding to the

active video and audio service components of the current service, if present.

Note: See Section 5.1.1.2.4.1.5 for further information on getServiceContent-

Handlers() as apply to a HAVi video device.

If an application makes use of multiple Xlets, then the objects returned by the method

getServiceContentHandlers() shall be distinct for a distinct Xlet; however, the underlying

content handlers which these objects represent shall be identical. For example, if an underlying

video content handler HV and an underlying audio content handler HA are available within a

service context, then for two Xlets X1 and X2 in a single application, two distinct sets of objects

would be returned by this method, one for X1: { OV,1, OA,1 } and another for X2: { OV,2, OA,2 };

moreover, both OV,1 and OV,2 would control HV, and both OA,1 and OA,2 would control HA.

Note: Any synchronization which might be required in order for two Xlets to simultaneously

control the same underlying content handler is implementation dependent. Content

authors may wish to make use of application-level synchronization techniques to

coordinate control of the same handler by multiple Xlets.

If an object returned by getServiceContentHandlers() implements the ServiceMedia-

Handler interface, then the JMF Player represented by the ServiceMediaHandler shall be in

the started state, and, if it is presenting video, then that video shall be presenting on the

background video device.

Note: See [JMF] javax.media.Player interface description for further information on a

player's started state.

If an application is resumed after service selection occurs, then an application shall not use

any previously acquired service content handler returned by getServiceContentHandlers(),

but shall re-acquire the service content handlers. A procedural application environment need not

re-use the same service content handlers for a given application after service selection. If a

service content handler is re-used and it supports the ServiceMediaHandler interface, then the

JMF Player represented by the ServiceMediaHandler shall be reset to a default condition. In

particular, all previously registered listeners shall be silently unregistered and any video scaling or

positioning shall be reset.

5.1.1.2.3.1.7 Constraints on javax.tv.service.selection.ServiceContextFactory class

An application entity shall not subclass ServiceContextFactory; furthermore the protected

constructor ServiceContextFactory() shall not be used by an application entity.

The method getServiceContexts() shall return no more than one instance of a

ServiceContext; furthermore, that instance shall be the same instance as returned by

getServiceContext(XletContext) where the XletContext argument is associated with the

invoking Xlet.

If an application makes use of multiple Xlets, then the objects returned by the method

getServiceContexts() and getServiceContext(XletContext) shall be distinct for a distinct

Xlet; however, the underlying service context resources which these objects represent shall be

identical.

5.1.1.2.3.1.8 Constraints on javax.tv.service.selection.ServiceMediaHandler interface

When returning normally, the method getVisualComponent() shall return an instance of

org.havi.ui.HVideoComponent.

When returning normally and when returning a value other than null, the method

getControlPanelComponent() shall return an instance of org.havi.ui.HComponent.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 55

Note: See [HAVI-UI-API] for further information on HVideoComponent and HComponent.

5.1.1.2.3.1.9 Constraints on use of javax.tv.xlet.Xlet interface

The argument to the method initXlet(XletContext) shall implement

org.atsc.xlet.XletContextExt.

5.1.1.2.3.2 Modifications

5.1.1.2.3.2.1 Modifications to javax.tv.graphics.AlphaColor class

The following inherited fields in the javax.tv.graphics.AlphaColor class are not required

to be implemented by a procedural application environment; furthermore, an application entity

shall not rely on the presence of support for these fields:

• BITMASK

• OPAQUE

• TRANSLUCENT

The following inherited methods in the javax.tv.graphics.AlphaColor class are not

required to be implemented by a procedural application environment; furthermore, an application

entity shall not rely on the presence of support for these methods:

• createContext(…)

• getColorComponents(float[])

• getColorComponents(ColorSpace,float[])

• getColorSpace()

• getComponents(float[])

• getComponents(ColorSpace,float[])

• getRGBColorComponents(float[])

• getRGBComponents(float[])

• getTransparency()

Note: The excluded fields and methods described above were erroneously specified in

[JAVATV] as inherited from java.awt.Transparency and java.awt.Color as

specified by [JDK1.2.2]; however, neither [JAVATV] nor [PJAE] includes the [JDK1.2.2]

definitions of these types.

5.1.1.2.3.2.2 Modifications to javax.tv.service.transport package

The following interfaces in the javax.tv.service.transport package shall be provided by

a procedural application environment; however, no class is required to implement these

interfaces:

• Bouquet

• BouquetChangeListener

• BouquetCollection

• Network

• NetworkChangeListener

• NetworkCollection

Note: The ATSC Transport Stream, to which the DASE application delivery system is

bound by default, does not support the semantics of these types; therefore, a procedural

application environment which supports only the default application delivery system is not

expected to implement or otherwise use these interfaces.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 56

5.1.1.2.4 Home Audio Video Interoperability User Interface (HAVi UI) Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall implement packages org.havi.ui and org.havi.ui.event as

specified in HAVi Level 2 User Interface APIs, Version 1.1, May 15, 2001, [HAVI-UI-API],

according to the semantics specified by The HAVi Specification, Chapter 8, Level 2 User

Interface, Version 1.1, [HAVI-UI], as extended and restricted below.

Note: Within [HAVI-UI] and [HAVI-UI-API], the term application is to be equated with an

individual Xlet, and not with a DASE Application, which may consist of multiple Xlets.

Note: See Annexes A.48 and A.49 for all required HAVi types.

5.1.1.2.4.1 Constraints

5.1.1.2.4.1.1 Constraints on org.havi.ui.HGraphicsConfiguration class

When invoked by an application, the following methods shall produce no side effect and

shall raise a runtime exception:

• getPunchThroughToBackgroundColor(java.awt.Color,int)

• getPunchThroughToBackgroundColor(java.awt.Color,int,HVideoDevice)

• getPunchThroughToBackgroundColor(int)

• getPunchThroughToBackgroundColor(int,HVideoDevice)

5.1.1.2.4.1.2 Constraints on org.havi.ui.HPermissionDeniedException class

The HPermissionDeniedException shall be used only for resource management purposes

and not for security purposes; it shall only be used to signal a transient state.

5.1.1.2.4.1.3 Constraints on org.havi.ui.HScene class

Within a procedural application, the HScene associated with the primary Xlet shall receive

event focus by default. Only one instance of HScene shall be granted focus at any given time.

Note: The determination of when another Xlet in a procedural application should be

granted focus is not defined by this specification. An Xlet may request focus be granted to

an HScene by means of the method java.awt.Component.requestFocus() which is

inherited by HScene.

When invoked by an Xlet within a declarative application, the inherited method getBounds()

shall return a rectangle whose origins are (0,0). When invoked by an Xlet within a declarative

application, the inherited method getLocation() shall return a point whose x and y coordinates

are (0,0).

When invoked by an Xlet within a declarative application, the following methods shall

produce no side effect and may raise a runtime exception:

• setBounds(int,int,int,int)

• setBounds(Rectangle)

• setLocation(int,int)

• setLocation(Point)

• setSize(int,int)

• setSize(Dimension)

Note: An Xlet in a declarative application may request the declarative application

environment cause its position or size to be changed by making use of functionality

provided by the org.w3c.dom.css package.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 57

5.1.1.2.4.1.4 Constraints on org.havi.ui.HSceneFactory class

The value returned by the HSceneFactory.getDefaultHScene methods shall be the same

value as returned by javax.tv.graphics.TVContainer.getRootContainer(). If this value is

not null, then it shall be a distinct instance of HScene for each Xlet within a single DASE

Application.

Note: In the case of an Xlet within a procedural application, the region of a screen which is

allocated to an HScene is not defined by this specification.

A procedural application environment is not required to satisfy a request to create an

instance of HScene using the method HSceneFactory.getBestScene().

A procedural application environment is not required to satisfy a request to resize an

instance of HScene using the method HSceneFactory.resizeScene(); furthermore, this request

shall not be satisfied when invoked by an Xlet within a declarative application.

When invoked by an Xlet within a declarative application, the method HSceneFactory.-

getFullScreenScene() shall return null.

5.1.1.2.4.1.5 Constraints on org.havi.ui.HVideoDevice class

When returning normally, the method HVideoDevice.getVideoController() shall return

an instance of javax.tv.service.selection.ServiceMediaHandler which is in a prefetched

or started state; furthermore, it shall only return a media handler which has already been created

in response to the application invoking javax.media.Manager.createPlayer or which has been

returned or would be returned by javax.tv.service.selection.getServiceContentHandlers.

When returning normally, the method HVideoDevice.getVideoSource() shall return an

instance of javax.media.protocol.DataSource. If a video source is not available due to

implementation restrictions, then an HPermissionDeniedException shall be raised.

5.1.1.2.5 Digital Audio Video Council (DAVIC) Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall implement packages org.davic.media and org.davic.-

resources as specified by the following subsections and by [HAVI-UI-API], respectively.

Note: See Annexes A.46 and A.47 for all required DAVIC types.

5.1.1.2.5.1 Definitions

5.1.1.2.5.1.1 Definition of org.davic.media.AudioLanguageControl interface

public interface AudioLanguageControl

 extends LanguageControl

This interface may be implemented by a JMF control in order to provide control over the

selection of the language of an audio program element.

5.1.1.2.5.1.1.1 Methods

The following methods are inherited from LanguageControl: getCurrentLanguage,

listAvailableLanguages, selectDefaultLanguage, and selectLanguage.

The following methods are inherited from javax.media.Control: getControlComponent.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 58

5.1.1.2.5.1.1.2 Fields

No fields are defined.

5.1.1.2.5.1.2 Definition of org.davic.media.LanguageControl interface

public interface LanguageControl

 extends javax.media.Control

This interface is the base interface for both audio and subtitling language controls. This

interface should never be implemented in a control alone, but always either as an audio or

subtitling language control.

5.1.1.2.5.1.2.1 Methods

The following methods are inherited from javax.media.Control: getControlComponent.

5.1.1.2.5.1.2.1.1 getCurrentLanguage()

public java.lang.String getCurrentLanguage()

Obtain current language selected.

Returns:

A string which denotes the current language selection. The syntax of this string shall be

that prescribed by [LANG-TAGS]. If the language selection is unknown, then the returned

string shall be empty.

5.1.1.2.5.1.2.1.2 listAvailableLanguages()

public java.lang.String[] listAvailableLanguages()

Provides a list of available languages. If there are no selectable languages, the returned

array is of zero length.

Returns:

A (possibly empty) array of strings, each of which denote a language. The syntax of

each string shall be that prescribed by [LANG-TAGS].

5.1.1.2.5.1.2.1.3 selectDefaultLanguage()

public java.lang.String[] selectDefaultLanguage()

 throws NotAuthorizedException

Selects the default language.

Returns:

A string which denotes the default language selection. The syntax of this string shall be

that prescribed by [LANG-TAGS]. If the default language selection is unknown, then the

returned string shall be empty.

Throws:

NotAuthorizedException – if access to the default language is not permitted.

5.1.1.2.5.1.2.1.4 selectLanguage(java.lang.String)

public void selectLanguage(java.lang.String lang)

 throws LanguageNotAvailableException, NotAuthorizedException

Changes the language selection to the indicated language.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 59

Parameters:

lang – a language tag which adheres to the syntax prescribed by [LANG-TAGS]

Throws:

LanguageNotAvailableException – if the specified language is not available.

NotAuthorizedException – if access to the default language is not permitted.

5.1.1.2.5.1.2.2 Fields

No fields are defined.

5.1.1.2.5.1.3 Definition of org.davic.media.LanguageNotAvailableException class

public class LanguageNotAvailableException

 extends javax.media.MediaException

This exception is thrown when the requested language is not available.

5.1.1.2.5.1.3.1 Constructors

5.1.1.2.5.1.3.1.1 LanguageNotAvailableException()

public LanguageNotAvailableException()

Constructor with no detail message.

5.1.1.2.5.1.3.1.2 LanguageNotAvailableException(java.lang.String)

public LanguageNotAvailableException(java.lang.String reason)

Constructor taking a detail message.

Parameters:

reason – the reason this exception was thrown

5.1.1.2.5.1.3.2 Methods

The following methods are inherited from java.lang.Throwable: fillInStackTrace,

getLocalizedMessage, getMessage, printStackTrace(), printStackTrace(java.io.Print-

Stream), printStackTrace(java.io.PrintWriter), and toString.

The following methods are inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, wait(), wait(long), and wait(long,int).

5.1.1.2.5.1.3.3 Fields

No fields are defined.

5.1.1.2.5.1.4 Definition of org.davic.media.MediaPresentedEvent

public class MediaPresentedEvent

 extends javax.media.ControllerEvent

Generated as soon as possible after new content is actually being presented to the end-

user, regardless of whether a state change has taken place in the player or not.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 60

5.1.1.2.5.1.4.1 Constructors

5.1.1.2.5.1.4.1.1 MediaPresentedEvent(javax.media.Controller)

public MediaPresentedEvent(javax.media.Controller source)

Constructs a MediaPresentedEvent.

Parameters:

source – the controller concerned

5.1.1.2.5.1.4.2 Methods

The following methods are inherited from javax.media.ControllerEvent: getSource and

getSourceController.

The following methods are inherited from java.util.EventObject: toString.

The following methods are inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, wait(), wait(long), and wait(long,int).

5.1.1.2.5.1.4.3 Fields

The following fields are inherited from java.util.EventObject: source.

5.1.1.2.5.1.5 Definition of org.davic.media.NotAuthorizedException class

public class NotAuthorizedException

 extends java.security.AccessControlException

This exception is thrown when the source cannot be accessed in order to reference the new

content or the source has not been accepted.

5.1.1.2.5.1.5.1 Constructors

5.1.1.2.5.1.5.1.1 NotAuthorizedException()

public NotAuthorizedException()

Constructor with no detail message.

5.1.1.2.5.1.5.1.2 NotAuthorizedException(String)

public NotAuthorizedException(java.lang.String reason)

Constructor taking a detail message.

Parameters:

reason – the reason this exception was thrown

5.1.1.2.5.1.5.2 Methods

The following methods are inherited from java.lang.Throwable: fillInStackTrace,

getLocalizedMessage, getMessage, printStackTrace(), printStackTrace(java.io.Print-

Stream), printStackTrace(java.io.PrintWriter), and toString.

The following methods are inherited from java.lang.Object: clone, equals, finalize,

getClass, hashCode, notify, notifyAll, wait(), wait(long), and wait(long,int).

5.1.1.2.5.1.5.3 Fields

No fields are defined.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 61

5.1.1.2.5.1.6 Definition of org.davic.media.SubtitlingLanguageControl interface

public interface SubtitlingLanguageControl

 extends LanguageControl

This interface may be implemented by a JMF control in order to provide control over the

selection of the language of an available subtitling service.

Note: It is not required that any DASE System class implement this interface. This

interface may be used by application defined JMF components to control subtitling

available in application defined data.

Note: This functionality is not intended to be used to control closed captioning services

delivered via [A/53] User Private Data.

5.1.1.2.5.1.6.1 Methods

The following methods are inherited from LanguageControl: getCurrentLanguage,

listAvailableLanguages, selectDefaultLanguage, and selectLanguage.

The following methods are inherited from javax.media.Control: getControlComponent.

5.1.1.2.5.1.6.1.1 isSubtitlingOn()

public boolean isSubtitlingOn()

Indicates whether subtitling is on or off.

Returns:

If subtitling is on, returns true; otherwise, returns false.

5.1.1.2.5.1.6.1.2 setSubtitling(boolean)

public boolean setSubtitling(boolean newValue)

Changes subtitling to on or off.

Parameters:

newValue – if true, then turns subtitling on; otherwise, turns it off.

Returns:

The previous value.

5.1.1.2.5.1.6.2 Fields

No fields are defined.

5.1.1.2.5.2 Modifications

5.1.1.2.5.2.1 Modification to org.davic.resource.ResourceStatusEvent class

The class of ResourceStatusEvent shall be a subtype of the java.util.EventObject

class.

5.1.1.2.6 W3C Document Object Model (DOM) Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall implement packages org.w3c.dom , org.w3c.dom.css,

org.w3c.dom.events, org.w3c.dom.html2, org.w3c.dom.stylesheets, and

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 62

org.w3c.dom.views as specified in [DOM2], [DOM2-EVENTS], [DOM2-HTML], [DOM2-STYLE],

and [DOM2-VIEWS] as extended and restricted below.

Note: See Annexes A.50 through A.55 for all required W3C DOM types.

5.1.1.2.6.1 Modifications

5.1.1.2.6.1.1 Modifications to org.w3c.dom.css package

The following interfaces in the org.w3c.dom.css package are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these interfaces:

• CSSPageRule

• CSS2Properties

Note: The functionality of the CSS2Properties interface may be obtained by using other

interfaces defined in package org.w3c.dom.css, particularly the

ElementCSSInlineStyle and CSSStyleDeclaration interfaces.

5.1.1.2.6.1.2 Modifications to org.w3c.dom.html2 package

The following interfaces in the org.w3c.dom.html2 package are not required to be

implemented by a procedural application environment; furthermore, an application entity shall not

rely on the presence of support for these interfaces:

• HTMLAppletElement

• HTMLAreaElement

• HTMLBaseElement

• HTMLBaseFontElement

• HTMLBRElement

• HTMLButtonElement

• HTMLDirectoryElement

• HTMLDivElement

• HTMLDListElement

• HTMLFieldSetElement

• HTMLFontElement

• HTMLFrameElement

• HTMLFrameSetElement

• HTMLHeadElement

• HTMLHeadingElement

• HTMLHRElement

• HTMLHtmlElement

• HTMLIFrameElement

• HTMLIsIndexElement

• HTMLLabelElement

• HTMLLegendElement

• HTMLLIElement

• HTMLLinkElement

• HTMLMapElement

• HTMLMenuElement

• HTMLMetaElement

• HTMLModElement

• HTMLOListElement

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 63

• HTMLOptGroupElement

• HTMLParagraphElement

• HTMLParamElement

• HTMLPreElement

• HTMLQuoteElement

• HTMLScriptElement

• HTMLStyleElement

• HTMLTableCaptionElement

• HTMLTableCellElement

• HTMLTableColElement

• HTMLTableElement

• HTMLTableRowElement

• HTMLTableSectionElement

• HTMLTitleElement

• HTMLUListElement

Note: The functionality of the preceding interfaces may be obtained by using interfaces

defined in package org.w3c.dom, particularly the Node, Element, and Attr interfaces.

5.1.1.2.7 DASE Specific (ATSC) Interfaces

An application entity which adheres to this content type may use and a procedural

application environment shall implement all facilities specified in DASE Application Programming

Interface [DASE-API].

All package, class, and interface names that have the prefix org.atsc are reserved for the

sole use of the ATSC. An implementation of a procedural application environment shall not

superset the org.atsc package namespace unless required or permitted by a future level or

edition of the DASE Standard.

If a procedural application environment makes use of a local file system to persist DASE

specific registry state, including ApplicationRegistry, PreferencesRegistry, and

UserRegistry, and access to this file system is provided to application entities by means of

java.io functionality, then no access to this registry state shall be granted to application entities

by means of java.io functionality.

Note: See Annexes A.29 through A.45 for all required ATSC types.

5.1.1.2.7.1 Constraints

5.1.1.2.7.1.1 Constraints on org.atsc.preferencees.PreferenceRegistry interface

A procedural application environment shall maintain any state changes due to the addition

or removal of preferences through the PreferenceRegistry interface for no less time than the

duration of the current application.

5.1.1.2.7.1.2 Constraints on org.atsc.user.UserRegistry interface

A procedural application environment shall maintain any state changes due to the creation

or deletion of users through the UserRegistry interface for no less time than the duration of the

current application.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 64

5.1.1.2.7.1.3 Constraints on org.atsc.xlet.XletRegistry interface

A procedural application environment shall maintain any state changes due to registration of

Xlets through the XletRegistry interface for no less time than the duration of the current

application.

Note: An application's duration is the interval from when an application is placed in the

initialized state until the time when it is placed in the uninitialized state.

5.1.1.3 Interface Implementation Constraints

This section describes additional constraints on active object content and on a procedural

application environment’s implementation of the interfaces specified in Section 5.1.1.2, Java

Application Programming Interfaces.

5.1.1.3.1 Instance Sharing

A procedural application environment shall not permit direct instance sharing of application-

defined classes between two or more Xlets.

Note: Two Xlets may reference the same system object in certain cases. For example, if

two Xlets request the same system property, the same string instance may be returned.

This kind of sharing is harmless, because String instances are immutable.

5.1.1.3.2 Finalizers

An Xlet shall not rely upon an application-defined finalizer being invoked by the procedural

application environment.

5.1.1.3.3 Class Loaders

A procedural application environment shall associate a distinct java.lang.ClassLoader

instance with each Xlet instance. This java.lang.ClassLoader instance shall be used to load all

of the classes that comprise a distinct Xlet.

5.1.2 application/javatv-xlet

This active object content type shall adhere to the specification of application/java

content as specified above, and, in addition, shall implement the javax.tv.xlet.Xlet interface

as specified by [JAVATV]. This content shall be identified as content type application/javatv-

xlet.

5.2 Application Defined Content

This facility consists of a generic content type which may be used by an application to

implement its own content types.

5.2.1 application/octet-stream

This content type shall consist of an arbitrary length sequence of arbitrary octets (8-bit

bytes).

5.3 Text Content

This facility consists of a generic content type which is used in specific cases to represent

text oriented data.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 65

5.3.1 text/plain

This content type shall consist of an arbitrary length sequence of arbitrary encoded

characters, where such a sequence is referred to generically as plain text.

An application entity which employs this content type shall specify one of the following

character encoding systems in a charset parameter in accordance with [MIME-MEDIA], Section

4.1.2, and, furthermore, the entity’s representation shall employ the specified encoding system as

its actual character encoding system:

• "UTF-8"

• "ISO-8859-1"

• "US-ASCII"

If no character encoding system is specified or if the actual character encoding system does

not correspond to the specified encoding system, then the application entity shall be considered

to be not well-formed, and shall cause an exception to be raised if an attempt is made to read the

entity.

Note: In DASE-1, the use of this content type is limited to two cases: (1) to represent a

property list resource (see Section 5.1.1.2.1.1.10.4), and (2) to represent textual oriented

application defined content.

5.4 Java Archive Content

Java archive content comprises content types that serve as packages for one or more

application resources. Java archive content shall adhere to one of the following content types as

specified below:

Table 10 Java Archive Content Types

application/jar Java Archive

If an entity of a DASE Application takes the form of an archive content type other than one

of the above specified types, and the entity is processed, then a DASE System shall not abort the

application.

Application entities represented as Java archive content are not presented as such; in

contrast, application resources embodied within Java archive content may be presented

according to their specific content types.

5.4.1 application/jar

An application entity identified as content type application/jar shall consist of a Java

Archive. A Java Archive shall adhere to the application/zip content type as defined by

[DASE], Section 6.8.1, and additionally shall contain a manifest entry which adheres to [JAR].

An application entity which employs this content type shall be valid. An entity identified as

this content type is valid if it adheres to the encoding format and constraints specified by the

application/zip content type and those specified by [JAR].

If an entity of a DASE Application uses content type application/jar, is not valid, and the

entity is processed, then a DASE System shall not abort the application.

If a Content-Type per-entry attribute is present in a manifest entry, then its value shall be

identical to the value of the Content-Type MIME header extension which applies to the entry in

accordance with [DASE], Section 6.8.1. In case of a conflict, the MIME header extension shall be

given priority.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 66

A procedural application environment is not required to check or otherwise verify the validity

of any digital signature specified in a manifest entry; furthermore, an application entity shall not

rely on the presence of support for validating a digital signature present in a manifest entry.

Note: Limited programmatic access to an application entity that uses content type

application/jar may be obtained by use of functionality defined in the java.util.zip

package.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 67

ANNEX A. REQUIRED JAVA TYPES

The entirety of this annex and its subsections is normative.

This annex specifies, on a package by package basis, all system-defined Java types which

may be referenced by active object content and which shall be supported by a procedural

application environment.

In addition to the Java types specified here, additional binding dependent types may be

required according the applicable application delivery system.

If active object content requires resolution of a reference to a Java type other than (1) the

types specified by this annex, (2) binding dependent types specified by the application delivery

system, or (3) an application-defined type, and the active object content is processed, then a

procedural application environment may destroy the Xlet in whose context the reference occurs.

Note: Each of the following subsections specifies all required Java types for a specific

package. No significance is to be attributed to the tabular representation of these types;

they are specified in alphabetic order from top to bottom in multiple columns.

A.1 java.awt

Adjustable Cursor Image

AWTError Dimension Insets

AWTEvent EventQueue ItemSelectable

AWTEventMulticaster FlowLayout LayoutManager

AWTException Font LayoutManager2

AWTPermission FontMetrics MediaTracker

BorderLayout Graphics Point

CardLayout GridBagConstraints Polygon

Color GridBagLayout Rectangle

Component GridLayout Shape

Container IllegalComponentStateException Toolkit

A.2 java.awt.event

ActionEvent FocusAdapter MouseEvent

ActionListener FocusEvent MouseListener

AdjustmentEvent FocusListener MouseMotionAdapter

AdjustmentListener InputEvent MouseMotionListener

ComponentAdapter ItemEvent PaintEvent

ComponentEvent ItemListener TextEvent

ComponentListener KeyAdapter TextListener

ContainerAdapter KeyEvent WindowAdapter

ContainerEvent KeyListener WindowEvent

ContainerListener MouseAdapter WindowListener

A.3 java.awt.image

AreaAveragingScaleFilter ImageConsumer MemoryImageSource

ColorModel ImageFilter PixelGrabber

CropImageFilter ImageObserver ReplicateScaleFilter

DirectColorModel ImageProducer RGBImageFilter

FilteredImageSource IndexColorModel

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 68

A.4 java.beans

Beans PropertyChangeSupport VetoableChangeSupport

PropertyChangeEvent PropertyVetoException Visibility

PropertyChangeListener VetoableChangeListener

A.5 java.io

BufferedInputStream FileWriter OutputStreamWriter

BufferedOutputStream FilterInputStream PipedInputStream

BufferedReader FilterOutputStream PipedOutputStream

BufferedWriter FilterReader PipedReader

ByteArrayInputStream FilterWriter PipedWriter

ByteArrayOutputStream InputStream PrintStream

CharArrayReader InputStreamReader PrintWriter

CharArrayWriter InterruptedIOException PushbackInputStream

CharConversionException InvalidClassException PushbackReader

DataInput InvalidObjectException RandomAccessFile

DataInputStream IOException Reader

DataOutput LineNumberReader SequenceInputStream

DataOutputStream NotActiveException Serializable

EOFException NotSerializableException SerializablePermission

Externalizable ObjectInput StreamCorruptedException

File ObjectInputStream StreamTokenizer

FileDescriptor ObjectInputValidation StringReader

FileInputStream ObjectOutput StringWriter

FilenameFilter ObjectOutputStream SyncFailedException

FileNotFoundException ObjectStreamClass UnsupportedEncodingException

FileOutputStream ObjectStreamException UTFDataFormatException

FilePermission OptionalDataException WriteAbortedException

FileReader OutputStream Writer

A.6 java.lang

AbstractMethodError IllegalMonitorStateException OutOfMemoryError

ArithmeticException IllegalStateException Runnable

ArrayIndexOutOfBoundsException IllegalThreadStateException Runtime

ArrayStoreException IncompatibleClassChangeError RuntimeException

Boolean IndexOutOfBoundsException RuntimePermission

Byte InstantiationError SecurityException

Character InstantiationException SecurityManager

Class Integer Short

ClassCastException InternalError StackOverflowError

ClassCircularityError InterruptedException String

ClassFormatError LinkageError StringBuffer

ClassLoader Long StringIndexOutOfBoundsException

ClassNotFoundException Math System

Cloneable NegativeArraySizeException Thread

CloneNotSupportedException NoClassDefFoundError ThreadDeath

Double NoSuchFieldError ThreadGroup

Error NoSuchFieldException Throwable

Exception NoSuchMethodError UnknownError

ExceptionInInitializerError NoSuchMethodException UnsatisfiedLinkError

Float NullPointerException UnsupportedOperationException

IllegalAccessError Number VerifyError

IllegalAccessException NumberFormatException VirtualMachineError

IllegalArgumentException Object Void

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 69

A.7 java.lang.reflect

AccessibleObject Field Method

Array InvocationTargetException Modifier

Constructor Member ReflectPermission

A.8 java.net

BindException MalformedURLException SocketPermission

DatagramPacket MulticastSocket UnknownHostException

DatagramSocket ProtocolException URL

InetAddress SocketException URLEncoder

A.9 java.security

AccessControlContext KeyException ProtectionDomain

AccessControlException MessageDigest Provider

AccessController MessageDigestSpi ProviderException

AllPermission NoSuchAlgorithmException PublicKey

BasicPermission NoSuchProviderException SecureClassLoader

CodeSource Permission SecureRandom

DigestException PermissionCollection SecureRandomSpi

DigestOutputStream Permissions Security

GeneralSecurityException Policy SecurityPermission

Guard Principal SignatureException

GuardedObject PrivilegedAction UnresolvedPermission

InvalidKeyException PrivilegedActionException

Key PrivilegedExceptionAction

A.10 java.security.cert

Certificate CertificateEncodingException CertificateException

A.11 java.text

ChoiceFormat DecimalFormatSymbols NumberFormat

DateFormat FieldPosition ParseException

DateFormatSymbols Format ParsePosition

DecimalFormat MessageFormat SimpleDateFormat

A.12 java.util

BitSet Hashtable PropertyResourceBundle

Calendar ListResourceBundle Random

Date Locale ResourceBundle

Dictionary MissingResourceException SimpleTimeZone

EmptyStackException NoSuchElementException Stack

Enumeration Observable StringTokenizer

EventListener Observer TimeZone

EventObject Properties TooManyListenersException

GregorianCalendar PropertyPermission Vector

A.13 java.util.zip

CheckedInputStream DataFormatException ZipEntry

CheckedOutputStream Inflater ZipException

Checksum InflaterInputStream ZipFile

CRC32 ZipConstants ZipInputStream

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 70

A.14 javax.media

CachingControl GainChangeEvent NotRealizedError

CachingControlEvent GainChangeListener PackageManager

Clock GainControl Player

ClockStartedError IncompatibleSourceException PrefetchCompleteEvent

ClockStoppedException IncompatibleTimeBaseException RateChangeEvent

ConnectionErrorEvent InternalErrorEvent RealizeCompleteEvent

Control Manager ResourceUnavailableEvent

Controller MediaError RestartingEvent

ControllerClosedEvent MediaEvent StartEvent

ControllerErrorEvent MediaException StopAtTimeEvent

ControllerEvent MediaHandler StopByRequestEvent

ControllerListener MediaLocator StopEvent

DataStarvedEvent MediaProxy StopTimeChangeEvent

DeallocateEvent MediaTimeSetEvent StopTimeSetError

Duration NoDataSourceException Time

DurationUpdateEvent NoPlayerException TimeBase

EndOfMediaEvent NotPrefetchedError TransitionEvent

A.15 javax.media.protocol

ContentDescriptor PullSourceStream RateRange

Controls PushDataSource Seekable

DataSource PushSourceStream SourceStream

Positionable RateConfigurable SourceTransferHandler

PullDataSource RateConfiguration

A.16 javax.tv.carousel

CarouselFile CarouselFileChangeEvent CarouselFileListener

A.17 javax.tv.graphics

AlphaColor TVContainer

A.18 javax.tv.locator

InvalidLocatorException LocatorFactory

Locator MalformedLocatorException

A.19 javax.tv.media

AWTVideoSize MediaSelectControl MediaSelectListener

AWTVideoSizeControl MediaSelectEvent MediaSelectPermission

MediaSelectCARefusedEvent MediaSelectFailedEvent MediaSelectSucceededEvent

A.20 javax.tv.media.protocol

DataLostException PushSourceStream2

A.21 javax.tv.net

InterfaceMap

A.22 javax.tv.service

RatingDimension ServiceType SIManager

ReadPermission SIChangeEvent SIRequest

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 71

Service SIChangeListener SIRequestFailureType

ServiceInformationType SIChangeType SIRequestor

ServiceMinorNumber SIElement SIRetrievable

ServiceNumber SIException

A.23 javax.tv.service.guide

ContentRatingAdvisory ProgramSchedule ProgramScheduleListener

ProgramEvent ProgramScheduleChangeType

ProgramEventDescription ProgramScheduleEvent

A.24 javax.tv.service.navigation

CAIdentification ServiceComponentChangeEvent ServiceList

DeliverySystemType ServiceComponentChangeListener ServiceProviderInformation

FavoriteServicesName ServiceDescription ServiceTypeFilter

FilterNotSupportedException ServiceDetails SIElementFilter

LocatorFilter ServiceDetailsSIChangeEvent SortNotAvailableException

PreferenceFilter ServiceFilter StreamType

ServiceComponent ServiceIterator

A.25 javax.tv.service.selection

AlternativeContentEvent SelectionFailedEvent ServiceContextException

InsufficientResourcesException SelectPermission ServiceContextFactory

InvalidServiceComponentException ServiceContentHandler ServiceContextListener

NormalContentEvent ServiceContext ServiceContextPermission

PresentationChangedEvent ServiceContextDestroyedEvent ServiceMediaHandler

PresentationTerminatedEvent ServiceContextEvent

A.26 javax.tv.service.transport

Bouquet NetworkChangeListener TransportStream

BouquetChangeEvent NetworkCollection TransportStreamChangeEvent

BouqueChangeListener ServiceDetailsChangeEvent TransportStreamChangeListener

BouquetCollection ServiceDetailsChangeListener TransportStreamCollection

Network Transport

NetworkChangeEvent TransportSIChangeEvent

A.27 javax.tv.util

TVTimer TVTimerSpec TVTimerWentOffListener

TVTimerScheduleFailedException TVTimerWentOffEvent

A.28 javax.tv.xlet

Xlet XletContext XletStateChangeException

A.29 org.atsc.application

ApplicationInformation

A.30 org.atsc.carousel

CarouselException InsufficientResourceException NotAuthorizedException

DataDeliveryException InvalidFormatException TimeoutException

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 72

A.31 org.atsc.dom

DocumentAction DOMExceptionExt

DocumentFactory MultipleDocumentsAction

A.32 org.atsc.dom.environment

History Navigator

Location Window

A.33 org.atsc.dom.events

KeyEvent KeyModifiers VirtualKeys

A.34 org.atsc.dom.html

HTMLAnchorElementExt HTMLFormElementExt HTMLObjectElementExt

HTMLDocumentExt HTMLImageElementExt

A.35 org.atsc.dom.views

DocumentViewExt

A.36 org.atsc.graphics

AtscBufferedImage FontFactory FontFormatException

A.37 org.atsc.management

AdministrativeState OperationalState StateChangeListener

AlarmStatus ProceduralStatus StatusChangeEvent

AvailabilityStatus SourceIndicator UsageState

ManagementPermission StateChangeEvent

ObjectStates StateChangeException

A.38 org.atsc.net

DatagramSocketBufferControl

A.39 org.atsc.preferences

FavoriteChannelsPreference Preference PreferencePermission

InvalidPreferenceException PreferenceChangeCause PreferenceRegistry

LanguagePreference PreferenceChangeEvent PreferenceRegistryEvent

LanguageScope PreferenceChangeListener RatingPreference

PersonalDataPreference PreferenceNames

A.40 org.atsc.registry

Registry RegistryChangeEvent RegistryFactory

RegistryChangeCause RegistryChangeListener RegistryType

A.41 org.atsc.security

AccessDeniedException AtscPermission

AtscAllPermission HAViPermission

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 73

A.42 org.atsc.system

Receiver ReceiverPropertyNames

A.43 org.atsc.trigger

TriggerEvent TriggerListener TriggerSource

A.44 org.atsc.user

InvalidCapabilityException UserChangeCause UserRegistry

InvalidUserException UserPermission UserRegistryEvent

UserCapabilities UserProfile

A.45 org.atsc.xlet

InvalidXletException XletComponentPresenterProxy XletPermission

XletAlreadyRegisteredException XletContextExt XletProxy

XletAvailabilityException XletInformation XletRegistry

XletChangeCause XletNotRegisteredException XletRegistryEvent

A.46 org.davic.media

AudioLanguageControl LanguageNotAvailableException NotAuthorizedException

LanguageControl MediaPresentedEvent SubtitlingLanguageControl

A.47 org.davic.resources

ResourceClient ResourceServer ResourceStatusListener

ResourceProxy ResourceStatusEvent

A.48 org.havi.ui

HActionable HImageEffectMatte HScreenDimension

HActionInputPreferred HImageHints HScreenPoint

HAdjustableLook HImageMatte HScreenRectangle

HAdjustmentInputPreferred HInvalidLookException HSelectionInputPreferred

HAdjustmentValue HItemValue HSinglelineEntry

HAnimateEffect HKeyboardInputPreferred HSinglelineEntryLook

HAnimateLook HListElement HSound

HAnimation HListGroup HState

HBackgroundConfigTemplate HListGroupLook HStaticAnimation

HBackgroundConfiguration HLook HStaticIcon

HBackgroundDevice HMatte HStaticRange

HBackgroundImage HMatteException HStaticText

HChangeData HMatteLayer HStillImageBackgroundConfiguration

HComponent HMultilineEntry HSwitchable

HComponentOrdering HMultilineEntryLook HText

HConfigurationException HNavigable HTextButton

HContainer HNavigationInputPreferred HTextLayoutManager

HDefaultTextLayoutManager HNoInputPreferred HTextLook

HEmulatedGraphicsConfiguration HOrientable HTextValue

HEmulatedGraphicsDevice HPermissionDeniedException HToggleButton

HEventMulticaster HRange HToggleGroup

HFlatEffectMatte HRangeLook HUIException

HFlatMatte HRangeValue HVersion

HFontCapabilities HScene HVideoComponent

HGraphicButton HSceneFactory HVideoConfigTemplate

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 74

HGraphicLook HSceneTemplate HVideoConfiguration

HGraphicsConfigTemplate HScreen HVideoDevice

HGraphicsConfiguration HScreenConfigTemplate HVisible

HGraphicsDevice HScreenConfiguration

HIcon HScreenDevice

A.49 org.havi.ui.event

HActionEvent HFocusListener HScreenConfigurationEvent

HActionListener HItemEvent HScreenConfigurationListener

HAdjustmentEvent HItemListener HScreenDeviceReleasedEvent

HAdjustmentListener HKeyCapabilities HScreenDeviceReservedEvent

HBackgroundImageEvent HKeyEvent HScreenLocationModifiedEvent

HBackgroundImageListener HKeyListener HScreenLocationModififedListener

HEventGroup HMouseCapabilities HTextEvent

HEventRepresentation HRcCapabilities HTextListener

HFocusEvent HRcEvent

A.50 org.w3c.dom

Attr DocumentType NamedNodeMap

CDATASection DOMException Node

CharacterData DOMImplementation NodeList

Comment Element Notation

Document Entity ProcessingInstruction

DocumentFragment EntityReference Text

A.51 org.w3c.dom.css

Counter CSSRuleList DocumentCSS

CSSCharsetRule CSSStyleDeclaration DOMImplementationCSS

CSSFontFaceRule CSSStyleRule ElementCSSInlineStyle

CSSImportRule CSSStyleSheet Rect

CSSMediaRule CSSUnknownRule RGBColor

CSSPrimitiveValue CSSValue ViewCSS

CSSRule CSSValueList

A.52 org.w3c.dom.events

DocumentEvent EventListener MutationEvent

Event EventTarget UIEvent

EventException MouseEvent

A.53 org.w3c.dom.html2

HTMLAnchorElement HTMLFormElement HTMLOptionsCollection

HTMLBodyElement HTMLImageElement HTMLSelectElement

HTMLCollection HTMLInputElement HTMLTextAreaElement

HTMLDocument HTMLObjectElement

HTMLElement HTMLOptionElement

A.54 org.w3c.dom.stylesheets

DocumentStyle MediaList StyleSheetList

LinkStyle StyleSheet

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 75

A.55 org.w3c.dom.views

AbstractView DocumentView

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 76

ANNEX B. JAVA CONSTANTS

The entirety of this annex is normative.

This annex specifies the values of certain public static final (constant) fields of Java types

for which a value is not otherwise specified in the referenced document in which the type is

defined and not specified above. A procedural application environment shall use the values

defined below.

Table 11 Java Constants

Package Class or Interface Field Name Value

java.awt Adjustable HORIZONTAL 0

java.awt Adjustable VERTICAL 1

java.awt AWTEvent ACTION_EVENT_MASK 128

java.awt AWTEvent ADJUSTMENT_EVENT_MASK 256

java.awt AWTEvent COMPONENT_EVENT_MASK 1

java.awt AWTEvent CONTAINER_EVENT_MASK 2

java.awt AWTEvent FOCUS_EVENT_MASK 4

java.awt AWTEvent ITEM_EVENT_MASK 512

java.awt AWTEvent KEY_EVENT_MASK 8

java.awt AWTEvent MOUSE_EVENT_MASK 16

java.awt AWTEvent MOUSE_MOTION_EVENT_MASK 32

java.awt AWTEvent RESERVED_ID_MAX 1999

java.awt AWTEvent TEXT_EVENT_MASK 1024

java.awt AWTEvent WINDOW_EVENT_MASK 64

java.awt BorderLayout CENTER "Center"

java.awt BorderLayout EAST "East"

java.awt BorderLayout NORTH "North"

java.awt BorderLayout SOUTH "South"

java.awt BorderLayout WEST "West"

java.awt Component BOTTOM_ALIGNMENT 1.0

java.awt Component CENTER_ALIGNMENT 0.5

java.awt Component LEFT_ALIGNMENT 0.0

java.awt Component RIGHT_ALIGNMENT 1.0

java.awt Component TOP_ALIGNMENT 0.0

java.awt Cursor CROSSHAIR_CURSOR 1

java.awt Cursor DEFAULT_CURSOR 0

java.awt Cursor E_RESIZE_CURSOR 11

java.awt Cursor HAND_CURSOR 12

java.awt Cursor MOVE_CURSOR 13

java.awt Cursor N_RESIZE_CURSOR 8

java.awt Cursor NE_RESIZE_CURSOR 7

java.awt Cursor NW_RESIZE_CURSOR 6

java.awt Cursor S_RESIZE_CURSOR 9

java.awt Cursor SE_RESIZE_CURSOR 5

java.awt Cursor SW_RESIZE_CURSOR 4

java.awt Cursor TEXT_CURSOR 2

java.awt Cursor W_RESIZE_CURSOR 10

java.awt Cursor WAIT_CURSOR 3

java.awt FlowLayout CENTER 1

java.awt FlowLayout LEFT 0

java.awt FlowLayout RIGHT 2

java.awt Font BOLD 1

java.awt Font ITALIC 2

java.awt Font PLAIN 0

java.awt GridBagConstraints BOTH 1

java.awt GridBagConstraints CENTER 10

java.awt GridBagConstraints EAST 13

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 77

Package Class or Interface Field Name Value

java.awt GridBagConstraints HORIZONTAL 2

java.awt GridBagConstraints NONE 0

java.awt GridBagConstraints NORTH 11

java.awt GridBagConstraints NORTHEAST 12

java.awt GridBagConstraints NORTHWEST 18

java.awt GridBagConstraints RELATIVE -1

java.awt GridBagConstraints REMAINDER 0

java.awt GridBagConstraints SOUTH 15

java.awt GridBagConstraints SOUTHEAST 14

java.awt GridBagConstraints SOUTHWEST 16

java.awt GridBagConstraints VERTICAL 3

java.awt GridBagConstraints WEST 17

java.awt Image SCALE_AREA_AVERAGING 16

java.awt Image SCALE_DEFAULT 1

java.awt Image SCALE_FAST 2

java.awt Image SCALE_REPLICATE 8

java.awt Image SCALE_SMOOTH 4

java.awt MediaTracker ABORTED 2

java.awt MediaTracker COMPLETE 8

java.awt MediaTracker ERRORED 4

java.awt MediaTracker LOADING 1

java.awt.event ActionEvent ACTION_FIRST 1001

java.awt.event ActionEvent ACTION_LAST 1001

java.awt.event ActionEvent ACTION_PERFORMED 1001

java.awt.event ActionEvent ALT_MASK 8

java.awt.event ActionEvent CTRL_MASK 2

java.awt.event ActionEvent META_MASK 4

java.awt.event ActionEvent SHIFT_MASK 1

java.awt.event AdjustmentEvent ADJUSTMENT_FIRST 601

java.awt.event AdjustmentEvent ADJUSTMENT_LAST 601

java.awt.event AdjustmentEvent ADJUSTMENT_VALUE_CHANGED 601

java.awt.event AdjustmentEvent BLOCK_DECREMENT 3

java.awt.event AdjustmentEvent BLOCK_INCREMENT 4

java.awt.event AdjustmentEvent TRACK 5

java.awt.event AdjustmentEvent UNIT_DECREMENT 2

java.awt.event AdjustmentEvent UNIT_INCREMENT 1

java.awt.event ComponentEvent COMPONENT_FIRST 100

java.awt.event ComponentEvent COMPONENT_HIDDEN 103

java.awt.event ComponentEvent COMPONENT_LAST 103

java.awt.event ComponentEvent COMPONENT_MOVED 100

java.awt.event ComponentEvent COMPONENT_RESIZED 101

java.awt.event ComponentEvent COMPONENT_SHOWN 102

java.awt.event ContainerEvent COMPONENT_ADDED 300

java.awt.event ContainerEvent COMPONENT_REMOVED 301

java.awt.event ContainerEvent CONTAINER_FIRST 300

java.awt.event ContainerEvent CONTAINER_LAST 301

java.awt.event FocusEvent FOCUS_FIRST 1004

java.awt.event FocusEvent FOCUS_GAINED 1004

java.awt.event FocusEvent FOCUS_LAST 1005

java.awt.event FocusEvent FOCUS_LOST 1005

java.awt.event InputEvent ALT_MASK 8

java.awt.event InputEvent BUTTON1_MASK 16

java.awt.event InputEvent BUTTON2_MASK 8

java.awt.event InputEvent BUTTON3_MASK 4

java.awt.event InputEvent CTRL_MASK 2

java.awt.event InputEvent META_MASK 4

java.awt.event InputEvent SHIFT_MASK 1

java.awt.event ItemEvent DESELECTED 2

java.awt.event ItemEvent ITEM_FIRST 701

java.awt.event ItemEvent ITEM_LAST 701

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 78

Package Class or Interface Field Name Value

java.awt.event ItemEvent ITEM_STATE_CHANGED 701

java.awt.event ItemEvent SELECTED 1

java.awt.event KeyEvent CHAR_UNDEFINED 0

java.awt.event KeyEvent KEY_FIRST 400

java.awt.event KeyEvent KEY_LAST 402

java.awt.event KeyEvent KEY_PRESSED 401

java.awt.event KeyEvent KEY_RELEASED 402

java.awt.event KeyEvent KEY_TYPED 400

java.awt.event KeyEvent VK_0 48

java.awt.event KeyEvent VK_1 49

java.awt.event KeyEvent VK_2 50

java.awt.event KeyEvent VK_3 51

java.awt.event KeyEvent VK_4 52

java.awt.event KeyEvent VK_5 53

java.awt.event KeyEvent VK_6 54

java.awt.event KeyEvent VK_7 55

java.awt.event KeyEvent VK_8 56

java.awt.event KeyEvent VK_9 57

java.awt.event KeyEvent VK_A 65

java.awt.event KeyEvent VK_ACCEPT 30

java.awt.event KeyEvent VK_ADD 107

java.awt.event KeyEvent VK_ALT 18

java.awt.event KeyEvent VK_B 66

java.awt.event KeyEvent VK_BACK_QUOTE 192

java.awt.event KeyEvent VK_BACK_SLASH 92

java.awt.event KeyEvent VK_BACK_SPACE 8

java.awt.event KeyEvent VK_C 67

java.awt.event KeyEvent VK_CANCEL 3

java.awt.event KeyEvent VK_CAPS_LOCK 20

java.awt.event KeyEvent VK_CLEAR 12

java.awt.event KeyEvent VK_CLOSE_BRACKET 93

java.awt.event KeyEvent VK_COMMA 44

java.awt.event KeyEvent VK_CONTROL 17

java.awt.event KeyEvent VK_CONVERT 28

java.awt.event KeyEvent VK_D 68

java.awt.event KeyEvent VK_DECIMAL 110

java.awt.event KeyEvent VK_DELETE 127

java.awt.event KeyEvent VK_DIVIDE 111

java.awt.event KeyEvent VK_DOWN 40

java.awt.event KeyEvent VK_E 69

java.awt.event KeyEvent VK_END 35

java.awt.event KeyEvent VK_ENTER 10

java.awt.event KeyEvent VK_EQUALS 61

java.awt.event KeyEvent VK_ESCAPE 27

java.awt.event KeyEvent VK_F 70

java.awt.event KeyEvent VK_F1 112

java.awt.event KeyEvent VK_F10 121

java.awt.event KeyEvent VK_F11 122

java.awt.event KeyEvent VK_F12 123

java.awt.event KeyEvent VK_F2 113

java.awt.event KeyEvent VK_F3 114

java.awt.event KeyEvent VK_F4 115

java.awt.event KeyEvent VK_F5 116

java.awt.event KeyEvent VK_F6 117

java.awt.event KeyEvent VK_F7 118

java.awt.event KeyEvent VK_F8 119

java.awt.event KeyEvent VK_F9 120

java.awt.event KeyEvent VK_FINAL 24

java.awt.event KeyEvent VK_G 71

java.awt.event KeyEvent VK_H 72

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 79

Package Class or Interface Field Name Value

java.awt.event KeyEvent VK_HELP 156

java.awt.event KeyEvent VK_HOME 36

java.awt.event KeyEvent VK_I 73

java.awt.event KeyEvent VK_INSERT 155

java.awt.event KeyEvent VK_J 74

java.awt.event KeyEvent VK_K 75

java.awt.event KeyEvent VK_KANA 21

java.awt.event KeyEvent VK_KANJI 25

java.awt.event KeyEvent VK_L 76

java.awt.event KeyEvent VK_LEFT 37

java.awt.event KeyEvent VK_M 77

java.awt.event KeyEvent VK_META 157

java.awt.event KeyEvent VK_MODECHANGE 31

java.awt.event KeyEvent VK_MULTIPLY 106

java.awt.event KeyEvent VK_N 78

java.awt.event KeyEvent VK_NONCONVERT 29

java.awt.event KeyEvent VK_NUM_LOCK 144

java.awt.event KeyEvent VK_NUMPAD0 96

java.awt.event KeyEvent VK_NUMPAD1 97

java.awt.event KeyEvent VK_NUMPAD2 98

java.awt.event KeyEvent VK_NUMPAD3 99

java.awt.event KeyEvent VK_NUMPAD4 100

java.awt.event KeyEvent VK_NUMPAD5 101

java.awt.event KeyEvent VK_NUMPAD6 102

java.awt.event KeyEvent VK_NUMPAD7 103

java.awt.event KeyEvent VK_NUMPAD8 104

java.awt.event KeyEvent VK_NUMPAD9 105

java.awt.event KeyEvent VK_O 79

java.awt.event KeyEvent VK_OPEN_BRACKET 91

java.awt.event KeyEvent VK_P 80

java.awt.event KeyEvent VK_PAGE_DOWN 34

java.awt.event KeyEvent VK_PAGE_UP 33

java.awt.event KeyEvent VK_PAUSE 19

java.awt.event KeyEvent VK_PERIOD 46

java.awt.event KeyEvent VK_PRINTSCREEN 154

java.awt.event KeyEvent VK_Q 81

java.awt.event KeyEvent VK_QUOTE 222

java.awt.event KeyEvent VK_R 82

java.awt.event KeyEvent VK_RIGHT 39

java.awt.event KeyEvent VK_S 83

java.awt.event KeyEvent VK_SCROLL_LOCK 145

java.awt.event KeyEvent VK_SEMICOLON 59

java.awt.event KeyEvent VK_SEPARATER 108

java.awt.event KeyEvent VK_SHIFT 16

java.awt.event KeyEvent VK_SLASH 47

java.awt.event KeyEvent VK_SPACE 32

java.awt.event KeyEvent VK_SUBTRACT 109

java.awt.event KeyEvent VK_T 84

java.awt.event KeyEvent VK_TAB 9

java.awt.event KeyEvent VK_U 85

java.awt.event KeyEvent VK_UNDEFINED 0

java.awt.event KeyEvent VK_UP 38

java.awt.event KeyEvent VK_V 86

java.awt.event KeyEvent VK_W 87

java.awt.event KeyEvent VK_X 88

java.awt.event KeyEvent VK_Y 89

java.awt.event KeyEvent VK_Z 90

java.awt.event MouseEvent MOUSE_CLICKED 500

java.awt.event MouseEvent MOUSE_DRAGGED 506

java.awt.event MouseEvent MOUSE_ENTERED 504

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 80

Package Class or Interface Field Name Value

java.awt.event MouseEvent MOUSE_EXITED 505

java.awt.event MouseEvent MOUSE_FIRST 500

java.awt.event MouseEvent MOUSE_LAST 506

java.awt.event MouseEvent MOUSE_MOVED 503

java.awt.event MouseEvent MOUSE_PRESSED 501

java.awt.event MouseEvent MOUSE_RELEASED 502

java.awt.event PaintEvent PAINT 800

java.awt.event PaintEvent PAINT_FIRST 800

java.awt.event PaintEvent PAINT_LAST 801

java.awt.event PaintEvent UPDATE 801

java.awt.event TextEvent TEXT_FIRST 900

java.awt.event TextEvent TEXT_LAST 900

java.awt.event TextEvent TEXT_VALUE_CHANGED 900

java.awt.event WindowEvent WINDOW_ACTIVATED 205

java.awt.event WindowEvent WINDOW_CLOSED 202

java.awt.event WindowEvent WINDOW_CLOSING 201

java.awt.event WindowEvent WINDOW_DEACTIVATED 206

java.awt.event WindowEvent WINDOW_DEICONIFIED 204

java.awt.event WindowEvent WINDOW_FIRST 200

java.awt.event WindowEvent WINDOW_ICONIFIED 203

java.awt.event WindowEvent WINDOW_LAST 206

java.awt.event WindowEvent WINDOW_OPENED 200

java.awt.image ImageConsumer COMPLETESCANLINES 4

java.awt.image ImageConsumer IMAGEABORTED 4

java.awt.image ImageConsumer IMAGEERROR 1

java.awt.image ImageConsumer RANDOMPIXELORDER 1

java.awt.image ImageConsumer SINGLEFRAME 16

java.awt.image ImageConsumer SINGLEFRAMEDONE 2

java.awt.image ImageConsumer SINGLEPASS 8

java.awt.image ImageConsumer STATICIMAGEDONE 3

java.awt.image ImageConsumer TOPDOWNLEFTRIGHT 2

java.awt.image ImageObserver ABORT 128

java.awt.image ImageObserver ALLBITS 32

java.awt.image ImageObserver ERROR 64

java.awt.image ImageObserver FRAMEBITS 16

java.awt.image ImageObserver HEIGHT 2

java.awt.image ImageObserver PROPERTIES 4

java.awt.image ImageObserver SOMEBITS 8

java.awt.image ImageObserver WIDTH 1

java.io PipedInputStream PIPE_SIZE 1024

java.io StreamTokenizer TT_EOF -1

java.io StreamTokenizer TT_EOL 10

java.io StreamTokenizer TT_NUMBER -2

java.io StreamTokenizer TT_WORD -3

java.lang Byte MAX_VALUE 127

java.lang Byte MIN_VALUE -128

java.lang Character COMBINING_SPACING_MARK 8

java.lang Character CONNECTOR_PUNCTUATION 23

java.lang Character CONTROL 15

java.lang Character CURRENCY_SYMBOL 26

java.lang Character DASH_PUNCTUATION 20

java.lang Character DECIMAL_DIGIT_NUMBER 9

java.lang Character ENCLOSING_MARK 7

java.lang Character END_PUNCTUATION 22

java.lang Character FORMAT 16

java.lang Character LETTER_NUMBER 10

java.lang Character LINE_SEPARATOR 13

java.lang Character LOWERCASE_LETTER 2

java.lang Character MATH_SYMBOL 25

java.lang Character MAX_RADIX 36

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 81

Package Class or Interface Field Name Value

java.lang Character MAX_VALUE 65535

java.lang Character MIN_RADIX 2

java.lang Character MIN_VALUE 0

java.lang Character MODIFIER_LETTER 4

java.lang Character MODIFIER_SYMBOL 27

java.lang Character NON_SPACING_MARK 6

java.lang Character OTHER_LETTER 5

java.lang Character OTHER_NUMBER 11

java.lang Character OTHER_PUNCTUATION 24

java.lang Character OTHER_SYMBOL 28

java.lang Character PARAGRAPH_SEPARATOR 14

java.lang Character PRIVATE_USE 18

java.lang Character SPACE_SEPARATOR 12

java.lang Character START_PUNCTUATION 21

java.lang Character SURROGATE 19

java.lang Character TITLECASE_LETTER 3

java.lang Character UNASSIGNED 0

java.lang Character UPPERCASE_LETTER 1

java.lang Double MAX_VALUE 1.7976931348623157E308

java.lang Double MIN_VALUE 4.9406564584124654E-324

java.lang Double NaN NaN

java.lang Double NEGATIVE_INFINITY -Infinity

java.lang Double POSITIVE_INFINITY Infinity

java.lang Float MAX_VALUE 3.4028235E38

java.lang Float MIN_VALUE 1.40129846E-45

java.lang Float NaN NaN

java.lang Float NEGATIVE_INFINITY -Infinity

java.lang Float POSITIVE_INFINITY Infinity

java.lang Integer MAX_VALUE 2147483647

java.lang Integer MIN_VALUE -2147483648

java.lang Long MAX_VALUE 9223372036854775807

java.lang Long MIN_VALUE -9223372036854775808

java.lang Math E 2.718281828459045

java.lang Math PI 3.141592653589793

java.lang Short MAX_VALUE 32767

java.lang Short MIN_VALUE -32768

java.lang Thread MAX_PRIORITY 10

java.lang Thread MIN_PRIORITY 1

java.lang Thread NORM_PRIORITY 5

java.lang.reflect Member DECLARED 1

java.lang.reflect Member PUBLIC 0

java.lang.reflect Modifier ABSTRACT 1024

java.lang.reflect Modifier FINAL 16

java.lang.reflect Modifier INTERFACE 512

java.lang.reflect Modifier NATIVE 256

java.lang.reflect Modifier PRIVATE 2

java.lang.reflect Modifier PROTECTED 4

java.lang.reflect Modifier PUBLIC 1

java.lang.reflect Modifier STATIC 8

java.lang.reflect Modifier SYNCHRONIZED 32

java.lang.reflect Modifier TRANSIENT 128

java.lang.reflect Modifier VOLATILE 64

java.text DateFormat AM_PM_FIELD 14

java.text DateFormat DATE_FIELD 3

java.text DateFormat DAY_OF_WEEK_FIELD 9

java.text DateFormat DAY_OF_WEEK_IN_MONTH_FIELD 11

java.text DateFormat DAY_OF_YEAR_FIELD 10

java.text DateFormat DEFAULT 2

java.text DateFormat ERA_FIELD 0

java.text DateFormat FULL 0

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 82

Package Class or Interface Field Name Value

java.text DateFormat HOUR_OF_DAY0_FIELD 5

java.text DateFormat HOUR_OF_DAY1_FIELD 4

java.text DateFormat HOUR0_FIELD 16

java.text DateFormat HOUR1_FIELD 15

java.text DateFormat LONG 1

java.text DateFormat MEDIUM 2

java.text DateFormat MILLISECOND_FIELD 8

java.text DateFormat MINUTE_FIELD 6

java.text DateFormat MONTH_FIELD 2

java.text DateFormat SECOND_FIELD 7

java.text DateFormat SHORT 3

java.text DateFormat TIMEZONE_FIELD 17

java.text DateFormat WEEK_OF_MONTH_FIELD 13

java.text DateFormat WEEK_OF_YEAR_FIELD 12

java.text DateFormat YEAR_FIELD 1

java.text NumberFormat FRACTION_FIELD 1

java.text NumberFormat INTEGER_FIELD 0

java.util Calendar AM 0

java.util Calendar AM_PM 9

java.util Calendar APRIL 3

java.util Calendar AUGUST 7

java.util Calendar DATE 5

java.util Calendar DAY_OF_MONTH 5

java.util Calendar DAY_OF_WEEK 7

java.util Calendar DAY_OF_WEEK_IN_MONTH 8

java.util Calendar DAY_OF_YEAR 6

java.util Calendar DECEMBER 11

java.util Calendar DST_OFFSET 16

java.util Calendar ERA 0

java.util Calendar FEBRUARY 1

java.util Calendar FIELD_COUNT 17

java.util Calendar FRIDAY 6

java.util Calendar HOUR 10

java.util Calendar HOUR_OF_DAY 11

java.util Calendar JANUARY 0

java.util Calendar JULY 6

java.util Calendar JUNE 5

java.util Calendar MARCH 2

java.util Calendar MAY 4

java.util Calendar MILLISECOND 14

java.util Calendar MINUTE 12

java.util Calendar MONDAY 2

java.util Calendar MONTH 2

java.util Calendar NOVEMBER 10

java.util Calendar OCTOBER 9

java.util Calendar PM 1

java.util Calendar SATURDAY 7

java.util Calendar SECOND 13

java.util Calendar SEPTEMBER 8

java.util Calendar SUNDAY 1

java.util Calendar THURSDAY 5

java.util Calendar TUESDAY 3

java.util Calendar UNDECIMBER 12

java.util Calendar WEDNESDAY 4

java.util Calendar WEEK_OF_MONTH 4

java.util Calendar WEEK_OF_YEAR 3

java.util Calendar YEAR 1

java.util Calendar ZONE_OFFSET 15

java.util GregorianCalendar AD 1

java.util GregorianCalendar BC 0

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 83

Package Class or Interface Field Name Value

java.util.zip ZipEntry DEFLATED 8

java.util.zip ZipEntry STORED 0

javax.media CachingControl LENGTH_UNKNOWN java.lang.Long.MAX_VALUE

javax.media Controller Prefetched 500

javax.media Controller Prefetching 400

javax.media Controller Realized 300

javax.media Controller Realizing 200

javax.media Controller Started 600

javax.media Controller Unrealized 100

javax.media Time ONE_SECOND 1000000000

javax.media.protocol Positionable RoundDown 2

javax.media.protocol Positionable RoundNearest 3

javax.media.protocol Positionable RoundUp 1

javax.media.protocol SourceStream LENGTH_UNKNOWN -1

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 84

ANNEX C. JAVA SYSTEM PROPERTIES

The entirety of this annex is normative.

This annex specifies the values of certain Java system properties which are accessible by

means of System.getProperty(java.lang.String) and related methods. A procedural

application environment shall use the values defined below except where marked implementation

specific in which case an implementation specified value shall be used. Access to read these

properties shall not be denied to any application.

Other than the properties listed below, system properties that begin with "dase" or

"org.atsc" are reserved for future use and shall not be used by an application entity or

procedural application environment.

Table 12 Java System Properties

Property Name Value

"dase.delivery.system" “ARM”

"dase.implementation.name" implementation specific

"dase.implementation.vendor" implementation specific

"dase.implementation.version" implementation specific

"dase.implementation.level" “1”

"dase.specification.name" “DASE-1”

"dase.specification.vendor" “ATSC”

"dase.specification.version" “1.0”

“file.separator” implementation specific

“line.separator” implementation specific

“path.separator” implementation specific

“user.language” user specified language identifier

“user.region” user specified region identifier

“user.timezone” user specified timezone identifier

Notes

1. It is recommended that the value of the "file.separator" system property be "/".

2. It is recommended that the value of the "line.separator" system property be "\n".

3. It is recommended that the value of the "path.separator" system property be ";".

4. The value of the "user.language" system property shall either be an empty string or be

consistent with the syntax of the language identifier as returned by java.util.Locale.-

getLanguage(). The actual value should be specified or specifiable by the end-user in an

implementation specific fashion.

5. The value of the "user.region" system property shall either be an empty string or be

consistent with the syntax of a string composed of a country identifier as returned by

java.util.Locale.getCountry() followed optionally by '_' (underscore) and a variant

identifier as returned by java.util.Locale.getVariant(). The actual value should be

specified or specifiable by the end-user in an implementation specific fashion.

6. The value of the "user.timezone" system property shall be consistent with the syntax of the

timezone identifier as returned by java.util.TimeZone.getID(). The actual value should

be specified or specifiable by the end-user in an implementation specific fashion.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 85

ANNEX D. XLET CONTEXT PROPERTIES

The entirety of this annex is normative.

This annex specifies all standard, pre-defined properties which are accessible by means of

javax.tv.xlet.XletContext.getXletProperty().

Other than the properties listed below, Xlet context properties which begin with "dase" or

"org.atsc" are reserved for future use and shall not be used by an application entity or

procedural application environment.

Table 13 Xlet Context Properties

Property Key Value Type

"javax.tv.xlet.args" java.lang.String[]

"org.atsc.trigger.source.default" org.atsc.trigger.TriggerSource

"org.atsc.util.locales" java.util.Locale[]

"org.atsc.xlet.obj.codebase" java.lang.String or null

"org.atsc.xlet.obj.data" java.lang.String or null

"org.atsc.xlet.obj.type" java.lang.String or null

The determination of the values of these properties is described in the following sub-

sections.

D.1 javax.tv.xlet.args

The value of the Xlet context property javax.tv.xlet.args shall be a String array whose

entries are determined as follows:

(1) for a primary Xlet, use the values of the arg.n application parameters specified by the

application’s metadata resource in accordance with [DASE], Section 6.1.1.13.1;

(2) for a secondary Xlet, use the value of the args parameter provided to the

org.atsc.xlet.XletRegistry.startXlet(…) method;

(3) for an embedded Xlet, use the values of the arg.n parameters specified by param

element children of the object element in accordance with DASE-1 Part 2: Declarative

Applications and Environment, Section 5.1.1.6.8.

Note: See Section 3.3 for definitions of primary, secondary, and embedded Xlets.

D.2 org.atsc.trigger.source.default

The value of the Xlet context property org.atsc.trigger.source.default shall be

determined as follows:

(1) for each Xlet, create and use an instance of org.atsc.trigger.TriggerSource.

Note: The use of distinct instances of TriggerSource for distinct Xlets is not intended to

imply the presence of multiple broadcast trigger sources; that is, a single broadcast trigger

source whose target is a single DASE application results in dispatching each

TriggerEvent to each TriggerListener registered with each TriggerSource

instance associated with the single broadcast trigger source.

D.3 org.atsc.util.locales

The value of the Xlet context property org.atsc.util.locales shall be an array of

java.util.Locale objects where each object is a cloned copy of the java.util.Locale object

representing a supported locale.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 86

Note: The value of this Xlet context property is equivalent to that returned by the

java.util.Locale.getAvailableLocales() method defined by [JDK1.2.2] but not

supported by [PJAE].

D.4 org.atsc.xlet.obj.codebase

The value of the Xlet context property org.atsc.xlet.obj.codebase shall be determined

as follows:

(1) for an embedded Xlet, use the absolutized form of the URI value of the object element’s

codebase attribute, if specified, or an empty string, if not specified;

(2) otherwise, use the value null.

D.5 org.atsc.xlet.obj.data

The value of the Xlet context property org.atsc.xlet.obj.data shall be determined as

follows:

(1) for an embedded Xlet, use the absolutized form of the URI value of the object element’s

data attribute, if specified, or an empty string, if not specified;

(2) otherwise, use the value null.

D.6 org.atsc.xlet.obj.type

The value of the Xlet context property org.atsc.xlet.obj.type shall be determined as

follows:

(1) for an embedded Xlet, use the value of the object element’s type attribute, if specified, or

an empty string, if not specified;

(2) otherwise, use the value null;

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 87

ANNEX E. INTERNATIONAL RESOURCES

The entirety of this annex and its subsections is normative.

This annex specifies certain resources required to support Java localization and

internationalization features.

E.1 External Character Encodings

A procedural application environment shall support the following external character

encoding systems. These systems shall be supported by all Java methods which take a character

encoding system name as an argument; e.g., String(byte[],int,int,String) and

String.getBytes(String). A procedural application environment should use [UTF-8] as the

default platform character encoding system.

Table 14 External Character Encodings

Character Encoding Name Description

“UTF-8” UCS Transformation Format, 8-bit Form

“ISO-8859-1” ISO Latin 1

E.2 Built-In Locales

A procedural application environment shall support all necessary resources required to

implement the semantics of the following locales:

Table 15 Built-In Locales

Locale Name Predefined Locale Field Description

“en” Locale.ENGLISH English, Generic

“en_US” Locale.US English, United States

“en_CA” Locale.CANADA English, Canada

“fr” Locale.FRENCH French, Generic

“fr_CA” Locale.CANADA_FRENCH Fench, Canada

“es” none Spanish, Generic

“es_MX” none Spanish, Mexico

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 88

CHANGES

The entirety of this section is informative.

Changes from Candidate Standard to Standard

The following table enumerates the changes between the issuance of the candidate

standard edition of this specification and the standard edition.

Table 16 Changes from Candidate Standard

Section Description

1 Change status to standard.

2 Add [DASE-ZIP] normative reference.

2 Change [JAR-MANIFEST] to [JAR]; update name and hyperlink.

2 Add [JDK1.1.8] and [JDK1.2.2] normative references.

2 Add [MIME-MEDIA] normative reference.

2 Add [UTF-8] normative reference; update [UNICODE] to reference Unicode Version 3.2.

3 Add JDK acronym.

4.5 Clarify relative file name resolution for application delivery file systems.

4.5 Clarify role and value of class file name extension.

5.1 Clarify requirements for default constructors.

5.1 Correct reference to ClassNotFoundException to read NoClassDefFoundError.

5.1 Correct references to No{Method,Field}FoundException to read No{Method,Field}FoundError.

5.1 Recommend use of java.lang.UnsupportedOperationException.

5.1.1.2.1 Don't require java.awt.AWTEventMulticaster.save(ObjectOutputStream,String)

5.1.1.2.1 Don't require java.awt.AWTEventMulticaster.saveInternal(ObjectOutputStream,String)

5.1.1.2.1 Specify values of java.awt.Color constants.

5.1.1.2.1 Don't require java.awt.GridBagLayoutInfo.

5.1.1.2.1 Don't require java.awt.MenuContainer.

5.1.1.2.1 Don't require java.awt.Component to implement MenuContainer, but do require getFont().

5.1.1.2.1 Don't require java.awt.Component.list().

5.1.1.2.1 Don't require java.awt.Component.list(PrintStream).

5.1.1.2.1 Don't require java.awt.Component.list(PrintStream,int).

5.1.1.2.1 Don't require java.awt.Component.list(PrintWriter).

5.1.1.2.1 Don't require java.awt.Component.list(PrintWriter,int).

5.1.1.2.1 Don't require java.awt.Component.paramString().

5.1.1.2.1 Recommend UnsupportedOperationException if setCursor() semantics aren't supported.

5.1.1.2.1 Don't require java.awt.Container.add(String,Component).

5.1.1.2.1 Don't require java.awt.Container.addImpl(Component,Object,int).

5.1.1.2.1 Don't require java.awt.Container.list(PrintStream,int).

5.1.1.2.1 Don't require java.awt.Container.list(PrintWriter,int).

5.1.1.2.1 Don't require java.awt.Container.printComponents(Graphics).

5.1.1.2.1 Recommend java.awt.Dimension.hashCode().

5.1.1.2.1 Clarify semantics of java.awt.FontMetrics.bytesWidth(byte[],int,int).

5.1.1.2.1 Clarify semantics of java.awt.Graphics.drawBytes(byte[],int,int,int,int).

5.1.1.2.1 Don't require java.awt.GridBagLayout.comptable.

5.1.1.2.1 Don't require java.awt.GridBagLayout.defaultConstraints.

5.1.1.2.1 Don't require java.awt.GridBagLayout.layoutInfo.

5.1.1.2.1 Don't require java.awt.GridBagLayout.MAXGRIDSIZE.

5.1.1.2.1 Don't require java.awt.GridBagLayout.MINSIZE.

5.1.1.2.1 Don't require java.awt.GridBagLayout.PREFERREDSIZE.

5.1.1.2.1 Don't require java.awt.GridBagLayout.AdjustForGravity(GridBagConstraints,Rectangle).

5.1.1.2.1 Don't require java.awt.GridBagLayout.ArrangeGrid(Container).

5.1.1.2.1 Don't require java.awt.GridBagLayout.GetLayoutInfo(Container,int).

5.1.1.2.1 Don't require java.awt.GridBagLayout.GetMinSize(Container,GridBagLayoutInfo).

5.1.1.2.1 Clarify semantics of java.awt.Image.getProperty(String); specify pre-defined image properties.

5.1.1.2.1 Recommend java.awt.Insets.hashCode().

5.1.1.2.1 Don't require java.awt.Toolkit.getNativeContainer(Component).

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 89

Section Description

5.1.1.2.1 Don't require java.awt.Toolkit.getScreenResolution().

5.1.1.2.1 Don't require java.awt.Toolkit.getSystemEventQueue().

5.1.1.2.1 Don't require java.awt.Toolkit.getSystemEventQueueImpl().

5.1.1.2.1 Clarify semantics of java.awt.Toolkit.createImage(byte[]).

5.1.1.2.1 Clarify semantics of java.awt.Toolkit.getProperty(String,String).

5.1.1.2.1 Don't require java.awt.event.KeyEvent(Component,int,long,int,int).

5.1.1.2.1 Clarify semantics of java.awt.event.KeyEvent.isAction().

5.1.1.2.1 Don't require java.awt.image.ColorModel.finalize().

5.1.1.2.1 Clarify semantics of java.awt.image.CropImageFilter.setProperties(Hashtable).

5.1.1.2.1 Clarify override semantics of java.awt.image.DirectColorModel.getRGB().

5.1.1.2.1 Clarify semantics of java.awt.image. ImageFilter methods reserved for use by image producer.

5.1.1.2.1 Clarify semantics of java.awt.image. ImageFilter.setProperties(Hashtable).

5.1.1.2.1 Don't require java.awt.image.PixelGrabber.status().

5.1.1.2.1 Clarify semantics of java.awt.image. ReplicateScaleFilter.setProperties(Hashtable).

5.1.1.2.1 Don't require java.beans.BeanDescriptor.

5.1.1.2.1 Don't require java.beans.BeanInfo.

5.1.1.2.1 Don't require java.beans.Customizer.

5.1.1.2.1 Don't require java.beans.EventSetDescriptor.

5.1.1.2.1 Don't require java.beans.FeatureDescriptor.

5.1.1.2.1 Don't require java.beans.IndexedPropertyDescriptor.

5.1.1.2.1 Don't require java.beans.IntrospectionException.

5.1.1.2.1 Don't require java.beans.Introspector.

5.1.1.2.1 Don't require java.beans.MethodDescriptor.

5.1.1.2.1 Don't require java.beans.ParameterDescriptor.

5.1.1.2.1 Don't require java.beans.PropertyDescriptor.

5.1.1.2.1 Don't require java.beans.PropertyEditor.

5.1.1.2.1 Don't require java.beans.PropertyEditorManager.

5.1.1.2.1 Don't require java.beans.PropertyEditorSupport.

5.1.1.2.1 Don't require java.beans.SimpleBeanInfo

5.1.1.2.1 Don't require java.beans.Beans.getInstanceOf(Object,Class).

5.1.1.2.1 Don't require java.beans.Beans.isInstanceOf(Object,Class).

5.1.1.2.1 Don't require java.beans.Beans.setDesignTime(boolean).

5.1.1.2.1 Don't require java.beans.Beans.setGuiAvailable(boolean).

5.1.1.2.1 Constrain semantics of java.beans.Beans.isDesignTime().

5.1.1.2.1 Constrain semantics of java.beans.Beans.isGuiAvailable().

5.1.1.2.1 Require semantic support for java.io.* types related to object serialization.

5.1.1.2.1 Constrain semantics of java.io.BufferedInputStream.BufferedInputStream(InputStream).

5.1.1.2.1 Clarify semantics of java.io.DataInput with respect to JDK1.2.2.

5.1.1.2.1 Don't require java.io.DataInput.readLine().

5.1.1.2.1 Clarify semantics of java.io.DataOutput with respect to JDK1.2.2.

5.1.1.2.1 Clarify semantics of java.io.File with respect to object carousel directories.

5.1.1.2.1 Clarify semantics of java.io.FileInputStream with respect to JDK1.2.2.

5.1.1.2.1 Clarify semantics of java.io.FileOutputStream with respect to JDK1.2.2.

5.1.1.2.1 Require semantic support for java.io.ObjectInputStream.

5.1.1.2.1 Require semantic support for java.io.ObjectOutputStream.

5.1.1.2.1 Require semantic support for java.io.ObjectStreamClass.

5.1.1.2.1 Clarify semantics of java.io.ObjectInputStream with respect to JDK1.2.2.

5.1.1.2.1 Clarify semantics of java.io.ObjectOutputStream with respect to JDK1.2.2.

5.1.1.2.1 Clarify semantics of java.io.PipedInputStream constants.

5.1.1.2.1 Don't require java.io.RandomAccessFile.readLine().

5.1.1.2.1 Don't require java.lang.Compiler.

5.1.1.2.1 Don't require java.lang.Process.

5.1.1.2.1 Don't require java.lang.Class.getClasses().

5.1.1.2.1 Don't require java.lang.Class.getDeclaredClasses().

5.1.1.2.1 Clarify semantics of java.lang.Class with respect to JDK1.2.2.

5.1.1.2.1 Permit java.lang.ClassLoader.loadClass(String,boolean) to be concrete.

5.1.1.2.1 Clarify semantics of java.lang.ClassLoader.findLoadedClass(String) with respect to JDK1.2.2.

5.1.1.2.1 Constrain semantics of java.lang.Float constants.

5.1.1.2.1 Constrain semantics of java.lang.Double constants.

5.1.1.2.1 Clarify semantics of java.lang.Math with regard to non-strict floating point.

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 90

Section Description

5.1.1.2.1 Clarify semantics of java.lang.Object.toString() with regard to form of return value.

5.1.1.2.1 Don't require java.lang.Runtime.traceInstructions().

5.1.1.2.1 Don't require java.lang.Runtime.traceMethodCalls().

5.1.1.2.1 Don't require java.lang.Runtime.exec(…).

5.1.1.2.1 Don't require java.lang.Runtime.exit(int).

5.1.1.2.1 Don't require java.lang.Runtime.load(String).

5.1.1.2.1 Don't require java.lang.Runtime.loadLibrary(String).

5.1.1.2.1 Don't require java.lang.SecurityManager.classDepth(String).

5.1.1.2.1 Don't require java.lang.SecurityManager.classLoaderDepth().

5.1.1.2.1 Don't require java.lang.SecurityManager.currentClassLoader().

5.1.1.2.1 Don't require java.lang.SecurityManager.currentLoadedClass().

5.1.1.2.1 Don't require java.lang.SecurityManager.getInCheck().

5.1.1.2.1 Don't require java.lang.SecurityManager.inClass(String).

5.1.1.2.1 Don't require java.lang.SecurityManager.inClassLoader().

5.1.1.2.1 Don't require java.lang.SecurityManager.inCheck.

5.1.1.2.1 Clarify semantics of java.lang.String.String(byte[],int,int).

5.1.1.2.1 Don't require java.lang.System.exit(int).

5.1.1.2.1 Don't require java.lang.System.load(String).

5.1.1.2.1 Don't require java.lang.System.loadLibrary(String).

5.1.1.2.1 Don't require java.lang.System.setIn(InputStream).

5.1.1.2.1 Don't require java.lang.System.setErr(PrintStream).

5.1.1.2.1 Don't require java.lang.System.setOut(PrintStream).

5.1.1.2.1 Require java.lang.UnsupportedOperationException.

5.1.1.2.1 Don't require java.net.MulticastSocket.getTTL().

5.1.1.2.1 Don't require java.net.MulticastSocket.send(DatagramPacket,byte).

5.1.1.2.1 Don't require java.net.MulticastSocket.setTTL(byte).

5.1.1.2.1 Don't require java.security.Key.serialVersionUID.

5.1.1.2.1 Clarify semantics of java.security.Provider with respect to JDK1.2.2.

5.1.1.2.1 Don't require java.security.PublicKey.serialVersionUID.

5.1.1.2.1 Don't require java.security.Security.getAlgorithmProperty(String,String).

5.1.1.2.1 Don't require java.text.CharacterIterator.

5.1.1.2.1 Don't require java.text.BreakIterator.

5.1.1.2.1 Don't require java.text.CollationElementIterator.

5.1.1.2.1 Don't require java.text.CollationKey.

5.1.1.2.1 Don't require java.text.Collator.

5.1.1.2.1 Don't require java.text.RuleBasedCollator.

5.1.1.2.1 Don't require java.text.StringCharacterIterator.

5.1.1.2.1 Clarify semantics of java.util.Calendar.after(Object) with regard to argument type.

5.1.1.2.1 Clarify semantics of java.util.Calendar.before(Object) with regard to argument type.

5.1.1.2.1 Recommend override of java.util.Calendar.hashCode().

5.1.1.2.1 Don't require java.util.Date.Date(String).

5.1.1.2.1 Recommend override of java.util.Date.clone().

5.1.1.2.1 Clarify semantics of java.util.Locale.getDefault().

5.1.1.2.1 Clarify semantics of java.util.Locale.setDefault(Locale) with regard to priviliged operation access.

5.1.1.2.1 Specify use of Xlet context property to obtain supported java.util.Locale instances.

5.1.1.2.1 Don't require java.util.Properties.save(OutputStream,String).

5.1.1.2.1 Don't require java.util.Properties.list(PrintStream).

5.1.1.2.1 Don't require java.util.Properties.list(PrintWriter).

5.1.1.2.1 Specify syntax of property list resource read by java.util.Properties.load(InputStream).

5.1.1.2.1 Constrain semantics of java.util.Properties.put(Object,Object).

5.1.1.2.1 Clarify semantics of java.util.PropertyResourceBundle.PropertyResourceBundle(InputStream).

5.1.1.2.1 Specify convention for determining locale represented by a ResourceBundle.

5.1.1.2.1 Specify syntax of time zone identifiers used by java.util.TimeZone.

5.1.1.2.1 Clarify semantics of java.util.TimeZone.getDefault().

5.1.1.2.1 Clarify semantics of java.util.TimeZone.setDefault(TimeZone) with regard to priviliged operation access.

5.1.1.2.1 Constrain semantics of java.util.zip.CRC32 with regard to algorithm.

5.1.1.2.1 Don't require java.util.zip.Inflater.Inflater().

5.1.1.2.1 Don't require java.util.zip.Inflater.getAdler().

5.1.1.2.1 Don't require java.util.zip.Inflater.setDictionary(byte[]).

5.1.1.2.1 Don't require java.util.zip.Inflater.setDictionary(byte[],int,int).

ATSC DASE-1 Procedural Applications and Environment 09 Mar 2003

 PAGE 91

Section Description

5.1.1.2.1 Clarify semantics of java.util.zip.Inflater with regard to ZLIB support.

5.1.1.2.1 Recommend override of java.util.zip.InflaterInputStream.available().

5.1.1.2.1 Recommend override of java.util.zip.InflaterInputStream.close().

5.1.1.2.1 Don't require com.sun.awt package.

5.1.1.2.1 Don't require com.sun.lang package.

5.1.1.2.1 Don't require java.util code signing optional group.

5.1.1.2.1 Don't require java.util.jar code signing optional group.

5.1.1.2.2 Clarify semantics of javax.media.protocol.DataSource.setMediaLocator(MediaLocator).

5.1.1.2.2 Constrain value of javax.media.Manager.UNKNOWN_CONTENT_NAME.

5.1.1.2.2 Clarify semantics of javax.media.Manager.getDataSourceList(String).

5.1.1.2.2 Clarify semantics of javax.media.Manager.getHandlerClassList(String).

5.1.1.2.2 Constrain semantics of javax.media.protocol.ContentDescriptor with regard to content type name.

5.1.1.2.2 Constrain value of javax.media.protcol.ContentDescriptor.CONTENT_UNKNOWN.

5.1.1.2.2 Constrain value of javax.media.Clock.RESET.

5.1.1.2.2 Constrain value of javax.media.Controller.LATENCY_UNKNOWN.

5.1.1.2.2 Constrain value of javax.media.Duration.DURATION_UNBOUNDED.

5.1.1.2.2 Constrain value of javax.media.Duration.DURATION_UNKNOWN.

5.1.1.2.2 Constrain return value of javax.media.protocol.DataSource.getContentType().

5.1.1.2.2 Don't require javax.media.protocol.DataSource.initCheck().

5.1.1.2.2 Require javax.media.protocol.ContentDescriptor.mimeTypeToPackageName(String) to be public.

5.1.1.2.2 Change process_em_data_flag field in DTVCC Frame Format to reserved.

5.1.1.2.2 Change em_data field in DTVCC Frame Format to reserved.

5.1.1.2.3 Unconstrain javax.tv.carousel.CarouselFile to support object carousel directories.

5.1.1.2.3 Unconstrain javax.tv.locator.LocatorFactory to support object carousel directories.

5.1.1.2.3 Don't require a runtime exception from javax.tv.media.protocol.PushSourceStream2.read(byte[],int,int).

5.1.1.2.3 Remove constraint on javax.tv.service.selection.ServiceContextFactory.createServiceContext().

5.1.1.2.4 Remove dependence on com.sun.awt package.

5.1.1.2.6 Change org.w3c.dom.html to org.w3c.dom.html2.

5.1.1.2.7 Reserve sole use of org.atsc namespace for ATSC standardization purposes.

5.3 Add text content facility.

5.3.1 Add text/plain content type.

5.4.1 Constrain use of content-type per-entry attribute.

5.4.1 Don't require semantic support for digital signature of archive.

A Remove com.sun.awt package.

A Remove com.sun.lang package.

A Remove non-required types from java.beans.

A Remove non-required Compiler and Process types from java.lang.

A Add UnsupportedOperationException type to java.lang.

A Remove non-required types from java.text.

A Remove java.util code-signing optional group types.

A Remove java.util.jar package.

A Add org.atsc.dom.events package.

A Add org.atsc.dom.events.KeyEvent.

A Add org.atsc.dom.events.KeyModifiers.

A Add org.atsc.dom.events.VirtualKeys.

A Add org.atsc.dom.html.HTMLImageElementExt.

A Add missing types to org.havi.ui.event: H{Item,Key,Text}{Event,Listener}.

A Change org.w3c.dom.html to org.w3c.dom.html2.

A Add org.w3c.dom.html2.{HTMLImageElement,HTMLOptionsCollection}.

A Remove org.w3c.dom.html2.HTMLDOMImplementation due to removal from DOM2-HTML CR.

B Add missing java.awt.GridBagConstraints constants.

B Add missing java.lang.Double.MIN_VALUE constant.

B Correct value of java.lang.Float.MIN_VALUE constant.

C Remove javatv.* system properties.

C Specify user.language system property.

C Specify user.region system property.

C Specify user.timezone system property.

D Add org.atsc.util.locales Xlet context property.

E Recommend use of UTF-8 as default character encoding system.

E Correct case of locale names.

