
P1

Building portlet
applications

Building portlet application

This chapter covers

■ Creating portlet controllers

■ Mapping portlet request to controllers

■ Processing form submissions

■ Handling exceptions



P2 Building portlet applications

“Think outside the box!”

 Despite this commonly touted advice, we often think inside the box. Hollywood

Squares, your local post office, high school yearbooks, Sudoku puzzles, and the

opening credits of The Brady Bunch are all places where we’re forced to think in

terms of boxes. How can we be expected to think outside of the box when we are

constantly confronted with boxes?

 Another place where we commonly think inside the box is with windows-based

operating systems such as Microsoft Windows and Mac OS. If you’ve been around

long enough, you’ll remember that in the old days of MS-DOS, you could run only

one program at a time. But ever since Microsoft Windows and other similar oper-

ating systems came along, we have been able to not only run multiple applications

simultaneously, but also see them all on the screen at the same time.

 In many ways, most web applications are like those old MS-DOS applications in

that you can only access them one at a time. They consume the web browser’s

entire content pane. If you want to use a different web application, you must navi-

gate away from the first application or open a separate browser window.

 Then there are portals. Unlike conventional websites, it is possible to view sev-

eral different applications at once on a single portal page. Each application is

allotted a certain amount of browser real estate and is displayed alongside other

applications on the same page. 

 Moreover, portals are often personalized according to each user’s preferences,

interests, and activity. This means that each user of a portal will get their own ver-

sion of the portal page tailor-made for them.

 For an example of a typical portal site, have a look at Google’s iGoogle portal

in figure P.1.

 Notice that although figure P.1 is showing a single web page, there is a lot of

information aggregated on that one page. There are two different sets of news

headlines (Top Stories and CNN.com), a list of how-tos, a Sudoku game, a weather

forecast, and a calendar. That’s the whole point of portals: to collect multiple, pos-

sibly unrelated functionality and information in one convenient location. Other-

wise, you might have to visit and potentially log into six different websites to get all

of the information shown on this single page.

 Although there are no distinct lines, it’s not hard to imagine each section of

the portal being contained within a box. These mini-applications within a portal

page are commonly referred to as portlets.



Building portlet application P3

You’ve probably already had a run-in or two with a portal-based site. In addi-

tion to iGoogle, one of the most commonly referred to portal examples on the

Internet is My Yahoo! (http://my.yahoo.com). Corporate intranets are also

often portal based. Even Amazon.com has some portal qualities if you look at it

closely enough.

 Portal-based websites have been around almost as long as the Web itself. But it

wasn’t until the Java Community Process produced JSR-168, the Portlet Specifica-

Figure P.1 iGoogle is a typical example of a portal-based website, aggregating several functions on one 

single page.



P4 Building portlet applications

tion, that there was a standard approach to building portlets. The Portlet Specifi-

cation standardizes how portlets should be developed and deployed in Java. In

short, it defines the contract between a portlet and a portal server that will host

the portlets.

 In this chapter, we’re going to look at Spring Portlet MVC, an MVC framework

geared toward building applications that live in boxes. More specifically, Spring

Portlet MVC is used to build applications based on the Java Portlet API. 

 “Oh no…not another MVC framework!”

 Before you close this chapter in disgust, hear me out. Although Spring Portlet

MVC is a separate framework from Spring MVC, there’s a lot of commonality

shared between the two. In fact, as you’ll soon find out, Spring Portlet MVC bears

a striking resemblance to Spring MVC and even reuses some of Spring MVC’s

classes. This is good news because it means that you’ll be able to leverage what you

know about Spring MVC to develop Spring Portlet MVC applications. If you’ve

already read chapters 13 and 14 of the book, you are well on your way to under-

standing how to build portlets with Spring Portlet MVC.

 I’m going to assume that you already have a basic understanding of the Java

Portlet Specification and know how to build basic portlets. If you are new to Java

portlets or simply need a refresher, I suggest that you have a look at Portlets and

Apache Portals (Manning, 2005) or Building Portals with the Java Portlet API (Apress,

2004). Both are excellent resources on building Java portlets.

P.1 Thinking inside the box

Even though many parallels can be drawn between Java’s portlet specification and

the servlet specification, portlets and servlets are about as different as apples

and… well, some other kind of apple. 

 On the surface, the Java Portlet Specification mirrors the Java Servlet Specifica-

tion in many ways:

■ A servlet is written by either implementing the javax.servlet.Servlet

interface or, more commonly, extending the abstract javax.serv-

let.http.HttpServlet class. Similarly, a portlet is written by either imple-

menting the javax.portlet.Portlet interface or by extending the

abstract javax.portlet.GenericPortlet class.

■ When implementing javax.servlet.Servlet, the key processing method

to implement is service(). When implementing javax.portlet.Portlet,



Thinking inside the box P5

there are two processing methods to implement: processAction() and

render().

■ If you choose to extend javax.servlet.http.HttpServlet, you may

choose to implement doGet(), doPost(), doPut(), or doDelete() to pro-

cess requests. With javax.portlet.GenericPortlet, you may choose to

implement doView(), doEdit(), or doHelp() to process portlet requests.

However, just as there are many similarities, there are also several differences

between servlets and portlets:

■ A servlet’s output is typically a web page that consumes the browser’s entire

content pane. Portlets, on the other hand, must share space on a web page

with other portlets.

■ A portlet can support several modes. Most of a portlet’s functionality is pre-

sented in “view” mode. But a portlet may also provide an “edit” mode for

configuring the portlet and a “help” mode to provide help information. In

contrast, servlets don’t have the concept of modes and are effectively always

in view mode.

■ The lifecycle of a portlet request is much more complex than that of a serv-

let. While a servlet only processes one type of request, portlets process both

ActionRequests and RenderRequests.  A portlet is only asked to process an

ActionRequest if the user’s action targets that particular portlet. But a port-

let will always process RenderRequests, even if the user is interacting with a

different portlet.

These differences not only help explain why portlet applications need an MVC

framework, but they also explain why Spring needs a separate MVC framework

specifically for portlets. 

P.1.1 Why portlets need MVC

While MVC frameworks such as Struts, WebWork, and Spring MVC provide a great

deal of benefits when developing servlet-based web applications, it’s very possible

to construct a complex web application using nothing but servlets and no MVC

framework at all. When a user clicks on a link or submits a form, the link’s (or the

form’s) URL could be mapped to a servlet that handles the request. If the user

wants to view a different page in the application, they just click on a link that takes

them to a different servlet.

 



P6 Building portlet applications

NOTE I’m not suggesting that you shouldn’t use an MVC framework to build a
web application—I’m only saying that you don’t have to. Even though it’s
possible to build a web application based only on servlets, MVC frame-
works simplify matters by centralizing common functionality such as
security and internationalization.

Servlet-based applications can easily go from page to page because their view is

rendered entirely in the browser. The browser isn’t tied to any particular web page

or servlet. Navigating from one servlet’s URL to another replaces the one servlet’s

view with another. 

 For a moment, imagine that you’ve been asked to develop a function-rich serv-

let-based web application. While you’re at it, imagine that you’re only allowed to

use one servlet to handle all of the application’s functionality. The servlet may

perform dozens of distinct functions, but you can never navigate away from the

servlet. Seems fairly limiting, doesn’t it?

 Portlet applications are similarly constrained. Unlike servlets that can be navi-

gated to and from in a web browser, a portlet is a fixed component among many

in a portal application’s view. Each portlet is assigned to a specific space within the

portal. While a portlet can render anything it wants in its assigned space, there’s

no way for a portlet to navigate to another portlet within that space.

 If your portlet development plans only include simple portlets, such as a

weather display portlet or an RSS viewer portlet, you won’t find this chapter help-

ful. Portlets that have limited functionality and only display one or two views do

not need an MVC framework. The portlet API’s Portlet interface and Generic-

Portlet class will probably be sufficient for your needs. However, if your portlet’s

functionality is much more interesting than a “Hello World” application, you may

want to consider using a portlet MVC framework.

 Without an MVC framework, developing a feature-rich portlet application can

be a daunting task. As shown in figure P.2, the portlet’s processAction() and

render() methods could easily become a twisted mess of if/else if and/or

switch blocks that handle the various requests that are fielded by the portlet.

 But when an MVC framework is applied to portlets, as shown in figure P.3, a

single front controller portlet can handle virtually any request. The front control-

ler portlet will handle all of the application’s requests, then dispatch them to an

appropriate controller to perform the actual business logic. 

 In short, portlet applications need an MVC framework to be able to handle

complex functionality. But where can we find such a framework?



Thinking inside the box P7

Messy Portlet

if(request.getParameter("...").equals("...")) {

portlet logic

} else if(request.getPortletMode() == ???) {

portlet logic

} else if (...) {

portlet logic

} else {

portlet logic

}

request

Figure P.2 Without an MVC framework, a portlet would be responsible for 

dispatching requests on its own.

Controller

Figure P.3

Adding functionality to an MVC-based 

portlet application has no impact on 

its complexity.



P8 Building portlet applications

P.1.2 Introducing Spring Portlet MVC

Recognizing the need for a portlet-based MVC framework, the Spring team cre-

ated Spring Portlet MVC in Spring 2. Spring Portlet MVC is a Spring-based MVC

framework specifically for building portlet applications. Using Spring Portlet MVC

we are able to build function-rich web applications that work within the confines

of a portlet box in a portal.

A day in the life of a portlet request

As we follow the path of a portlet request through a Spring Portlet MVC applica-

tion, we find that it isn’t much different from the path that a servlet request fol-

lows through a Spring MVC application. In fact, you’ll find that figure P.4, which

illustrates a portlet request’s journey, is almost indistinguishable from figure 13.1

in chapter 13 of the book, which showed the course of a servlet request.

 When the request is sent to the application from the portlet container, the first

stop B it makes is at DispatcherPortlet. DispatcherPortlet performs a very

similar job to its servlet cousin, DispatcherServlet, by delegating responsibility

for processing a request to controllers. 

 In order for DispatcherPortlet to know which controller to send the request

to, it consults one or more handler mappings C. Portlet handler mappings are

similar to Spring MVC handler mappings, except that they map portlet modes and

parameters instead of URL patterns to controllers.

 Once a suitable controller has been chosen, DispatcherPortlet sends the

request straight away to the controller for processing D.

 Here’s where a portlet request’s journey starts to vary from that of a servlet

request. Remember that portlets process two different kinds of requests: action

requests and render requests. If the request is an action request, then its journey

Request Dispatcher
Portlet

PortletMode

Parameter

HandlerMapping

ContactListController

View

ModelAndView

InternalResource

ViewResolver

B

C
D

F

G

E

/WEB-INF/jsp/
contactList.jsp

Figure P.4 DispatcherPortlet dispatches portlet requests to controllers 

and views, relying on handler mappings and view resolvers to guide its work.



Getting started with Spring Portlet MVC P9

is over once the controller completes its work. But if the request is a render

request, it still has a few more stops to make before it can call it a day.

 In the case of a render request, the controller will return a ModelAndView

object E back to DispatcherPortlet. This is the same ModelAndView that would

be returned from a Spring MVC controller. It contains a logical name of a view to

be rendered in the portlet box along with any model data that is to be displayed in

the rendered view.

 At this point, DispatcherPortlet is ready to send the request to a view imple-

mentation so that the results can be displayed in the portlet. But first, it must look

up the actual view implementation by its logical view name by consulting a view

resolver F. Since view resolution works pretty much the same, whether you’re

dealing with a conventional web application or a portlet application, Spring Port-

let MVC is able to use any of the same view resolvers that work with Spring MVC.

 The final stop for a render request is at the actual view implementation (prob-

ably a JSP). The view will use the model data contained in the request to produce

output in the portlet’s space within the portal page.

 With this basic background information behind us, let’s move forward and

start creating a portlet application using Spring Portlet MVC.

P.2 Getting started with Spring Portlet MVC

Portals are all about putting the most useful information and applications

together on one convenient web page. Very few pieces of information are nearly

as useful as a list of friends, colleagues, and associates along with their contact

information. Therefore, as a demonstration of Spring Portlet MVC, we’re going to

build a rolodex application. The Rolodex portlet will list a user’s contacts and

allow the user to add and edit contact information.

 By now you’ve probably figured out that DispatcherPortlet is at the center of

any Spring Portlet MVC application. Therefore, the first thing we’ll need to do

when building the Rolodex portlet is configure DispatcherPortlet. 

P.2.1 Configuring DispatcherPortlet

When we were building the RoadRantz application using Spring MVC, we config-

ured DispatcherServlet in web.xml. In Spring MVC, DispatcherServlet acts as

a front controller, receiving all HTTP requests bound for the application, and

then dispatches them to an appropriate controller for processing.

 For portlet applications, Spring’s Portlet MVC framework also has a front con-

troller that will dispatch requests. As we’ve already discussed, however, portlets do

not receive HTTP requests; they receive action and render requests from the



P10 Building portlet applications

portlet container. Therefore, instead of configuring a DispatcherServlet, we’ll

need to configure a front controller that will dispatch action and render requests. 

 DispatcherPortlet is Spring Portlet MVC’s answer to Spring MVC’s

DispatcherServlet. DispatcherPortlet is itself a portlet that sits in front of a

Spring portlet application, receiving portlet requests and dispatching them to

Spring portlet controllers. Listing P.1 shows our Rolodex application’s portlet.xml

file, which contains a <portlet> entry for Spring’s DispatcherPortlet.

<portlet-app

    xmlns="http://java.sun.com/xml/ns/portlet/          

        ➥ portlet-app_1_0.xsd"

    version="1.0"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-        

        ➥ instance"

    xsi:schemaLocation="http://java.sun.com/xml/        

        ➥ ns/portlet/portlet-app_1_0.xsd

                       http://java.sun.com/xml/         

        ➥ ns/portlet/portlet-app_1_0.xsd">

  <portlet>

    <portlet-name>Rolodex</portlet-name>

    <portlet-class>

        org.springframework.web.portlet.

                ➥ DispatcherPortlet

    </portlet-class>

    <supports>

      <mime-type>text/html</mime-type>

      <portlet-mode>view</portlet-mode>

      <portlet-mode>edit</portlet-mode>

      <portlet-mode>help</portlet-mode>

    </supports>

    <portlet-info>

      <title>My Contacts</title>

      <short-title>My Contacts</short-title>

      <keywords>Contacts,Rolodex</keywords>

    </portlet-info>

    <portlet-preferences>

      <preference> 

        <name>pageSize</name>

        <value>5</value>

      </preference>

    </portlet-preferences>

  </portlet>

</portlet-app>

Listing P.1 The Rolodex application’s portlet.xml file

Configures 
DispatcherPortlet

Sets portlet’s 
modes

Declares pageSize 
preference



Getting started with Spring Portlet MVC P11

The <portlet> element in listing P.1 shows a fairly typical portlet configuration.

The <supports> section describes the different modes that are supported by the

portlet—in this case, view, edit, and help modes are supported. 

 Another point of interest is the <portlet-preferences> section. This is the

section where we declare properties that can be customized by each portlet user.

For our Rolodex portlet application, we’ve defined a pageSize preference, which

will be used to specify how many Rolodex entries will be displayed on the screen

at a time.

 The most interesting parts of listing P.1 with regard to Spring Portlet MVC are

the <portlet-class> and <portlet-name> entries. The <portlet-class> ele-

ment is where we specify that the portlet in question is Spring’s DispatcherPort-

let. This is effectively the entry point into our Rolodex application.

 As you’ll remember from chapter 13 in the book, DispatcherServlet auto-

matically loads its Spring context from a file whose name is based on its <serv-

let-name> entry in web.xml. Likewise, DispatcherPortlet will, by default, load

its Spring context from a file whose name is based on its <portlet-name> entry in

portlet.xml. In our example, the portlet’s name is Rolodex; therefore, it will load

its Spring context from a file named Rolodex-portlet.xml. This is the file where

most of the beans we’ll create in this chapter will be declared.

Setting up ViewRendererServlet

As you’ll see in this chapter, Spring’s portlet MVC framework closely resembles

Spring’s web MVC framework. Even though the two frameworks are quite similar,

the differences between the Servlet API and Portlet API forced the Spring team to

create portlet-specific versions of many of the Spring MVC classes. 

 But Spring MVC’s view classes are a different story. For the most part, imple-

mentations of Spring MVC’s ViewResolver and View will work fine with Spring

Portlet MVC. The only thing is that those classes deal with ServletRequests, but

portlet applications are in the business of working with PortletRequests.

 Therefore, there’s one last bit of infrastructural configuration we need to do

before we can start developing our Spring portlet application. To bridge the gap

between portlets and Spring MVC’s view classes, we’ll need to configure a View-

RendererServlet in the portlet application’s web.xml file:

<servlet>

  <servlet-name>ViewRendererServlet</servlet-name>

  <servlet-class>

    org.springframework.web.servlet.                        

        ➥ ViewRendererServlet

  </servlet-class>



P12 Building portlet applications

  <load-on-startup>1</load-on-startup>

</servlet>

When DispatcherPortlet is ready to display the view, it will delegate to ViewRen-

dererServlet to do its dirty work. By default, DispatcherPortlet will assume

that ViewRendererServlet is mapped to /WEB-INF/servlet/view, so we’ll need to

also place the appropriate <servlet-mapping> in web.xml:

<servlet-mapping>

  <servlet-name>ViewRendererServlet</servlet-name>

  <url-pattern>/WEB-INF/servlet/view</url-pattern>

</servlet-mapping>

With DispatcherPortlet and ViewRendererServlet in place, the stage is set for

us to start writing the Rolodex portlet application. With no further delay, let’s set

up our first portlet controller.

P.2.2 Creating your first portlet controller

When we first set out to create the web layer of the RoadRantz application, we

started by building the RoadRantz home page. Similarly, the first portlet control-

ler we’ll create will be one that drives the main screen of the Rolodex application.

ContactsController (listing P.2) retrieves a list of Contacts from a RolodexSer-

vice to be displayed within the Rolodex portlet.

package com.springinaction.rolodex.controller;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import org.springframework.web.portlet.ModelAndView;

import org.springframework.web.portlet.mvc.AbstractController;

import com.springinaction.rolodex.service.RolodexService;

public class ContactsController 

    extends AbstractController {    

  protected 

      ModelAndView handleRenderRequestInternal(

          RenderRequest request,

          RenderResponse response)

          throws Exception { 

    String userName = 

        ControllerUtil.getUserName(request);

    List contacts =                   

        rolodexService.getContacts(userName);

Listing P.2 A basic Spring portlet controller that lists contacts in a Rolodex

Handles render 
request

Retrieves contacts 
for user



Getting started with Spring Portlet MVC P13

    Map model = new HashMap();    

    model.put("contacts", contacts);

    model.put("pageSize",                

        request.getPreferences().getValue(

            "pageSize",                       

            PreferencesCommand.DEFAULT_PAGE_SIZE));

    return new ModelAndView("contactList", model);

  }

  private RolodexService rolodexService;

  public void setRolodexService(

      RolodexService rolodexService) {

    this.rolodexService = rolodexService;

  } 

}

ContactsController extends AbstractController, which is the simplest of

Spring’s portlet controllers. Although its name is the same as its Spring MVC coun-

terpart, this AbstractController class deals with portlet-specific requests.

 When extending AbstractController, we can override either handleAction-

RequestInternal(), handleRenderRequestInternal(), or both. As you might

guess, the handleActionRequestInternal() method is called during the action

phase of the portlet lifecycle while handleRenderRequestInternal() is called

during the render phase. 

 Because ContactsController will only be querying data to be displayed, there

is no need to override the handleActionRequestInternal() method. Instead,

handleRenderRequestInternal() is the method we need.

 The first thing that handleRenderRequestInternal() does is look up the

user’s identity and use it to retrieve a list of Contacts from the injected Rolodex-

Service. The actual implementation of the RolodexService is not relevant to our

discussion of Spring Portlet MVC. In fact, ContactsController only knows about

the service through an interface. Therefore, any implementation of RolodexSer-

vice will do and we’ll leave it to the reader’s imagination as to the details of how

RolodexService is implemented.

 In case you’re curious, the code behind the ControllerUtil.getUserName()

method is as follows:

public static String getUserName(

    PortletRequest request) {

  Principal userPrincipal = 

      request.getUserPrincipal();

  return (userPrincipal == null) ? 

Returns 
ModelAndView

Injects 
RolodexService



P14 Building portlet applications

         null : 

         userPrincipal.getName();

}

Once the list of Contacts has been retrieved, it is placed into a Map that is used to

hold model data to be displayed by the view. In addition to the list of contacts, the

pageSize preference is also retrieved from the portlet’s preferences so that the

view will know how many contacts to show at one time.

 Finally, the handleRenderRequestInternal() method creates a ModelAndView

object containing the model Map with contactList as the view name. Again,

although the ModelAndView class shares the same name as a similarly purposed

class in Spring MVC, this ModelAndView is portlet specific. Be sure to choose the

correct ModelAndView class when writing a portlet controller.

Configuring the controller bean

Now that we’ve written our first portlet controller class, it’s time to configure it in

the Spring application context. To do that, we place the following bit of XML in

Rolodex-portlet.xml:

<bean id="contactsController"

    class="com.springinaction.rolodex.controller.

                 ➥ ContactsController">

  <property name="rolodexService" 

      ref="rolodexService"/>

</bean>

The ContactsController uses a RolodexService to retrieve the list of contacts.

Therefore, we must inject a reference to an implementation of RolodexService

into ContactsController’s rolodexService property.

 We’ll remain enigmatic about the actual identity of the rolodexService bean

that is injected into ContactsController. It could be a local service bean. Or

maybe it’s an RMI service. Could it be a stateless session EJB? Who knows? The

only thing that’s important here is that it implements the RolodexService inter-

face and is wired in Spring with the name rolodexService. (Isn’t dependency

injection fun?)

Declaring a view resolver

The last thing that ContactsController does is to return a ModelAndView object

specifying a view with the name contactList. Ultimately, this view name will need

to be resolved to an actual view implementation. This could be a Velocity or

FreeMarker template, but in this case, it’s a JSP. 



Getting started with Spring Portlet MVC P15

 As you saw in the previous chapter, the way that DispatcherServlet resolves a

view name to find a JSP is through a view resolver. DispatcherPortlet is no differ-

ent in this regard. For our example, I’ve chosen to use InternalResourceView-

Resolver:

<bean id="viewResolver" 

    class="org.springframework.web.servlet.view.

               InternalResourceViewResolver">

  <property name="prefix" value="/WEB-INF/jsp/" />

  <property name="suffix" value=".jsp" />

</bean>   

We discussed this same InternalResourceViewResolver in chapter 13 of the

book (section 14.1). Thanks to the ViewRendererServlet that we added to the

web.xml file, we’re able to use any of the view resolvers discussed in section 13.4

with Spring Portlet MVC. I chose InternalResourceViewResolver because it is

simple.

 As configured here, DispatcherPortlet will send the request to /WEB-INF/

jsp/contactList.jsp (via ViewRendererServlet) to render the output of Contacts-

Controller. 

Creating the JSP

The view for the Rolodex portlet’s main view simply lists the contacts that are

found for the user. The contactList.jsp file is listed in its entirety in listing P.3.

<%@ taglib prefix="portlet" 

    uri="http://java.sun.com/portlet" %>

<%@ taglib prefix="c" 

    uri="http://java.sun.com/jstl/core_rt" %>

<%@ taglib prefix="display" 

    uri="http://displaytag.sf.net/el" %>

<portlet:defineObjects/>

<%

  if(renderRequest.getUserPrincipal() != null) {

%>

<portlet:renderURL var="addUrl">

  <portlet:param name="action"

      value="editContact"/> 

</portlet:renderURL> 

<table width="100%">

  <tr><td align="right">

Listing P.3 contactList.jsp, which displays the list of contacts retrieved by 

ContactsController

Creates 
editContact 
URL



P16 Building portlet applications

    <a href='<%= addUrl %>'>Add Contact</a>

  </td></tr>

</table>

<%

  }

%>

<display:table name="contacts" 

    pagesize="${pageSize}" export="false" 

    id="contact" style="width:100%" sort="list" 

    defaultsort="1">

  <display:column sortable="true" title="Name">

    <c:out value="${contact.lastName}"/>, 

    <c:out value="${contact.firstName}"/>

  </display:column>

  <display:column sortable="true" title="Phone">

    <c:out value="${contact.phone1}"/>

  </display:column>

  <display:column sortable="false" title="">

    <portlet:renderURL var="detailUrl">

      <portlet:param name="action"

          value="contactDetail"/>

      <portlet:param name="contactId"

          value="${contact.id}"/>

    </portlet:renderURL>

    <portlet:renderURL var="editUrl">

      <portlet:param name="action"

          value="editContact"/>

      <portlet:param name="contactId"                

          value="${contact.id}"/>

    </portlet:renderURL>

    <portlet:actionURL var="deleteUrl">

      <portlet:param name="action"

          value="deleteContact"/>

      <portlet:param name="contactId"

          value="${contact.id}"/>

    </portlet:actionURL>

    <a href="${detailUrl}"><img src=

        "/Rolodex/images/view.gif" border="0" 

        title="View contact details"></a>

    <c:if test="${not empty contact.ownerName}">

      <a href="${editUrl}"><img src=

          "/Rolodex/images/edit.gif" border="0" 

          title="Edit contact"></a>

      <a href="${deleteUrl}"><img src=

          "/Rolodex/images/trash.gif" border="0" 

          title="Delete contact"></a>

    </c:if>

  </display:column>

</display:table>

Creates 
contactDetail 
URL

Creates 
editContact 
URL

Creates 
deleteContact 
URL



Mapping requests to controllers P17

The bulk of contactList.jsp is the <display:table> tag, which displays the list of

contacts. <display:table> is the core JSP tag provided by the DisplayTag tag

library. DisplayTag makes short work of rendering a collection of data in a table. It

includes such features as sorting and pagination, and can even export table data

to a Microsoft Excel spreadsheet. If you’ve never used DisplayTag before, you

really should check it out at http://displaytag.sourceforge.net.

 Draw your attention to the links that are created in contactList.jsp. The first

link, near the top, is a link for the user to add a new contact. The URL for that link

is created using the following <portlet:renderURL> tag:

<portlet:renderURL var="addUrl">

  <portlet:param name="action" 

      value="editContact"/>

</portlet:renderURL>

URLs within a portal are a bit different than URLs within a conventional web appli-

cation. Rather than hopping from one page to another, portal links usually

change the state of the current portlet within the same portal page. Thus, these

URLs must be encoded with portal-specific information. The <portlet:ren-

derURL> tag is a standard portlet tag library tag that produces URLs appropriate

for portlets running within a portal page. 

 Here, we’re creating a link to the editContact action within the Rolodex port-

let. Remember this action, because we’re going to map it to a Spring portlet con-

troller soon. You’ll also find links being created for contactDetail and

deleteContact actions within the <display:table> tag. These actions will also

need to be mapped to Spring portlet controllers. As it turns out, the next thing

we’re going to do is map portlet requests to controllers. 

P.3 Mapping requests to controllers

In a conventional web application, URLs are rather straightforward. Either a web

page resides at a specified URL or it does not. As a result, mapping web requests to

Spring MVC controllers is a simple matter of associating a URL pattern to a con-

troller. Web requests have only one mode: the view mode.

 Portlet requests aren’t quite so one-dimensional. Portlets have the notion of

modes, such as view, help, and edit. Each mode is almost like a subapplication

within the main portlet application and can respond to individual actions that are

mode specific. For example, within the Rolodex portlet, the Add Contact action is

specific to the view mode. There’s little point in responding to a Add Contact

request from within the help mode, because Add Contact isn’t a function of help.



P18 Building portlet applications

 Consequently, mapping portlet requests to controllers is a bit more complex

than mapping web requests in Spring MVC. Portlet request mappings must not

only consider the requested action, but also the mode within which the request

was made.

 Spring comes with three handler mappings that accommodate the idiosyncra-

sies of dealing with portlet requests. These handler-mapping classes (which are all

in the org.springframework.web.portlet.handler package) are listed in

table P.1.

Which handler mapping you choose will depend largely on the complexity of

your portlet application. If your portlet only has a single mode, like many control-

lers, ParameterHandlerMapping may be the most appropriate choice. On the

other end of the spectrum, if your portlet supports several modes with only one

controller per mode, you might want to consider PortletModeHandlerMapping. 

 PortletModeParameterHandlerMapping is the most flexible of Spring’s

portlet handler mappings. It combines the parameter mapping capability of

ParameterHandlerMapping with the mode mapping capability of Portlet-

ModeHandlerMapping.

 For the Rolodex portlet, we’ll use a combination of PortletModeHandlerMap-

ping and PortletModeParameterHandlerMapping. The edit and help modes have

simple needs, having a single controller class for each.  This makes PortletMode-

HandlerMapping sufficient for those modes. The edit mode, on the other hand, is

a bit more complex and will need the more capable mapping features of

PortletModeParameterHandlerMapping.

 But before we get too carried away with those handler mappings, let’s take a

quick look at how we might configure a ParameterHandlerMapping.  

Table P.1 Portlet handler mappings help DispatcherPortlet find the right portlet controller to

handle a request.

Handler mapping How it maps portlet requests to controllers

ParameterHandlerMapping Maps requests to controllers by considering a 

parameter in the request.

PortletModeHandlerMapping Maps the portlet’s mode to a controller.

PortletModeParameterHandlerMapping Combination of 

ParameterHandlerMapping and 

PortletModeHandlerMapping. Both a 

parameter and the portlet’s mode are used as 

the key to finding a controller.



Mapping requests to controllers P19

P.3.1 Mapping portlet parameters to controllers

Let’s pretend for a moment that the Rolodex portlet only supports the view mode.

With no need for the help and edit modes, we can focus our attention on map-

ping the controllers that make up the view mode.

 When a portlet application only supports a single mode, ParameterHandler-

Mapping is the best choice for mapping requests to controllers. ParameterHan-

dlerMapping decides which controller should receive the request by considering

a parameter in the portlet request.  

 If we were to use ParameterHandlerMapping for the Rolodex portlet applica-

tion, we could declare it in Spring like this:

<bean id="parameterHandlerMapping"

    class="org.springframework.web.portlet.handler.      

                 ➥ ParameterHandlerMapping">

  <property name="parameterMap">

    <map>

      <entry key="contacts" 

             value-ref="contactsController"/>

      <entry key="editContact"  

             value-ref="editContactController"/>

      <entry key="contactDetail"  

             value-ref="contactDetailController"/>

      <entry key="deleteContact"  

             value-ref="deleteContactController"/>

      <entry key="searchContacts"  

             value-ref="searchContactsController"/>

    </map>

  </property>

  <property name="interceptors">

    <list>

      <ref bean="parameterMappingInterceptor"/>

    </list>

  </property>

</bean>

The mapping is defined in the parameterMap property. Here we’ve mapped five

different parameter values to five different controllers. But where does the param-

eter values come from?

 Take a moment and look back at the contactList.jsp file in Listing P.3. As we’ve

already discussed, links within the portlet page are created using the <port-

let:renderURL> tag. For example, the link for adding a new contact is created

like this:

<portlet:renderURL var="addUrl">

  <portlet:param name="action" 

      value="editContact"/>

</portlet:renderURL>



P20 Building portlet applications

The main thing to pay attention to is the <portlet:param> tag contained within

the <portlet:renderURL> tag. In this case, we’ve specified that the URL should

have a parameter named action with a value of editContact. This is the parame-

ter that ParameterHandlerMapping uses when looking up a controller.

  In the case of the Add Contact link, the action parameter is set to edit-

Contact. Looking up the editContact parameter in ParameterHandlerMapping’s

parameterMap property, we see that this link takes the user to the controller whose

bean name is editContactController.

Forwarding the action parameter to the RenderRequest

Pay special attention to how the interceptors property has been wired. The

interceptors property is used to associate portlet handler interceptors (any

implementation of Spring’s org.springframework.web.portlet.HandlerInter-

ceptor interface) to be invoked around the invocation of controllers. This is simi-

lar in concept to servlet filters or even aspects.

 In this case, we’re wiring a very important handler interceptor to Parameter-

HandlerMapping. Remember that portlets have two phases in their lifecycle:

Action and Render. The action parameter that is sent in the URL created by

<portlet:renderURL> only goes into the ActionRequest by default. 

 But ParameterMappingInterceptor makes sure that the parameter used by

ParameterHandlerMapping makes it to the RenderRequest so that Render-

Requests are mapped to controllers properly. ParameterMappingInterceptor is

configured in Spring as follows:

<bean id="parameterMappingInterceptor" 

    class="org.springframework.web.portlet.handler.       

              ➥ ParameterMappingInterceptor"/>

Using a different mapping parameter

By default, ParameterHandlerMapping examines the value of a parameter named

action. If for some reason that won’t work for you (maybe your portal server

already uses action for some other purpose), you can configure Parameter-

HandlerMapping to use a different parameter. For example, the following Parame-

terHandlerMapping declaration uses the parameterName property to specify that

the mapping parameter should be called doThis: 

<bean id="parameterHandlerMapping"

    class="org.springframework.web.portlet.handler.      

                 ➥ ParameterHandlerMapping">

  <property name="parameterMap">

     …

  </property>



Mapping requests to controllers P21

  <property name="parameterName" value="doThis" />

</bean>

If you decide to change the mapping parameter name, be sure to remember to

make corresponding changes in the JSP files:

<portlet:renderURL var="addUrl">

  <portlet:param name="doThis" 

      value="editContact"/>

</portlet:renderURL>

You’ll also need to make sure to tell ParameterMappingInterceptor that you’ve

changed the name of the mapping parameter:

<bean id="parameterMappingInterceptor" 

    class="org.springframework.web.portlet.handler.       

              ➥ ParameterMappingInterceptor">

  <property name="parameterName" value="doThis" />

</bean>

Mapping portlet request parameters to controllers is easy enough, but it doesn’t

address more complex portlet needs. What if a portlet supports multiple modes?

When modes are involved, we’ll need to consider using PortletModeHandler-

Mapping.

P.3.2 Mapping portlet modes to controllers

As configured in the portlet.xml file (listing P.1), the Rolodex application’s Dis-

patcherPortlet will support three modes: view, edit, and help. The view mode is

the main mode of the portlet, and we’ll see how to map its controllers in the next

section. For now, we’ll need to map default controllers for each of the modes sup-

ported by the portlet. As we’re mapping portlet modes to controllers, this sounds

like a job for PortletModeHandlerMapping.

 PortletModeHandlerMapping, as you might guess, works by mapping a port-

let’s mode name to a controller. Here’s what it looks like in Spring as configured

for the Rolodex portlet’s modes:

<bean id="portletModeHandlerMapping"

    class="org.springframework.web.portlet.handler.      

               ➥PortletModeHandlerMapping">        

  <property name="order" value="2" />

  <property name="portletModeMap">

    <map>

      <entry key="view" 

          value-ref="contactsController"/>

      <entry key="help" 

          value-ref="modeNameViewController"/>



P22 Building portlet applications

      <entry key="edit" 

          value-ref="preferencesController"/>

    </map>

  </property>

</bean>

At a glance, this <bean> declaration doesn’t look much different from the one we

defined for ParameterNameHandlerMapping. This time, however, we’re mapping

portlet mode names to controllers in the portletModeMap property. As declared

here, the help mode’s default controller is the one whose bean name is mode-

NameViewController. Likewise, when the user enters the edit mode, the request

will be sent to the controller whose name is preferencesController. 

 When we first view the portlet in view mode, there will be no action parameter

in the request. Therefore, we’ll need to map a default controller for the view

mode. Here we’ve mapped it to the contactsController bean, which is the Con-

tactsController that we wrote in listing P.2. 

 Even though we’ll map the controllers for the view mode in the next section

using PortletModeParameterHandlerMapping, we still need to define the default

controller for the view mode. 

 You have probably also noticed that we’ve set the order property to 2. The pur-

pose of the order property will become apparent in a moment. First, however, we

need to map the rest of the controllers that make up the Rolodex portlet applica-

tion. Let’s see how PortletModeParameterHandlerMapping can be used to map

portlet parameters within the view mode to the controllers that handle their

requests.

P.3.3 Mapping both modes and parameters to controllers

PortletModeParameterHandlerMapping is a functional blend of ParameterHan-

dlerMapping and PortletModeHandlerMapping. Where ParameterHandlerMap-

ping maps parameter values to controllers and PortletModeHandlerMapping

maps portlet modes to controllers, PortletModeParameterHandlerMapping maps

parameter values to controllers within the context of a given portlet mode. 

 For example, consider the following declaration of PortletModeParameter-

HandlerMapping. The core of the Rolodex portlet’s functionality takes place

within the view mode. That being so, this PortletModeParameterHandlerMapping

maps parameter values within the view mode:

<bean id="portletModeParameterHandlerMapping" 

    class="org.springframework.web.portlet.handler.

        ➥ PortletModeParameterHandlerMapping">

  <property name="order" value="1" />



Mapping requests to controllers P23

  <property name="interceptors">

    <list>

      <ref bean="parameterMappingInterceptor"/>

    </list>

  </property>

  <property name="portletModeParameterMap">

    <map>

      <entry key="view">

        <map>

          <entry key="contacts" 

              value-ref="contactsController"/>

          <entry key="editContact"  

              value-ref="editContactController"/>

          <entry key="contactDetail"  

              value-ref="contactDetailController"/>

          <entry key="deleteContact"  

              value-ref="deleteContactController"/>

          <entry key="searchContacts"  

              value-ref="searchContactsController"/>

        </map>

      </entry>

      <entry key="edit">

        <map/>

      </entry>

      <entry key="help">

        <map/>

      </entry>

    </map>

  </property>

</bean>

The portletModeParameterMap property is where the mapping is defined for

PortletModeParameterHandlerMapping. The first thing you’ll observe is that this

property is a bit more complex than the corresponding properties for Parameter-

HandlerMapping and PortletModeHandlerMapping. Instead of a simple name-

value pair, the portletModeParameterMap property takes a <map> of <map>s.

 Each <entry> in the outer <map> defines the mappings for each of the portlet’s

supported modes. Meanwhile the inner <map> entries map parameter values to

controller bean names in a fashion similar to ParameterHandlerMapping. The dif-

ference here is that the parameter-to-controller mappings are only applicable

within the portlet mode that they’re mapped to. 

 For the Rolodex portlet’s view mode, we’ve mapped the same parameters and

controllers as we did in the ParameterHandlerMapping example. We’re letting

PortletModeHandlerMapping handle the edit and help modes, so we’ve given

them an empty <map>.



P24 Building portlet applications

 You’ll notice that we also had to wire in a reference to ParameterHandler-

Interceptor to the interceptors property. As was the case with ParameterHan-

dlerMapping, this handler interceptor will make sure that the mapping parameter

is copied into the RenderRequest so that it will be properly mapped to a controller.

Chaining portlet handler mappings

When using PortletModeHandlerMapping along with PortletModeParameter-

HandlerMapping, we need to make sure that PortletModeParameterHandlerMap-

ping gets first crack at deciding which controller to send requests to. If not,

PortletModeHandlerMapping will always decide on ContactsController, regard-

less of the value of the mapping parameter. 

 That’s why we set the order property on both of the handler mappings. In the

case of PortletModeParameterHandlerMapping, the order property is set to 1 to

ensure that it is called first. If PortletModeParameterHandlerMapping fails to

determine which controller to send a portlet request to then PortletModeHan-

dlerMapping, whose order is set to 2, will get a chance. 

 The actual values assigned to the order properties of each handler mapping

aren’t important. The only thing that’s important is that the value assigned to the

order property of PortletModeParameterHandlerMapping is lower than that

assigned to the order property of PortletModeHandlerMapping. In short, the han-

dler mapping with the lowest order is given first shot at mapping requests to con-

trollers. 

P.4 Handling portlet requests with controllers

As I write this, I’m sitting in a small Mexican food restaurant within walking dis-

tance of my office. It’s my lunch hour and I’m enjoying a delicious beef and

cheese burrito with a side of rice and beans. I’ve found that my work can be very

productive if I have a plate of spicy food to munch on while I write.

 When I walked into the restaurant and approached the counter, I asked the

nice woman behind the counter for the #4 lunch special. She took my order to be

processed while I found a small table in the corner to work at. Moment later, she

emerged from the back with my food. 

 Although she took my order and brought it out to me, I foster no illusion that

she was the one who prepared the food. After she jotted down the order on the

order pad, she dispatched it to one of the cooks in the back to prepare. Once they

were done, she carried the resulting dish out to my table.



Handling portlet requests with controllers P25

 Just as the woman behind the counter didn’t process the request for a burrito,

DispatcherPortlet doesn’t directly process portlet requests. It simply accepts the

request and then dispatches it to a controller to “cook” up a result.

 Just like Spring MVC, Spring Portlet MVC comes with a rich selection of con-

trollers suitable for handling requests in a portlet application. Figure P.5 shows all

of Spring’s portlet controllers and how they relate to each other.

 At a glance, you might think that figure P.5 is a duplicate of figure 13.6 from

chapter 13 of the book. However, take a closer look. Indeed, there are some famil-

iar names, such as Controller, AbstractCommandController and SimpleForm-

View Controllers

Command Controllers

Form Controllers

Wizard Controllers

Core Controllers

Controller

AbstractController

BaseCommandController

AbstractCommandController AbstractFormController

SimpleFormController AbstractWizardFormController

Parameterizable
ViewController

PortletModeName
ViewController

PortletWrapping
Controller

Figure P.5 Spring’s selection of portlet controllers closely mirros Spring MVC’s 

controllers for servlet-based web applications.



P26 Building portlet applications

Controller. There’s even an AbstractWizardFormController. Looking even

closer, you’ll find a couple of new controllers in there as well. 

 However familiar they may seem, the controllers in figure P.5 are slightly dif-

ferent from those you learned about in chapter 13. Where the controllers from

that chapter were based on the Servlet API, these controllers are based on the

Portlet API.

 Nevertheless, one of the great things about Spring’s portlet MVC framework is

that it mostly mirrors Spring’s web MVC framework. This means that if you’re

familiar with the web framework, you’re well on your way to understanding the

portlet framework.

 Although Spring’s portlet MVC framework is similar to Spring’s web MVC

framework, it may be worthwhile to review what each of the controllers in

figure P.5 do. Table P.2 briefly describes each controller. 

 You’ve already seen an example of how to use AbstractController to display

the main page of the Rolodex portlet application. Now we’ll look at a few more of

Spring’s portlet controllers as we flesh out much of the functionality of the Rolo-

dex application. We won’t have opportunity to use all of the controllers in

table P.2, but we’ll use enough of them to get a taste of how Spring’s portlet con-

trollers compare to their Spring MVC counterparts.

Table P.2 Examining Spring’s portlet controllers.

Controller type Classes Useful when…

Simple Controller (interface)

AbstractController

Your controller is extremely simple and 

does not require parameter binding or 

form-processing capabilities. 

View ParameterizableViewController

PortletModeNameViewController

PortletWrappingController

Your controller performs no processing 

whatsoever and only needs to display 

a simple view.

Command BaseCommandController

AbstractCommandController

Your controller needs parameters to 

be bound to a command object and 

(optionally) validated. 

Form AbstractFormController

SimpleFormController

Your controller needs to display a form 

and subsequently process the submis-

sion of that form. 

Wizard AbstractWizardFormController You want your controller to walk the 

user through a complex series of form 

pages that ultimately are processed 

as a single form submission.



Handling portlet requests with controllers P27

 To get started, let’s look at simplest of all of Spring’s portlet controllers,

PortletModeNameViewController, and see how to use it to add a help page to the

application.

P.4.1 Displaying mode-specific pages

When we declared the PortletModeHandlerMapping bean, we mapped the help

mode to a bean named modeNameViewController. That bean is declared as fol-

lows:

<bean id="modeNameViewController" 

    class="org.springframework.web.portlet.mvc.    

                ➥ PortletModeNameViewController"/>

PortletModeNameViewController is a simple portlet controller that simply

returns a ModelAndView whose logical view name is set to the name of the portlet

mode. Since we’ve declared this controller to be the target of the help mode, the

logical view name will be help. If we’re using the InternalResourceView-

Resolver from section P.2.3, then the view will be found in /WEB-INF/jsp/

help.jsp.

 Many of the controllers that you’ll use in a Spring portlet application require

you to subclass an abstract controller class and write code that defines the control-

ler’s functionality. PortletModeNameViewController, however, is completely self-

contained. Just wire it up and it’s ready to go. No coding required!

 Not all portlet controllers are so simple that they only need to display a view. In

any interesting portlet application, there will be controllers that take parameters

as input to perform their functionality. For more complex controller needs, we’ll

need to create a command controller.

P.4.2 Processing portlet commands

Portlet command controllers are similar in purpose to the web command control-

lers we discussed in chapter 13, section 13.3.1. Just like their web MVC counter-

parts, portlet command controllers automatically copy request parameter values

into a command object for processing. This frees you from having to deal directly

with the portlet’s ActionRequest and RenderRequest objects. 

 To illustrate how to write a portlet command controller, consider SearchCon-

tactsController in listing P.4. SearchContactsController extends the portlet

version of AbstractCommandController to automatically copy request parameters

into a SearchCommand object.



P28 Building portlet applications

 

package com.springinaction.rolodex.controller;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import org.springframework.validation.              

           ➥ BindException;

import org.springframework.web.portlet.             

           ➥ ModelAndView;

import org.springframework.web.portlet.mvc.         

           ➥ AbstractCommandController;

import com.springinaction.rolodex.service.          

           ➥ RolodexService;

public class SearchContactsController 

    extends AbstractCommandController {

  public SearchContactsController() {

    setCommandClass(SearchCommand.class);

  }

  protected void handleAction(

      ActionRequest request,

      ActionResponse response,

      Object command,

      BindException bindException)

      throws Exception { }

  protected ModelAndView handleRender(

      RenderRequest request, 

      RenderResponse response, 

      Object command, 

      BindException bindException) 

      throws Exception {

    SearchCommand searchCommand = 

        (SearchCommand) command;

    String userName = 

        ControllerUtil.getUserName(request); 

    List<Contact> contacts = rolodexService.

        searchContacts(userName, searchCommand);

    Map model = new HashMap();

    model.put("contacts", contacts);

    model.put("pageSize",

        request.getPreferences().getValue(

            "pageSize", "5"));

Listing P.4 A command controller for searching through the Rolodex

Does nothing 
for action 
requests

Looks up contact list

Sets model data



Handling portlet requests with controllers P29

    return new ModelAndView(

        "searchResults", model);

  }

  private RolodexService rolodexService;                

  public void setRolodexService(

      RolodexService rolodexService) {

    this.rolodexService = rolodexService;

  } 

}

When we developed a web command controller, we overrode AbstractCommand-

Controller’s handle() method to process an HttpServletRequest. With conven-

tional web requests, there is only one type of request; thus, there is only one

handle() method to implement a Spring MVC’s AbstractCommandController.

 But portlet requests aren’t so simple. A portlet controller could end up hand-

ing two different portlet requests: an ActionRequest if the portlet is the target of

an action URL and a RenderRequest every time that the portlet needs to render

output.  Consequently, the portlet version of AbstractCommandController has

two methods that must be overridden: handleAction() and handleRender().

 Both of these methods are abstract and must be implemented in any class that

extends AbstractCommandController. In the case of SearchContactsController,

however, there is no need for action request processing. Therefore, the handle-

Action() method is left empty. The handleRender() method is where all of the

functionality of SearchContactsController takes place. 

 SearchContactsController starts by casting the command object that it

receives to SearchCommand, the actual command class. The command class is spec-

ified in the constructor in the call to setCommandClass().

 As for SearchCommand, it’s a simple POJO with two properties: firstName and

lastName. These properties can be used to search the Rolodex.

package com.springinaction.rolodex.controller;

public class SearchCommand {

  private String firstName;

  private String lastName;

  public SearchCommand() {}

  public String getFirstName() {

    return firstName;

  }

  public void setFirstName(String firstName) {

    this.firstName = firstName;

Returns ModelAndView

Injects RolodexService



P30 Building portlet applications

  }

  public String getLastName() {

    return lastName;

  }

  public void setLastName(String lastName) {

    this.lastName = lastName;

  }

}

Once SearchContactsController has a reference to a SearchCommand object, it

looks up the current portlet user’s name. Then it retrieves a list of matching Con-

tacts by passing the username and the SearchCommand object to the searchCon-

tacts() method of the injected RolodexService. Finally, it places the list of

Contacts in the model Map along with the value of the pageSize preference and

returns a ModelAndView object. 

 As with any Spring portlet controller, we need to declare a <bean> entry in

Spring. The following XML in Rolodex-portlet.xml should do the trick:

<bean id="searchContactsController"

    class="com.springinaction.rolodex.controller.

                ➥ SearchContactsController">

  <property name="rolodexService" 

      ref="rolodexService"/>

</bean>

Because SearchContactsController uses a RolodexService to perform the

actual Contact search, we must wire a reference to the rolodexService bean

into the rolodexService property. (And yes, we’re still keeping the identity of

the rolodexService bean to ourselves. It still isn’t relevant to the discussion of

Spring portlets, and in fact, it could be anything that implements the Rolodex-

Service interface.)

 Command controllers are a wonderful way to project request parameters onto

an object for simplified processing. When those parameters are coming from a

form submission, however, Spring offers an even better controller option. To wrap

up our discussion of Spring’s portlet controllers, let’s see how to use a form con-

troller to add and edit contacts in the Rolodex. 

P.4.3 Processing form submissions

Aside from simply listing contacts, one of the primary functions of the Rolodex

portlet is the ability for the user to add and edit contacts in the Rolodex. To pro-

vide this functionality, we must first show the user a form for them to enter the



Handling portlet requests with controllers P31

contact information. Then, upon submission of that form, we’ll need a controller

that will save the contact information. 

 As you’ll recall, Spring’s form controllers pull double duty by both displaying a

form (upon an HTTP GET request) and processing the form (upon an HTTP

POST request). You’ll find that Spring’s portlet form controllers offer the same

behavior, only within a portlet application. This makes a form controller the per-

fect choice for implementing the add/edit functionality. Listing P.5 shows such a

form controller for adding and editing contact information.

package com.springinaction.rolodex.controller;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.PortletException;

import javax.portlet.PortletRequest;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import org.apache.commons.lang.StringUtils;

import org.springframework.validation.BindException;

import org.springframework.web.portlet.bind.PortletRequestUtils;

import org.springframework.web.portlet.mvc.SimpleFormController;

import org.springframework.web.servlet.ModelAndView;

import com.springinaction.rolodex.domain.Contact;

import com.springinaction.rolodex.service.RolodexService;

public class EditContactController 

    extends SimpleFormController {

  public EditContactController() {

    setCommandClass(Contact.class);

  }

  protected Object formBackingObject(

      PortletRequest request) throws Exception {

    int contactId = PortletRequestUtils.getIntParameter(

        request, "contactId", -1);

    Contact contact = 

        (contactId < 0) ?

        new Contact() :

        rolodexService.getContact(contactId);

    if(contact == null) {

      throw new PortletException("Contact not found");

    }

  }

  protected void processFormSubmission(

Listing P.5 A form controller for adding and editing contacts in the Rolodex

Creates or looks 
up contact



P32 Building portlet applications

      ActionRequest request,

      ActionResponse response, Object command, 

      BindException bindException) 

      throws Exception {

    Contact contact = (Contact) command;

    String userName = 

        ControllerUtil.getUserName(request);

    rolodexService.addContact(contact, userName);

    response.setRenderParameter(

        "action", "contacts");

  }

  // injected

  private RolodexService rolodexService;

  public void setRolodexService(

      RolodexService rolodexService) {

    this.rolodexService = rolodexService;

  }

}

Of all of Spring’s portlet controllers, SimpleFormController is the one that most

closely resembles its conventional web counterpart. In fact, the only sign that this

is a portlet controller is that the processFormSubmission() method takes an

ActionRequest and an ActionResponse. 

 The action-phase processFormSubmission() is where most of the action (no

pun intended) happens in this controller. This method will be called when the

form is submitted with a POST request. The first thing it does is cast the command

object to Contact, as that is the actual command class that is specified in the con-

troller. Then it uses the addContact() method of the injected RolodexService to

add the Contact to the Rolodex. 

Redirecting portlet views

The very last thing that processFormSubmission() does is to set a render parame-

ter in the response. This behavior is a bit unusual and deserves some explanation.

 Upon a successful submission of the form, we want the user to be presented

with the list of contacts in the Rolodex. Since we already have a perfectly good

controller for that, ContactsController, there’s no reason to re-create that func-

tionality in EditContactController. Instead, it’s better to simply redirect the

request to ContactsController.

 

Saves 
contact



Handling portlet requests with controllers P33

 If the Rolodex application were a Spring MVC application, we could simply

return a ModelAndView object whose view is redirect:/contacts.html. This

would force the request to be redirected to ContactsController, where the con-

tact list would be rendered. 

 Unfortunately, portlets don’t support the notion of redirect. There’s no clear

way to redirect a portlet request from one controller to another. Thus, the last

instruction in processFormSubmission() implements a common trick that simu-

lates a forward. Here’s how it works…

 Remember that portlet requests go through two phases: the action phase and

the render phase. As it turns out, portlet requests are mapped to controllers twice,

once for each phase. At the point when the action phase processFormSubmis-

sion() method is called, the render request still hasn’t been mapped to a control-

ler. By setting the render request’s action parameter to contacts, we have

effectively changed the fate of the render request.

 As a result, even though the action request was mapped to EditContactCon-

troller because its action parameter was set to editContact, the render request

will be mapped to ContactsController, because we’ve changed the action

parameter to contacts.

Wiring the form controller

Now that we’ve seen how EditContactController works, let’s see how it’s

declared in the Spring application context (Rolodex-portlet.xml):

<bean id="editContactController"

    class="com.springinaction.rolodex.controller.       

                ➥ EditContactController">

  <property name="formView" 

      value="editContact" />

  <property name="rolodexService" ref="rolodexService" />

</bean>

EditContactController is a form controller; therefore, we must set its formView

property. The formView property specifies a logical view name that will be used to

display the form when the controller handles an HTTP GET request or when a

form submission error occurs and the user must correct their entries. The form-

View will ultimately be resolved to an actual view implementation (such as a JSP)

by a view resolver. 

 In this case, when the user clicks the Add Contact link, they will navigate to this

controller. Initially, the request will be an HTTP GET. Therefore, the editContact

view will be displayed. Using the InternalResourceViewResolver defined earlier

in this chapter, the form view will resolve to /WEB-INF/jsp/editContact.jsp. 



P34 Building portlet applications

 Normally, the successView property specifies the logical view name for the

view that should be rendered upon a successful form submission. But as we’ve dis-

cussed, we’re simulating a redirect in the processFormSubmission() method.

Consequently, the successView serves no purpose in this controller. 

Creating a portlet form in JSP

I thought you might be interested in seeing what the editContact.jsp file looks

like; therefore, I’ve provided an abridged form of it in listing P.6.

<%@ taglib prefix="portlet" 

    uri="http://java.sun.com/portlet" %>

<%@ taglib prefix="spring" 

    uri="http://www.springframework.org/tags" %>

<%@ taglib prefix="form"

    uri="http://www.springframework.org/tags/form" %>

<h2>Contact Edit</h2>

<portlet:actionURL var="actionUrl">

  <portlet:param name="action" value="editContact"/>

</portlet:actionURL>

<portlet:renderURL var="contactsUrl">

  <portlet:param name="action" value="contacts"/>

</portlet:renderURL>

<form:form method="POST" 

    action="${actionUrl}" commandName="command">

  <form:hidden path="id" />

  <table width="100%" border="0">

    <tr>

      <td align="right">First name:</td>

      <td>

        <form:input path="firstName" size="20" />

      </td>

    </tr>

    <tr>

      <td align="right">Last name:</td>

      <td>

        <form:input path="lastName" size="20" />

      </td>

    </tr>

    <tr>

      <td align="right">Primary phone #:</td>

      <td>

        <form:input path="phone1" size="15" />

Listing P.6 editContact.jsp, which defines a form for creating and editing Rolodex 

contacts

Uses Spring’s form-
binding tags

Creates action URL

Creates render URL



Handling portlet exceptions P35

      </td>

    </tr>

    <tr>

      <td align="right">Alternate phone #:</td>

      <td>

        <form:input path="phone2" size="15" />

      </td>

    </tr>

    <tr><td align="center" colspan="2">

      <input type="submit" value="Save"/>&nbsp;

      <input type="button" value="Cancel" 

          onclick="window.location.href=

              '${contactsUrl}';"/>

    </td></tr>

  </table>

</form:form>

For brevity’s sake, we’ve cut out a few of the form fields from editContact.jsp. Nev-

ertheless, what’s left highlights a few points of that we’d like to draw your atten-

tion to. 

 First, you’ll notice that there are two different URLs being created. The

actionUrl, which is the URL that the form will be posted to, is defined with its

action parameter set to editContact. This sends the form submission request to

the EditController for processing in the action-phase processFormSubmis-

sion() method. 

 As for the contactsUrl URL, it is used by the form’s Cancel button to send the

user back to the contact list if they decide to cancel the form.

 Another thing that you may find interesting about editContact.jsp is that it

makes use of the new form-binding tag library that was introduced in Spring 2.

Fortunately for portlet developers, the form-binding tab library works as well for

Spring portlet applications as it does with conventional Spring MVC applications. 

P.5 Handling portlet exceptions

We have one more loose end to tie up before we wrap up our discussion of Spring

Portlet MVC—exception handling.

 When an exception is thrown during the course of processing a portlet

request, most portal containers display a rather unfriendly message in the portlet

box—typically the exception’s stack trace. However, we want our portlet applica-

tion to handle uncaught exceptions in a more graceful way.



P36 Building portlet applications

 Fortunately, Spring’s portlet framework provides a version of SimpleMap-

pingExceptionResolver that gracefully handles exceptions that escape from a

portlet request. Just like its Spring MVC counterpart (see chapter 13,

section 13.4), this class will catch any exceptions that leak out of a portlet request

and send the request to a view that is appropriate for the exception. 

 To use SimpleMappingExceptionResolver, simply declare it as a <bean> in the

Spring application context like this:

<bean id="defaultExceptionHandler" 

    class="org.springframework.web.portlet.handler.    

                ➥ SimpleMappingExceptionResolver">

  <property name="exceptionMappings">

    <props>

      <prop key="javax.portlet.PortletSecurityException">

          notAuthorized</prop>

      <prop key="javax.portlet.UnavailableException">

          notAvailable</prop>

    </props>

  </property>  

  <property name="defaultErrorView" 

      value="defError" />

</bean>

The exceptionMappings property maps exceptions to the view that should be ren-

dered if the exception is thrown. The key of each <prop> is the fully qualified

class name of the exception to be handled. The value is the logical name of the

view to be rendered.

 For example, if for some reason a javax.portlet.UnavailableException is

thrown while processing a portlet request, the user will be sent to the view whose

name is notAvailable. If we’re using the InternalResourceViewResolver that

was declared earlier in this chapter, the JSP at /WEB-INF/jsp/notAvailable.jsp will

be used to render a friendly error message to the user.

 The defaultErrorView property defines a catchall exception mapping. If an

exception is thrown that can’t be found in the exceptionMappings property, the

value of defaultErrorView will be used as the name of the error view.

P.6 Summary

Portal websites are a great way of aggregating several sources of information and

applications into one convenient web page personalized for the user. Each of the

applications presented on a portal page are commonly referred to as portlets.

 The Java Portlet Specification standardized development and deployment of

portlet applications in much the same way that the Java Servlet Specification stan-



Summary P37

dardized development and deployment of web applications. As it turns out, the

portlet API bears a striking resemblance to the servlet API, which makes it easy for

servlet-savvy developers to learn the ins and outs of portlet development.

 Due to the fact that a portlet is fixed to a certain location of a portal page,

creating a feature-rich portlet application can be tricky without an MVC frame-

work. Fortunately for Spring developers, Spring 2 introduced Spring Portlet

MVC, a portlet-based MVC framework that echoes Spring’s web MVC framework

in many ways.

 In this chapter, we explored Spring Portlet MVC and built a typical portlet

application. We started by configuring DispatcherPortlet, the front controller

for all Spring portlet applications. We then created several controller classes to

perform the logic behind the portlet and wired them into Spring along with han-

dler mappings and view resolvers.

 By now you’ve probably caught on that Spring Portlet MVC is a lot like Spring

MVC and, in fact, reuses as much of Spring MVC as will fit within the unique char-

acteristics of Java portlets. This is a real boon if you’re already familiar with Spring

MVC because it means that it’s not a huge stretch to learn how to build portlet

applications with Spring Portlet MVC.



P38

appendix C:
Spring XML

configuration reference



APPENDIX C P39

Spring XML configuration reference

In the early days of Spring (pre-2.0), configuring a Spring application context was

fairly simple. <beans>, <bean>, <property>, <value>, and <ref> were sufficient

for most circumstances. But Spring 2 added a wealth of new configuration ele-

ments. I have found it handy to have a quick reference to all of the XML elements

offered in Spring 2 and thought you might find it helpful as well. Therefore, in

this appendix I’ve catalogued all of the Spring XML elements that come with

Spring 2.

 In addition, a few peripheral frameworks have also adopted Spring 2’s configu-

ration support, including Spring Web Flow and the DWR Ajax framework. For

your reference, I’ve documented the configuration elements for those frame-

works as well.

C.1 Core bean-wiring elements

At its core, Spring is used to configure JavaBeans and their properties. The ele-

ments in this section are (for the most part) the ones that represent the core of

Spring and are the ones you’ll find yourself using most often.

 Schema http://www.springframework.org/schema/beans

 Usage Since the <beans> element is the root element of the Spring configura-

tion, this schema is the absolute minimum for any Spring configuration

XML. The following <beans> elements declares this schema as the

default schema:

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

               ➥ spring-beans-2.0.xsd">

…

</beans>

<alias>

Defines an alias for a declared <bean>.

May be included in: <beans>

Attribute Description

alias The alias by which the bean (specified in the name attribute) will be 

referred to.

name The original name of the bean to be aliased.



P40 APPENDIX C

Spring XML configuration reference

<arg-type>

Defines an argument type for a replaced method. Used with <replaced-method> to further qualify 
the signature of a replaced method.

May be included in: <replaced-method>

Attribute Description

match An argument type to match in the signature of the method to be 

replaced.

<bean>

Declares a Spring-managed bean.

May be included in: <beans>, <constructor-arg>, <entry>, <key>, <list>, 

<property>, <set>

May Contain: <constructor-arg>, <description>, <lookup-method>, <meta>, 

<property>, <replaced-method>

Attribute Description

abstract Declares that this bean declaration is abstract (i.e., that it will be 

sub-beaned with the parent attribute of another bean). 

Valid values: true, false

Default: false

autowire Declares how the container should autowire properties of this bean.

Valid values: byType, byName, default, no, autodetect, 

constructor

Default: default (determined by the default-autowire 

attribute of the <beans> element)

autowire-

candidate

If set to false, this bean will be excluded as a candidate for auto-

wiring. This helps avoid mishaps where autowiring picks chooses a 

bean that isn’t suitable for autowiring. Also helps avoid ambiguous 

autowire candidates.

class The fully qualified class name of the bean.

dependency-check How Spring should enforce the setting of properties on this bean. 

simple indicates that all simple properties (int, String, 

double) should be injected. object indicates that all properties 

of complex types should be set.

Valid values: default, none, all, objects, simple

Default: default (determined by the default-

dependency-check attribute of the <beans> element)

depends-on Specifies the name of a bean that this bean depends upon. This 

forces the container to instantiate and configure the dependency 

bean before this bean is created and configured.

destroy-method The name of a method to call when this bean is destroyed.



APPENDIX C P41

Spring XML configuration reference

<bean> (continued)

Attribute Description

factory-bean Used with factory-method to specify a bean that will provide 

the factory method to create a bean.

factory-method The name of a method that will be used instead of the constructor to 

construct an instance of this bean. When used alone, the method 

must be a static method of the bean specified by class. When 

used with factory-bean, the method must be a nonstatic 

method of the bean specified by factory-bean.

id The bean’s identifier (or name).

init-method The name of a method that will be called immediately after the bean 

has been created and configured.

lazy-init Specifies that the container should wait to create the bean until it is 

referred to.

Valid values: default, true, false

Default: default (determined by the default-lazy-init 

attribute of the <beans> element)

name The name of the bean. 

parent The name of an abstract bean definition that will serve as the basis 

for this bean’s definition.

scope Specifies the scope of the bean. This attribute supersedes the 

singleton attribute, as singleton is a limited form of 

scoping.

Valid values include request, session, globalSession, 

singleton, and prototype. But can also be a custom scope.

singleton 

deprecated

Declares this bean to be a singleton (i.e., only one instance is cre-

ated) as opposed to being a prototype (i.e., one instance is created 

per reference). This attribute has been replaced by the scope 

attribute in Spring 2 and is no longer available when using the Spring 

2 XSD. It is, however, still available in the DTD. 

Valid values: true, false

Default: true



P42 APPENDIX C

Spring XML configuration reference

<beans>

The root element of the Spring XML configuration.

May contain: <alias>, <bean>, <description>, <import>, <aop:config>, 

<aop:spring-configured>, <jee:jndi-lookup>,<jee:local-slsb>, 

<jee:remote-slsb>, <lang:bsh>, <lang:groovy>, <lang:jruby>, 

<tx:advice>, <tx:annotation-driven>, <util:constant>, <util:list>, 

<util:map>, <util:constant>, <util:properties>, <util:property-
path>, <util:set>

Attribute Description

default-autowire The default autowiring strategy to be used for all beans in this config-

uration.

Valid values: byType, byName, no, autodetect, 

constructor

Default: no

default-

dependency-check

The default dependency-checking strategy to be used for all beans in 

this configuration.

Valid values: none, all, objects, simple

Default: none

default-destroy-

method

The default method to be called on each bean when that bean is 

destroyed.

default-init-

method

The default method to be called on each bean when that bean is cre-

ated and configured.

default-lazy-init The default lazy-initialization strategy to be applied to all beans in this 

configuration.

Valid values: true, false

Default: false

default-merge The default collection merge behavior. If true then collection prop-

erties on parent beans will be merged into collection properties on 

child beans.

Valid values: true, false

Default: false



APPENDIX C P43

Spring XML configuration reference

<constructor-arg>

Specifies a constructor argument for construction of a bean. Can be used for constructor injection or can 

be used with the <bean> element’s factory-method attribute to specify arguments for the fac-
tory method.

May be included in: <bean>

May contain: <bean>, <description>, <idref>, <list>, <map>, <null>, <props>, 

<ref>, <set>, <value>, <util:constant>, <util:properties>, 

<util:property-path>

Attribute Description

index Can be used to specify which constructor argument this particular 

<constructor-arg> applies to when multiple constructor 

arguments are specified.

ref The ID of another declared bean that is to be wired into this construc-

tor argument.

type Can be used to specify the type of the constructor argument to help 

Spring determine which constructor argument that this particular 

<constructor-arg> applies to when multiple constructor 

arguments are specified.

value Specifies the simple value to be wired into a constructor argument.

<description>

Provides a description for the context, bean, property, or constructor argument. Used to provide docu-
mentation for tools, such as Spring BeanDoc.

May be included in: <bean>, <beans>, <constructor-arg>, <property>

<entry>

Specifies an entry in a map.

May be included in: <map>

May contain: <bean>, <idref>, <key>, <list>, <map>, <null>, <props>, <ref>, 

<set>, <value>, <util:constant>, <util:properties>, <util:property-
path>

Attribute Description

key Specify the key of the map entry as a simple value (i.e., String, 

int, etc.)

key-ref Wire in another bean in the Spring context as the key of the map 

entry.

value Specify the value of the map entry as a simple value (i.e., String, 

int, etc.)

value-ref Wire in another bean in the Spring context as the value of the map 

entry.



P44 APPENDIX C

Spring XML configuration reference

<idref>

Defines a value that can be validated to be the name of a bean.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>

Attribute Description

bean Specifies the name of a bean (in any context).

local Specifies the name of a bean in the local context.

<import>

Imports another Spring XML configuration file into this Spring configuration.

May be included in: <beans>

Attribute Description

resource The name of a resource file that contains another Spring application 

context definition.

<key>

Defines the key of a map entry.

May be included in: <entry>

May contain: <bean>, <idref>, <list>, <map>, <null>, <props>, <ref>, <set>, 

<value>, <util:constant>, <util:properties>, <util:property-path>

<list>

Defines a collection of values as a list.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>

May contain: <bean>, <idref>, <list>, <map>, <null>, <props>, <ref>, <set>, 

<value>, <util:constant>, <util:properties>, <util:property-path>

Attribute Description

merge If true, this list will be merged with a list specified by a parent bean 

(if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t specified)

value-type Specifies the value type of the collection. Optional, but can be used 

to help property editors determine the proper type to place in a col-

lection when specified as Strings in the context configuration.



APPENDIX C P45

Spring XML configuration reference

<lookup-method>

Specifies a lookup method style of injection where an existing abstract or concrete method in a bean is 
replaced with a method that returns the wired value.

May be included in: <bean>

Attribute Description

bean The ID of the bean to be wired into the lookup method.

name The name of the method that will be replaced with the lookup 

method.

<map>

Defines a map of key/value pairs.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>

May contain: <entry>

Attribute Description

key-type Specifies the default type of the map key. Optional, but useful in guid-

ing property editors in converting String values.

merge If true, this map will be merged with a map specified by a parent 

bean (if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t specified)

value-type Specifies the default type of the map value. Optional, but useful in 

guiding property editors in converting String values.

<meta>

Adds metadata values to a bean or a bean property.

May be included in: <bean>, <property>

Attribute Description

key The metadata key.

value The value of the metadata.

<null>

Defines a null value to be injected into a property.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>



P46 APPENDIX C

Spring XML configuration reference

<prop>

Defines a member of a set of properties defined by <props>. The content for the <prop> element is 
its value.

May be included in: <props>

Attribute Description

key The property key, defined as a String.

<property>

Defines a bean property to be set by setter injection.

May be included in: <bean>

May contain: <bean>, <description>, <idref>, <list>, <map>, <meta>, <null>, 

<props>, <ref>, <set>, <value>, <util:constant>, <util:properties>, 

<util:property-path>

Attribute Description

name The name of the bean property.

ref Refers to the ID of a bean that is to be injected into this property.

value Injects a simple value (String, int, etc.) into the property.

<props>

Defines a value of type java.util.Properties.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>

May contain: <prop>

Attribute Description

merge If true, this property set will be merged with a property set speci-

fied by a parent bean (if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t specified)

<ref>

Defines a value that is a reference to a bean in the Spring context.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>

Attribute Description

bean The name of the bean to be referenced (can be in any context).

local The name of a bean to be referenced in the local context.

parent The name of a bean to be referenced in the parent context.



APPENDIX C P47

Spring XML configuration reference

<replaced-method>

Replaces an existing method (abstract or concrete) in a bean with a new implementation defined by an 

implementation of MethodReplacer.

May be included in: <bean>

May contain: <arg-type>

Attribute Description

name The name of the method that is to be replaced. (The signature can be 

further qualified by using <arg-type>.)

replacer The ID of a bean that implements MethodReplacer.

<set>

Defines a collection of values as a set.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>

May contain: <bean>, <idref>, <list>, <map>, <null>, <props>, <ref>, <set>, 

<value>, <util:property-path>

Attribute Description

merge If true, this set will be merged with a set specified by a parent 

bean (if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t specified)

value-type Specifies the default type of the values in the collection. Optional, 

but helpful in guiding property editors in converting Strings.

<value>

Defines a value as a simple type (String, int, etc.). Note that even though the value may be speci-

fied as a String, it could be used to inject into a more complex type if an appropriate property editor 

is in place. For example, a property of type java.io.File can be injected using a String value 
that is the path of the file.

May be included in: <constructor-arg>, <entry>, <key>, <list>, <property>, 

<set>

Attribute Description

type Forces the type of the value. Useful when a property’s setter method 

is overloaded to accept multiple types.



P48 APPENDIX C

Spring XML configuration reference

C.2 AOP elements

Aspect-oriented programming has always been a cornerstone feature of Spring.

And in Spring 2, it only gets better with the addition of the elements described in

this section.

 Schema: http://www.springframework.org/schema/aop

 Usage: The following <beans> declaration declares the AOP schema in the aop

namespace (in addition to the default beans schema):

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:aop="http://www.springframework.org/schema/aop"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

       http://www.springframework.org/schema/aop 

       http://www.springframework.org/schema/aop/

           ➥ spring-aop-2.0.xsd">

…

</beans>

<aop:advisor>

Defines an AOP advisor.

May be included in: <aop:config>

Attribute Description

advice-ref The ID of advice to be associated with this advisor.

id The ID of this advisor.

order Specifies an order in which this advisor will be applied with respect 

to other advisors’ order attributes.

pointcut A pointcut expression to be used with this advisor  (in AspectJ syn-

tax).

pointcut-ref The ID of an <aop:pointcut> definition to be used with this 

advisor.



APPENDIX C P49

Spring XML configuration reference

<aop:after>

Defines an AOP after advice. 

 be included in: <aop:aspect>

Attribute Description

arg-names Comma-separated list of arguments to be passed from the point-

cut expression to the advice method.

method The method that implements the advice.

pointcut A pointcut expression to be used with this advice (in AspectJ 

syntax).

pointcut-ref The ID of an <aop:pointcut> definition to be used with this 

advice.

<aop:after-returning>

Defines an AOP after returning advice.

 May be included in: <aop:aspect>

Attribute Description

arg-names Comma-separated list of arguments to be passed from the point-

cut expression to the advice method.

method The method that implements the advice.

pointcut A pointcut expression to be used with this advice (in AspectJ syn-

tax).

pointcut-ref The ID of an <aop:pointcut> definition to be used with this 

advice.

returning The name of the parameter in the advice method that should be 

used as the return value.

<aop:after-throwing>

Defines an AOP after advice. 

May be included in: <aop:aspect>

Attribute Description

arg-names Comma-separated list of arguments to be passed from the point-

cut expression to the advice method.

method The method that implements the advice.

pointcut A pointcut expression to be used with this advice (in AspectJ syn-

tax).



P50 APPENDIX C

Spring XML configuration reference

<aop:after-throwing> (continued)

Attribute Description

pointcut-ref The ID of an <aop:pointcut> definition to be used with this 

advice.

throwing The name of a parameter in the advice method that should be 

used as the throwing exception.

<aop:around>

Defines an AOP around advice. 

May be included in: <aop:aspect>

Attribute Description

arg-names Comma-separated list of arguments to be passed from the point-

cut expression to the advice method.

method The method that implements the advice.

pointcut A pointcut expression to be used with this advice (in AspectJ syn-

tax).

pointcut-ref The ID of an <aop:pointcut> definition to be used with this 

advice.

<aop:aspect>

Defines a singleton aspect.

May be included in: <aop:config>

May contain: <aop:after>, <aop:after-returning>, <aop:after-throwing>, 

<aop:around>, <aop:before>, <aop:declare-parents>, <aop:pointcut>

Attribute Description

id The ID of this aspect.

order Specifies the order that this aspect should be applied in, relative 

to other aspects.

ref The ID of a <bean> that implements the advice for this aspect.

<aop:aspectj-autoproxy>

Declares an autoproxy for @AspectJ-annotated aspects. Has the side effect of also autoproxying Spring 
AOP advisors.

May contain: <aop:include>

Attribute Description

proxy-target-

class

If true, forces autoproxy creator to use class proxying.

Valid values: true, false

Default: false



APPENDIX C P51

Spring XML configuration reference

<aop:before>

Defines an AOP before advice. 

May be included in: <aop:aspect>

Attribute Description

arg-names Comma-separated list of arguments to be passed from the point-

cut expression to the advice method.

method The method that implements the advice.

pointcut A pointcut expression to be used with this advice (in AspectJ 

syntax).

pointcut-ref The ID of an <aop:pointcut> definition to be used with this 

advice.

<aop:config>

The top-level AOP configuration element. Most AOP configuration elements must be declared within the 

scope of an <aop:config> element.

May be included in: <beans>

May contain: <aop:advisor>, <aop:aspect>, <aop:pointcut>

Attribute Description

proxy-target-

class

If true, forces autoproxy creator to use class proxying.

Valid values: true, false

Default: false

<aop:declare-parents>

Defines an AOP introduction.

May be included in: <aop:aspect>

Attribute Description

default-impl The fully qualified class name of a class that provides the default 

implementations of the methods required by the introduction inter-

face.

implement-

interface

The fully qualified class name of an interface to be introduced.

types-matching A pattern specifying types to which the introduction interface 

should be introduced.



P52 APPENDIX C

Spring XML configuration reference

<aop:include>

Used with <aop:aspectj-autoproxy> to limit which @AspectJ beans are autoproxied to those 
whose name matches a pattern.

May be included in: <aop:aspectj-autoproxy>

Attribute Description

name The name pattern to match when autoproxying @AspectJ beans.

<aop:pointcut>

Defines an AOP pointcut.

May be included in: <aop:aspect>, <aop:config>

Attribute Description

expression The expression that defines the pointcut (e.g., "execution(* 

*.get*(..))" if using AspectJ expressions).

id The ID of the pointcut. Useful if defining a pointcut that will be 

used by more than one aspect or advice.

type The type of expression to be used, either AspectJ-style or regular 

expression.

Valid values: aspectj, regex

Default: aspectj

<aop:scoped-proxy>

Specifies that a bean should be proxied with a scoped proxy. Beans marked with <aop:scoped-
proxy> will be exposed via a proxy, with the actual bean being retrieved from some other scope (such 
as HttpSession) as/when needed.

May be included in: <bean>

Attribute Description

proxy-target-

class

If true, a CGLIB-based proxy will be created for the scoped bean. 

This means that CGLIB will be required in the classpath. If false, a 

JDK interface-based proxy will be created. This requires no addi-

tional items in the classpath, but does require that all objects that 

the bean is injected into access it through an interface that the 

bean implements.

Default: true

<aop:spring-configured>

Defines a bean to be configured (i.e., injected) by Spring, even if the bean is created outside of Spring. 

Used with the @Configured annotation.

May be included in: <beans>



APPENDIX C P53

Spring XML configuration reference

C.3 Java Enterprise Edition elements

Even though Spring eliminates many of the needs for EJBs, there’s no reason that

you can’t use EJBs alongside POJOs within an application. In fact, the elements in

this section make it possible to declare references to EJBs and then wire them into

your Spring-managed POJOs.

 Schema: http://www.springframework.org/schema/jee

 Usage: The following <beans> declaration declares the Java Enterprise Edition

schema in the jee namespace (in addition to the default beans schema):

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:jee="http://www.springframework.org/schema/jee"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

       http://www.springframework.org/schema/jee 

       http://www.springframework.org/schema/jee/

           ➥ spring-jee-2.0.xsd">

…

</beans>

<jee:environment>

Specifies the JNDI environment. In normal (e.g., non-Spring) JNDI, this is usually specified as a 

java.util.Hashtable. Here, it is specified as name-value pairs in the content of the 

<jee:environment> element. For example:
<jee:environment>

  foo=bar

  dog=canine

</jee:environment>

May be included in: <jee:lookup>, <jee:local-slsb>, <jee:remote-slsb>

<jee:jndi-lookup>

Creates a bean by looking up a value from JNDI.

May be included in: <beans>

May contain: <jee:environment>

Attribute Description

cache Specifies whether or not the value should be cached.

Valid values: true, false

Default: true

expected-type The type of object that is to be retrieved from JNDI.

id The ID of the bean.

jndi-name The name of the object in JNDI



P54 APPENDIX C

Spring XML configuration reference

<jee:jndi-lookup> (continued)

Attribute Description

lookup-on-startup Specifies whether Spring should retrieve the object on container 

startup or wait until it is requested.

Valid values: true, false

Default: true

proxy-interface The interface that is to be applied to the object retrieved from 

JNDI.

resource-ref Specifies whether or not this is a resource reference. If true 

then java:comp/env/ will be prepended to the jndi-

name.

Valid values: true, false

Default: false

<jee:local-slsb>

Defines a reference to a local stateless session EJB that can be wired as a bean in a Spring context.

May contain: <jee:environment>

Attribute Description

business-

interface

The fully qualified name of the interface that declares the busi-

ness methods of the EJB.

cache-home Specifies whether or not the home interface should be cached.

Valid values: true, false

Default: true

id The ID of the bean.

jndi-name The name of the EJB in JNDI

lookup-home-on-

startup

Whether or not the EJB’s home interface is retrieved on startup. 

Can be set to false to delay lookup of the home interface until 

the EJB is needed (to allow the EJB server to start later).

Valid values: true, false

Default: true

resource-ref Specifies whether or not this is a resource reference. If true, 

then java:comp/env/ will be prepended to the jndi-

name.

Valid values: true, false

Default: false



APPENDIX C P55

Spring XML configuration reference

C.4 Script language elements

Dynamic languages are all the rage. With the elements in this section, you can

reap the benefits of dynamic scripting languages such as Ruby, Groovy, and Bean-

Shell within your Spring applications. 

 Schema: http://www.springframework.org/schema/lang

 Usage: The following <beans> declaration declares the scripting schema in the

lang namespace (in addition to the default beans schema):

<jee:remote-slsb>

Defines a reference to a remote stateless session EJB that can be wired as a bean in a Spring context.

May contain: <jee:environment>

Attribute Description

business-

interface

The fully qualified name of the interface that declares the busi-

ness methods of the EJB.

cache-home Specifies whether or not the home interface should be cached.

Valid values: true, false

Default: true

home-interface The fully qualified name of the EJB’s home interface.

id The ID of the bean.

jndi-name The name of the object in JNDI.

lookup-home-on-

startup

Specifies whether or not the EJB’s home interface is retrieved on 

startup. Can be set to false to delay lookup of the home inter-

face until the EJB is needed (to allow the EJB server to start later).

Valid values: true, false

Default: true

refresh-home-on-

connect-failure

Specifies whether or not the home interface should be refreshed 

when a connection fails.

Valid values: true, false

Default: false

resource-ref Specifies whether or not this is a resource reference. If true 

then java:comp/env/ will be prepended to the jndi-

name.

Valid values: true, false

Default: false



P56 APPENDIX C

Spring XML configuration reference

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:lang="http://www.springframework.org/schema/lang"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

        http://www.springframework.org/schema/lang 

        http://www.springframework.org/schema/lang/

            ➥ spring-lang-2.0.xsd">

…

</beans>

<lang:bsh>

Defines a bean that is scripted in BeanShell (BSH).

May be included in: <beans>

May contain: <lang:inline-script>, <lang:property>

Attribute Description

id The ID of the scripted bean.

refresh-check-

delay

Specifies how often the script is refreshed (in milliseconds).

Default: No refresh

scope Specifies the scope of the scripted bean. Set to singleton by 

default, which will use one shared instance for all attempts to 

retrieve this bean. prototype specifies an independent 

instance each time the bean is retrieved

script-interfaces Comma-delimited list of interfaces that the script will implement.

script-source The path to the script source

<lang:groovy>

Defines a bean that is scripted in Groovy.

May be included in: <beans>

May contain: <lang:inline-script>, <lang:property>

Attribute Description

id The ID of the scripted bean

customizer-ref Reference to a bean that implements 

GroovyObjectCustomizer. Allows for postinstantiation 

customization of the Groovy bean.

refresh-check-

delay

Specifies how often the script is refreshed (in milliseconds).

Default: No refresh



APPENDIX C P57

Spring XML configuration reference

<lang:groovy> (continued)

Attribute Description

scope Specifies the scope of the scripted bean. Set to singleton by 

default, which will use one shared instance for all attempts to 

retrieve this bean. prototype specifies an independent 

instance each time the bean is retrieved.

script-source The path to the script source.

<lang:inline-script>

Used to script a bean directly in the Spring configuration file instead of referring to a script file.

The script is included as the content of the <lang:inline-script> tag. To accommodate char-
acters that have special meaning in XML (less-than and greater-than signs, for instance), you should wrap 

the script in <![CDATA[…]]>.

May be included in: <lang:bsh>, <lang:groovy>, <lang:jruby>

<lang:jruby>

Defines a bean that is scripted in Ruby (JRuby).

May be included in: <beans>

May contain: <lang:inline-script>, <lang:property>

Attribute Description

id The ID of the scripted bean.

refresh-check-

delay

Specifies how often the script is refreshed (in milliseconds).

Default: No refresh

scope Specifies the scope of the scripted bean. Set to singleton by 

default, which will use one shared instance for all attempts to 

retrieve this bean. prototype specifies an independent 

instance each time the bean is retrieved.

script-interfaces Comma-delimited list of interfaces that the Ruby object will 

implement.

script-source The path to the script source.

<lang:property>

Injects a property value into the scripted bean. Functionally equivalent to the <property> element in 
section C.1.

May be included in: <lang:bsh>, <lang:groovy>, <lang:jruby>

May contain: <bean>, <description>, <idref>, <list>, <map>, <meta>, <null>, 

<props>, <ref>, <set>, <value>

Attribute Description

name The name of the bean property.

ref Refers to the ID of a bean that is to be injected into this property.

value Injects a simple value (String, int, etc.) into the property.



P58 APPENDIX C

Spring XML configuration reference

C.5 Transaction declaration elements

Declarative transaction support for POJOs is arguably the killer feature of Spring.

With the elements in this section (and a little help from the AOP elements),

declarative transactions are now much easier.

 Schema: http://www.springframework.org/schema/tx

 Usage: The following <beans> declaration declares the transaction schema in

the tx namespace (in addition to the default beans schema):

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:tx="http://www.springframework.org/schema/tx"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

        http://www.springframework.org/schema/tx

        http://www.springframework.org/schema/tx/

            ➥ spring-tx-2.0.xsd">

…

</beans>

<tx:advice>

Defines transaction advice.

May be included in: <beans>

May contain: <tx:attributes>

Attribute Description

id The ID of the advice.

transaction-

manager

The ID of the bean that declares the transaction manager to use 

when applying transactions.

<tx:annotation-driven>

Declares that Spring should apply transactions to beans that are annotated with @Transactional 

or that have methods that are annotated with @Transactional.

May be included in: <beans>

Attribute Description

order Specifies an order of the execution of the transaction advisor, rela-

tive to other advice executing at a specific joinpoint.



APPENDIX C P59

Spring XML configuration reference

<tx:annotation-driven> (continued)

Attribute Description

proxy-target-

class

If true, a CGLIB-based proxy will be created for the transactional 

bean. This means that CGLIB will be required in the classpath. If 

false, a JDK interface-based proxy will be created. This requires 

no additional items in the classpath, but does require that all 

objects that the bean is injected into access it through an inter-

face that the bean implements.

transaction-

manager

The ID of the bean that declares the transaction manager to use 

when applying transactions.

<tx:attributes>

Defines transaction attributes to be applied by default to all methods matched by the advisor’s pointcut. 

For more fine-grained transaction control over individual methods, consider using <tx:method>.

May be included in: <tx:advice>

May contain: <tx:method>

Attribute Description

isolation Specifies the isolation level for the transaction.

Valid values: DEFAULT, READ_UNCOMMITTED, READ_

COMMITTED, REPEATABLE_READ, SERIALIZABLE

Default: DEFAULT

name Defines the name of the transaction. Can be null. Useful for dis-

play in a transaction monitor, if applicable.

no-rollback-for Comma-separated list of exceptions for which the transaction 

should not roll back.

propagation Specifies the propagation behavior of the transaction.

Valid values: REQUIRED, SUPPORTS, MANDATORY, 

REQUIRES_NEW, NOT_SUPPORTED, NEVER, NESTED

Default: REQUIRED

read-only Specifies whether the transaction is read-only.

Valid values: true, false

Default: false

rollback-for Comma-separated list of exceptions for which the transaction 

should be rolled back. Note that unless specified by no-

rollback-for, all runtime exceptions trigger a rollback

timeout Specifies the transaction timeout in seconds.

Default: -1 (no timeout)



P60 APPENDIX C

Spring XML configuration reference

C.6 Utility elements

Sometimes it’s nice to refer to constants, property files, or collections as beans.

The elements in the util namespace help you define beans from things that

aren’t normally thought of as beans.

 Schema: http://www.springframework.org/schema/util

 Usage: The following <beans> declaration declares the utility schema in the

util namespace (in addition to the default beans schema):

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:util="http://www.springframework.org/schema/util"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

<tx:method>

Defines transaction attributes based on a pattern defined in the name attribute.

May be included in: <tx:attributes>

Attribute Description

isolation Specifies the isolation level for the transaction.

Valid values: DEFAULT, READ_UNCOMMITTED, READ_

COMMITTED, REPEATABLE_READ, SERIALIZABLE

Default: DEFAULT

name Defines a pattern for matching method names. May include wild-

cards (e.g., "get*").

no-rollback-for Comma-separated list of exceptions for which the transaction 

should not roll back.

propagation Specifies the propagation behavior of the transaction.

Valid values: REQUIRED, SUPPORTS, MANDATORY, 

REQUIRES_NEW, NOT_SUPPORTED, NEVER, NESTED

Default: REQUIRED

read-only Specifies whether the transaction is read-only.

Valid values: true, false

Default: false

rollback-for Comma-separated list of exceptions for which the transaction 

should be rolled back. Note that unless specified by no-

rollback-for, all runtime exceptions trigger a rollback.

timeout Specifies the transaction timeout in seconds.

Default: -1 (no timeout)



APPENDIX C P61

Spring XML configuration reference

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

        http://www.springframework.org/schema/util 

        http://www.springframework.org/schema/util/

            ➥ spring-util-2.0.xsd">

…

</beans>

<util:constant>

Define a bean whose value is drawn from a public static field on a type.

May be included in: <beans>

Attribute Description

id The ID of the constant bean.

static-field The fully qualified type and static field from which to draw the con-

stant value.

<util:list>

Defines a list collection (java.util.List) as a bean.

May be included in: <beans>

May contain: <bean>, <idref>, <list>, <map>, <null>, <props>, <ref>, <set>, 

<value>

Attribute Description

id The ID of the list bean.

list-class The fully qualified class name of a java.util.List imple-

mentation to use for this list bean.

Default: java.util.ArrayList

Attribute Description

merge If true, this list will be merged with a list specified by a parent 

bean (if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t 

specified)

value-type Specifies a default type for the values in the collection. Optional, 

but helpful for property editors in converting Strings.



P62 APPENDIX C

Spring XML configuration reference

<util:map>

Defines a map collection (java.util.Map) as a bean. 
The type of map depends on what is available. If running on JDK 1.4 or higher, 

java.util.LinkedHashMap is the default. If running on JDK 1.3 and Commons Collections is 

available in the classpath then LinkedMap is used. As a last resort, java.util.HashMap is 
used.

In any event, the map type can be explicitly set with the map-class attribute.

May be included in: <beans>

May contain: <entry>

Attribute Description

id The ID of the map bean.

key-type Specifies the default type of the map key. Optional, but useful in 

guiding property editors in converting String values.

map-class The fully qualified class name of a java.util.Map implemen-

tation to use for this map bean.

Default: java.util.LinkedHashMap (JDK 1.4 or higher)

merge If true, this map will be merged with a list specified by a parent 

bean (if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t speci-

fied).

value-type Specifies the default type of the map value. Optional, but useful in 

guiding property editors in converting String values.

<util:properties>

Loads a properties file into Spring so that it can be injected into a bean property of type 

java.util.Properties.

May be included in: <beans>

May contain: <prop>

Attribute Description

id The name that the properties will be referred to within the Spring 

context.

location The location of the properties file.

merge If true, the properties will be merged with the properties speci-

fied by a parent bean (if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t 

specified)



APPENDIX C P63

Spring XML configuration reference

<util:property-path>

Reference a property on a bean and expose its value as a bean.

May be included in: <beans>

Attribute Description

id The ID of the new bean.

path The path to the property to be exposed as a bean.

<util:set>

Defines a set collection (java.util.Set) as a bean.
The type of set depends on what is available. If running on JDK 1.4 or higher, 

java.util.LinkedHashSet will be used. If running on JDK 1.3 and Commons Collections is in 

the classpath, ListOrderedSet is used. As a last resort, java.util.HashSet is chosen.

In any event, the set type can be explicitly chosen using the set-class attribute.

May be included in: <beans>

May contain: <bean>, <idref>, <list>, <map>, <null>, <props>, <ref>, <set>, 

<value>

Attribute Description

id The ID of the set bean.

merge If true, this set will be merged with a set specified by a parent 

bean (if any).

Valid values: true, false

Default: Determined by the value of default-merge on 

<beans> element (false if default-merge isn’t 

specified)

<util:set> (continued)

Attribute Description

set-class The fully qualified class name of a java.util.Set imple-

mentation to use for this set bean.

Default: java.util.LinkedHashSet (if JDK 1.4 or 

higher)

value-type Specifies the default type of the collection values. Optional, but 

useful in guiding property editors in converting String values.



P64 APPENDIX C

Spring XML configuration reference

C.7 Spring Web Flow configuration elements

When you need to build a web application that leads the user through a specific

flow, you can’t go wrong with Spring Web Flow. Spring Web Flow helps you define

an application’s flow external to the application’s logic. 

 The final release of Spring Web Flow includes a handful of elements that sim-

plify configuration of Spring Web Flow within a Spring application context. Those

configuration elements are documented in this section.

 It’s important to understand that the elements in this section define bean that

process flows, not for defining flows. The flow definition elements are docu-

mented separately in appendix E.

 Schema: http://www.springframework.org/schema/webflow-config

 Usage: The following <beans> declaration declares the utility schema in the

util namespace (in addition to the default beans schema):

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:flow="http://www.springframework.org/schema/

        ➥ webflow-config"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

        http://www.springframework.org/schema/webflow-config 

        http://www.springframework.org/schema/webflow-config/    

                         ➥ spring-webflow-config-1.0.xsd">

…

</beans>

<flow:alwaysRedirectOnPause>

Specifies whether or not a browser redirect is performed each time a flow execution pauses.

May be included in: <flow:execution-attributes>

Attribute Description

value If true, always perform a redirect when a flow execution is 

paused.

Valid values: true, false

Default: true



APPENDIX C P65

Spring XML configuration reference

<flow:attribute>

Sets a flow execution attribute.

May be included in: <flow:execution-attributes>

Attribute Description

name The name of the attribute.

type The attribute’s type.

value The value to assign to the attribute.

<flow:execution-attributes>

Configures flow execution attributes. This is a container element for one or more 

<flow:attribute> elements.

May be included in: <flow:executor>

May contain: <flow:alwaysRedirectOnPause>, <flow:attribute>

<flow:execution-listeners>

Configures flow execution listeners. This is a container element for one or more <flow:listener> 
elements.

May be included in: <flow:executor>

May contain: <flow:listener>

<flow:executor>

Deploys a flow executor.

May be included in: <beans>

May contain: <flow:execution-attributes>, <flow:execution-listeners>, 

<flow:repository>

Attribute Description

id The bean ID of the flow executor.

registry-ref References the flow registry containing the flows to be executed by 

this executor.

repository-type The type of repository.

Valid values: simple, continuation, client, 

singlekey

Default: continuation



P66 APPENDIX C

Spring XML configuration reference

<flow:listener>

Declares a flow execution listener that will observe the execution of one or more flows.

May be included in: <flow:execution-listeners>

Attribute Description

criteria Used to restrict the flow definitions that this listener listens to.

Default: * (i.e., all flows)

ref References the <bean> that implements the listener.

<flow:location>

Specifies a path to a flow definition resource. 

May be included in: <flow:registry>

Attribute Description

path The path to the flow definition. May include Ant-style wildcard 

paths to load multiple flow definitions.

<flow:registry>

Declares a flow definition registry made up of flows specified by one or more <flow:location> 
elements. Each flow will be identified by the flow’s resource filename without the extension. For example, 
a flow contained in pizza-flow.xml will be identified as pizza-flow.

May be included in: <beans>

May contain: <flow:location>

Attribute Description

id The bean ID of the flow registry.

<flow:repository>

Defines a flow repository.

May be included in: <flow:executor>

Attribute Description

conversation-

manager-ref

References a conversation manager bean that this repository 

should use. 

max-continuations The maximum number of flow execution continuations allowed by 

this repository per conversation. Only relevant when the repository 

is a “continuation” repository.

max-conversations The maximum number of concurrent conversations allowed by this 

repository. Ignored when conversation-manager-ref is 

set.

type The type of flow execution repository to use. 

Valid values: continuation, simple, client, 

singlekey



APPENDIX C P67

Spring XML configuration reference

C.8 DWR configuration elements

When it comes to doing Ajax with Spring, DWR is the way to go. DWR provides a

very nice set of configuration elements that help you configure DWR-accessible

beans directly in the Spring application context.

 To use these elements, you’ll need to have the very latest version of DWR in

your application’s classpath. At the time of this writing, the latest version of DWR

is 2.0-M3 and can be downloaded from

 https://dwr.dev.java.net/servlets/ProjectDocumentList. 

 Schema: http://www.directwebremoting.org/schema/spring

 Usage: The following <beans> declaration declares the dwr schema in the dwr

namespace (in addition to the default beans schema):

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:dwr="http://www.directwebremoting.org/schema/spring-dwr"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

        http://www.directwebremoting.org/schema/spring-dwr 

        http://www.directwebremoting.org/schema/

            ➥ spring-dwr-2.0.xsd">

…

</beans>

<dwr:auth>

Applies security constraints to DWR-remoted objects.

May be included in: <dwr:remote>

Attribute Description

method The name of the method to secure.

role The security role required to invoke the method.

<dwr:config-param>

Specifies a configuration parameter for the controller.

May be included in: <dwr:controller>

Attribute Description

name The name of the parameter

value The value of the parameter



P68 APPENDIX C

Spring XML configuration reference

<dwr:configuration>

Parent element for basic DWR configuration within a Spring context. If you wish to declare a DWR con-

verter or creator in Spring, they’ll need to be declared within a <dwr:configuration>.

May be included in: <beans>

May contain: <dwr:convert>, <dwr:create>, <dwr:signatures>

<dwr:controller>

Declares a Spring MVC controller that handles DWR requests. This makes it possible to configure DWR 

completely in Spring, without a DwrServlet in web.xml.

May be included in: <dwr:beans>

May contain: <dwr:config-param>

Attribute Description

debug Specifies whether or not debug mode is on.

Valid values: true, false

Default value: false

id The ID of the controller bean.

name The name of the controller.

<dwr:convert>

Declares how a complex type should be converted from Java to JavaScript.

May be included in: <dwr:configuration>

May contain: <dwr:exclude>, <dwr:include>

Attribute Description

class The fully qualified class name of the Java object to be converted.

javascript The name given to the converted type in JavaScript.

type The converter type.

Valid values: array, bean, collection, enum, map

<dwr:create>

Declares a DWR creator.

May be included in: <dwr:configuration>

Attribute Description

class The fully qualified class name of the Java object to expose in Java-

Script.

javascript The name given to the object in JavaScript.

type The creator type.

Valid values: new, null, scripted, spring, jsf, 

struts, pageflow



APPENDIX C P69

Spring XML configuration reference

<dwr:data>

Specifies data for DWR signatures.

May be included in: <dwr:signatures>

<dwr:exclude>

Declares that a bean’s method should not be included in the client-side interface of the remoted bean.

By default, all public methods of the server-side object are available in JavaScript. <dwr:exclude> 
can be used to exclude methods that you do not want exposed to the client.

May be included in: <dwr:convert>, <dwr:remote>

Attribute Description

method The name of the method to exclude from the client-side interface.

<dwr:filter>

Declares a filter to be applied per request for methods exposed.

May be included in: <dwr:remote>

Attribute Description

class The class name of a filter to be applied.

<dwr:include>

Explicitly declares a method that will be included in the client-side interface of the remoted bean. 
By default, all public methods of the server-side object are available in JavaScript. If 

<dwr:include> is used, only those methods that are explicitly included will be exposed to the cli-
ent-side interface.

May be included in: <dwr:convert>, <dwr:remote>

Attribute Description

method The name of the method to be included in the client-side interface.

<dwr:latencyfilter>

Configures an Ajax filter that simulates network latency by delaying invocation of the remote method. Half 

of the time specified in delay is spent before the invocation and half is spent after the invocation. 

May be included in: <dwr:remote>

Attribute Description

delay The total amount of time, in milliseconds, to delay the invocation 

of the remote method.  Half of this value is spent before the invo-

cation; the other half is spent after.



P70 APPENDIX C

Spring XML configuration reference

 

 

<dwr:remote>

Exposes a bean as a DWR-remoted bean that can be accessed in client-side JavaScript.

May be included in: <bean>

May contain: <dwr:auth>, <dwr:convert>, <dwr:exclude>, <dwr:filter>, 

<dwr:include>, <dwr:latencyfilter>

javascript The name that the bean will be known as in JavaScript.

<dwr:signatures>

Specifies Java signatures for exported methods. This can aid in the resolution of types stored in collec-
tions that are passed in as parameters. (See http://getahead.org/dwr/server/dwrxml/signatures for a 
discussion of how signatures work.)

May be included in: <dwr:configuration>



P71

appendix D:
Spring JSP

tag library reference



P72 APPENDIX D

Spring JSP tag library reference

When developing the view layer of a Spring MVC application, it’s often necessary

to bind form fields to a controller’s command object. You may also want to resolve

text from a properties file instead of hard-coding it in your JSP files.

 This appendix catalogs the JSP tags that come with Spring 2, including the new

form-binding tag library. Acegi’s view-layer authorization tag library is also docu-

mented here.

D.1 Legacy Spring tag library

This is the tag library that is available with all versions of Spring. In this early tag

library, form binding is all done through a single <spring:bind> tag. While this

offered some rudimentary form-binding functionality, the <spring:bind> tag

proved to be cumbersome in its use. Consequently, Spring 2 introduced a new set

of form-binding tags. 

 Nevertheless, the legacy tag library is still useful for nonbinding activities such

as resolving message properties and themes. And, of course, if your project hasn’t

made the move to Spring 2, the <spring:bind> tag is the only option that you

have for form binding.

 URI: http://www.springframework.org/tags

 Usage: Add the following JSP tag library declaration to the JSP files that will be

using this tag library:

       <%@taglib prefix="spring" 

           uri="http://www.springframework.org/tags" %>

<spring:bind>

Binds information about a command object (or a property of the command object) to the status 
variable.

Variable: status

Attribute Description

htmlEscape Specifies whether or not to perform HTML escaping on the values 

bound by this tag. Overrides any value set by 

<spring:htmlEscape>.

Valid values: true, false

Default: false

ignoreNestedPath If true, specifies that nested paths should be ignored.

Valid values: true, false

Default: false

path The path to the command object property.



APPENDIX D P73

Spring JSP tag library reference

<spring:escapeBody>

Applies HTML and/or JavaScript escaping to the enclosed content.

Attribute Description

htmlEscape Specifies whether or not HTML escaping should be applied.

Default: determined by <spring:htmlEscape>

javaScriptEscape Specifies whether or not JavaScript escaping should be applied. 

Default: false

<spring:hasBindErrors>

Binds the errors for an object to the errors variable. Like <spring:bind>, but only concerns 
itself with errors and not the name of a field or its value.

Attribute Description

htmlEscape Specifies whether or not HTML escaping is to be applied. 

Default: determined by <spring:htmlEscape>

name The name of the object to be inspected for errors.

<spring:htmlEscape>

Sets the default HTML escape policy for the current page. 

Atttribute Description

defaultHtmlEscape Whether or not to escape HTML by default. 

Default: false (no escaping)

<spring:message>

Supports externalization of messages using a Spring MessageSource configured in Spring. 

Attribute Description

arguments Sets optional message arguments to be available when rendering 

the message.

argumentSeparator The separator character to use when tokenizing arguments.

Default: comma (,)

code The message code to use when looking up a message.

htmlEscape Whether or not to apply HTML escaping to the message.

Default: determined by <spring:htmlEscape> 

javaScriptEscape Specifies whether or not to apply JavaScript escaping to the mes-

sage.

Default: false

message Specifies a Spring MessageSourceResolvable object 

that will be used to resolve the message.



P74 APPENDIX D

Spring JSP tag library reference

<spring:message> (continued)

Attribute Description

scope Used with var to determine the scope that the message variable 

will be created in.

text The default text to render if the message cannot be found.

var A variable to export the message. If not used, message is ren-

dered directly to the output.

<spring:nestedPath>

Supports nested properties of the command object by exporting a nestedPath variable. You often 

don’t need to use nestedPath directly, as it will be used by the other binding tags to construct the 
full path to the object property.

Attribute Description

path Sets the outer path that encloses the nested path.

<spring:theme>

Supports externalization of messages based on a theme. Resolves the message from a Spring theme.

Attribute Description

arguments Sets optional message arguments to be available when rendering 

the message.

argumentSeparator Specifies the character used to separate values in arguments. 

Defaults to comma (,).

code The message code to use when looking up a message.

htmlEscape Specifies whether or not to apply HTML escaping to the message.

Default: determined by <spring:htmlEscape>

javaScriptEscape Specifies whether or not to apply JavaScript escaping to the 

message.

Default: false

message Specifies an argument to MessageSourceResolvable.

scope Used with var to determine the scope that the message variable 

will be created in.

text The default text to render if the message cannot be found.

var A variable to export the message. If not used, message is ren-

dered directly to the output.



APPENDIX D P75

Spring JSP tag library reference

D.2 Form binding tags

Prior to Spring 2, the <spring:bind> tag and the status variable that it creates

were the only way to bind command object properties to the fields of a form. But

<spring:bind> is somewhat clumsy to use and was not as intuitive as the form tags

offered by some other MVC frameworks.

 Thankfully, Spring 2 includes a richer set of JSP tags for form binding. These

tags are much clearer and simpler to use. This section serves as a reference for the

new JSP form-binding tags.

 Most of the new tags have a path attribute that binds them to a specific com-

mand object property. This attribute is the only one that is required. However, you

may want to set additional attributes on the HTML element that is rendered. For

that purpose, the form-binding tags include several HTML pass-through attributes

that are simply used to set the same attribute on the rendered HTML. 

 Two pass-through attributes to take special note of are cssClass and css-

Style. These attributes pass through to the HTML class and style attributes,

respectively. 

 Also, many of the form tags have a special cssErrorClass attribute. If the field

has any errors associated with it then the HTML class attribute of the element

will be set to the value specified by cssErrorClass.

 

 

<spring:transform>

Enables transformation of a value not contained with the command object using the 

PropertyEditors associated with the command object. 

A common example is displaying a list of dates from a list to populate a Date property on the command 

object. Using <spring:transform> the list of dates can be formatted using the command 

object’s PropertyEditors, even though the dates in the list aren’t in the command object itself.

Attribute Description

htmlEscape Specifies whether or not to apply HTML escaping to the value.

Default: determined by <spring:htmlEscape> 

scope Used with var to determine the scope that the formatted variable 

will be created in.

value The value to be formatted.

var A variable to export the formatted value. If not used, the formatted 

value is rendered directly to the output.



P76 APPENDIX D

Spring JSP tag library reference

 URI: http://www.springframework.org/tags/form

 Usage: Add the following JSP tag library declaration to the JSP files that will be

using this tag library:

       <%@taglib prefix="form" 

           uri="http://www.springframework.org/tags/form" %>

<form:checkbox>

Renders a check box (<input type="checkbox">) in HTML that is bound to a command object 
property.

HTML pass-though attributes: accesskey, cssClass, cssErrorClass, cssStyle, dir, 

disabled, id, lang, onblur, onchange, onclick, ondblclick, onfocus, 

onkeydown, onkeypress, onkeyup onmousedown, onmousemove, onmouseout, 

onmouseover, onmouseup, tabindex, title, value

Attribute Description

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).

<form:errors>

Renders an HTML <span> tag containing field errors for the command field.

HTML pass-through attributes: cssClass, cssStyle, delimiter, dir, id, lang, 

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown, 

onmousemove, onmouseout, onmouseover, onmouseup, tabindex, title

Attribute Description

element Specifies the HTML element that is used to render the enclosing 

errors.

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).

<form:form>

Renders an HTML <form> tag. Also creates a context within which the other Spring form tags are 
bound to the command object. 

HTML pass-through attributes: action, cssClass, cssStyle, dir, enctype, id, lang 

method, name, onclick, ondblclick, onkeydown, onkeypress, onkeyup, 

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onreset, 

onsubmit, title

Attribute Description

commandName The name of the command object that this form should be bound 

to.

htmlEscape Enable/disable HTML escaping of rendered values.



APPENDIX D P77

Spring JSP tag library reference

<form:hidden>

Renders an HTML hidden field (<input type="hidden">) that is bound to a command object 
property.

HTML pass-through attributes: id

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).

<form:input>

Renders an HTML text field (<input type="text">) that is bound to a command object property.

HTML pass-through attributes: accesskey, alt, autocomplete, cssClass, 

cssErrorClass, cssStyle, dir, disabled, id, lang, maxlength, onblur, 

onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup, 

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, 

onselect, readonly, size, tabindex, title

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).

<form:label>

Renders a form field label (<label>).

HTML pass-through attributes:  cssClass, cssErrorClass, cssStyle, dir, for, ID,  

lang, onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown, 

onmousemove, onmouseout, onmouseover, onmouseup, tabindex, title

Attribute Description

delimiter The delimiter for rendering multiple error messages.

Default: <br>

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).

<form:option>

Renders an HTML <option> element. Sets the <option> element’s selected attribute based 

on the value bound to <form:select>.

HTML pass-through attributes: disabled, label, value

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.



P78 APPENDIX D

Spring JSP tag library reference

<form:options>

Renders one or more HTML <option> elements from a collection.

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.

itemLabel The property name of the collection element that will contain the 

label of the option.

items A collection containing objects that will be used as options.

itemValue The property name of the collection element that will contain the 

value of the option.

<form:password>

Renders an HTML password field (<input type="password">) that is bound to a property of the 
command object.

HTML pass-through attributes: accesskey, alt, autocomplete, cssClass, 

cssErrorClass, cssStyle, dir, disabled, id, lang, maxlength, onblur, 

onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup, 

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, 

onselect, readonly, size, tabindex, title

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.

path The path to the command object property (relative to the command 

object set with commandName in <form:form>). 

showPassword If set to true, the password will be displayed. Defaults to 

false.

<form:radiobutton>

Renders an HTML radio button (<input type="radio">) that is bound to a property of the com-
mand object.

HTML pass-through attributes: accesskey, cssClass, cssErrorClass, cssStyle, dir, 

disabled, id, lang, onblur, onchange, onclick, ondblclick, onfocus, 

onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, 

onmouseover, onmouseup, tabindex, title, value

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).



APPENDIX D P79

Spring JSP tag library reference

D.3 Acegi’s authorization tag library

The Acegi Security Framework provides a handful of JSP tags that are used to con-

ditionally display information in the rendered view, depending on the user’s per-

missions. 

 URI: http://acegisecurity.org/authz

 Usage: Add the following JSP tag library declaration to the JSP files that will be

using this tag library:

       <%@ taglib prefix="authz" uri="http://acegisecurity.org/authz" %>

<form:select>

Renders an HTML <select> element that is bound to a property of the command object.

HTML pass-through attributes: accesskey, cssClass, cssErrorClass, cssStyle, dir, 

disabled, id, lang, multiple, onblur, onchange, onclick, ondblclick, 

onfocus, onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, 

onmouseout, onmouseover, onmouseup, size, tabindex, title

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.

itemLabel Name of the property mapped to the inner text of the option 

tag

items The collection, map, or array of objects used to generate the inner 

option tags

itemValue Name of the property mapped to value attribute of the 

option tag

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).

<form:textarea>

Renders an HTML <textarea> element that is bound to a property of the command object.

HTML pass-through attributes: accesskey, cols, cssClass, cssErrorClass, 

cssStyle, dir, disabled, id, lang, onblur, onchange, onclick, ondblclick, 

onfocus, onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, 

onmouseout, onmouseover, onmouseup, onselect, readonly, rows, tabindex, 

title

Attribute Description

htmlEscape Enable/disable HTML escaping of rendered values.

path The path to the command object property (relative to the command 

object set with commandName in <form:form>).



P80 APPENDIX D

Spring JSP tag library reference

 

<authz:acl>,

<authz:accesscontrollist>

Conditionally renders a tag body if the user has one of the specified permissions to the domain object. 

Attribute Description

domainObject The domain object for which permissions are being evaluated.

hasPermission A comma-separated list of integers, each pertaining to a required 

bit mask permission from a subclass of 

AbstractBasicAclEntry.

<authz:authentication>

Renders information about the user. The user information is retrieved from the object returned from 

Authorization.getPrincipal(), which is often an instance of UserInfo.

Attribute Description

methodPrefix A prefix to apply to operation to determine the method that 

will be called.

Valid values: get, is

Default: get

operation Combined with methodPrefix to determine a method to call 

on the user’s Authentication object.

<authz:authorize>

Conditionally renders the body of the tag, depending on whether or not the user has been granted certain 
authorities.

Attribute Description

ifAllGranted A comma-separated list of authorities, all of which the user must 

have for the tag body to be rendered.

ifAnyGranted A comma-separated list of authorities, of which the user must be 

granted at least one for the tag body to be rendered.

ifNotGranted A comma-separated list of authorities, of which the user must not 

be granted any for the tag body to be rendered.



P81

appendix E:
Spring Web Flow

definition reference



P82 APPENDIX E

Spring Web Flow definition reference

Spring Web Flow is an exciting new addition to the Spring family. It enables devel-

opers to build conversational web applications where the application’s overall

flow is defined separately from the application’s logic and view code.

 XML is the mechanism typically used to define a flow. This appendix serves as a

reference to Spring Web Flow’s XML schema. It’s very important to understand

that the elements in this appendix are not bean definition elements and should

not appear within a Spring application context definition. A flow definition is

defined in a completely separate XML file from those that contain bean defini-

tions.

 Schema: http://www.springframework.org/schema/webflow

 Usage: The elements described in this appendix are specifically for defining a

flow to be executed in Spring Web Flow. These are not bean definition

elements and should not be used within a Spring application context

definition. The root of a Spring Web Flow definition file is the <flow>

element. It should appear as follows:

<flow xmlns="http://www.springframework.org/schema/webflow"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation=

        "http://www.springframework.org/schema/webflow

         http://www.springframework.org/schema/

              webflow/spring-webflow-1.0.xsd

…

</flow>

<action>

Defines a flow action to be executed.

May be included in: <action-state>, <end-actions>, <entry-actions>, <exit-
actions>, <render-actions>, <start-actions>, <transition>

May contain: <attribute>

Attribute Description

bean Refers to the ID of a bean in the Spring application context. 

method The name of a method to invoke on the action if the action extends 

MultiAction. The method should have a signature in the fol-

lowing form:

public Event <methodName>(

    RequestContext context);

name An optional name for the action. If used the re-sent event will be 

qualified by this name. For example, if this action is named 

doStuff and signals a success result event, the fully quali-

fied event will be doStuff.success.



APPENDIX E

Spring Web Flow definition reference P83

<action-state>

Defines an action state. The action performed by this action state is specified by the nested 

<action> or <bean-action> elements.

May be included in: <flow>

May contain: <action>, <attribute>, <bean-action>, <entry-actions>, 

<evaluate-action>, <exception-handler>, <exit-action>, <set>, 
<transition>

Attribute Description

id The ID of the action state.

<argument>

Defines a specific argument to be passed to a <bean-action>.

May be included in: <method-arguments>

Attribute Description

expression An expression specifying a value to be passed to the method 

invoked in the <bean-action>.

parameter-type The type of the method parameter. If specified and the argument 

value does not match the parameter type, a type conversion will 

be attempted.

<attribute>

Declares an attribute that describes a flow, state, or transition.

May be included in: <action>, <action-state>, <bean-action>, <decision-
state>, <end-state>, <flow>, <subflow-state>, <transition>, <view-
state>

May contain: <value>

Attribute Description

name The name of the attribute.

type The type of the attribute value, used to facilitate type conversion 

from a String value.

value The value of the attribute. Can be used instead of a <value> 

child element.

<attribute-mapper>

Declares an attribute mapping to and from a subflow.

May be included in: <subflow-state>

May contain: <input-mapper>, <output-mapper>

Attribute Description

bean Refers to a custom mapper as a bean in the Spring application 

context. May be used instead of child <input-mapper> and 

<output-mapper> elements.



P84 APPENDIX E

Spring Web Flow definition reference

<bean-action>

Specifies a flow action as a bean/method combination. This is a lightweight alternative to implementing 

Spring Web Flow’s Action interface as it allows any bean to participate as an action in a flow.

May be included in elements: <action-state>, <end-actions>, <entry-actions>, 

<exit-actions>, <render-actions>, <start-actions>, <transition>

May contain: <attribute>, <method-arguments>, <method-result>

Attribute Description

bean Refers to a bean in the Spring application context to be invoked. 

method The bean method to be invoked.

name An optional name for the action. If used, the re-sent event will be 

qualified by this name. For example, if this action is named 

doStuff and signals a success result event, the fully quali-

fied event will be doStuff.success.

<decision-state>

Defines a decision state. Conditions and the resulting transitions are specified by one or more child 

<if> elements.

May be included in: <flow>

May contain: <attribute>, <entry-actions>, <exception-handler>, <exit-
actions>, <if>

Attribute Description

id The ID of the state.

<end-actions>

Specifies a collection of one or more actions to be performed as a flow ends.

May be included in: <flow>

May contain: <action>, <bean-action>, <evaluate-action>, <set>

<end-state>

Defines the end state of the flow. Upon entering an end state, the conversation is over and the user is 

presented with a page specified by the view attribute.

May be included in: <flow>

May contain: <attribute>, <entry-actions>, <exception-handler>, <output-
mapper>

Attribute Description

id The ID of the state.

view The view to be presented to the user when the flow concludes. 

Refers to a logical view name that can be resolved by a Spring 

MVC view resolver.



APPENDIX E

Spring Web Flow definition reference P85

<entry-actions>

Declares one or more actions to be performed upon entry to a flow state. 

May be included in: <action-state>, <decision-state>, <end-state>, 

<subflow-state>, <view-state>

May contain: <action>, <bean-action>, <evaluate-action>, <set>

<evaluate-action>

Defines an action as an arbitrary expression against the flow request context. Can be used to invoke any 
method on a flow-managed bean.

May be included in: <action-state>, <end-actions>, <entry-actions>, <exit-
actions>, <render-actions>, <start-actions>, <transition>

May contain: <evaluation-result>

Attribute Description

expression An expression that references a method of a flow-scoped bean.

name An optional name qualifier for this evaluate action. When speci-

fied, this action will qualify execution result event identifiers by 

prefixing them with this name.

<evaluation-result>

Specifies how the result of <evaluate-action> will be exposed to the flow.

May be included in: <evaluate-action>

Attribute Description

name The name of the scoped variable to hold the result.

scope The scope within which the result should reside.

Valid values: request, flash, flow, conversation, 

default

Default value: default

<exception-handler>

Specifies an exception handler for a flow or state. 

May be included in: <action-state>, <decision-state>, <end-state>, <flow>, 

<subflow-state>, <view-state>

Attribute Description

bean Refers to a bean in the Spring application context that is a custom 

exception handler, implementing either 

StateExceptionHandler or 

FlowExecutionExceptionHandler.



P86 APPENDIX E

Spring Web Flow definition reference

<exit-actions>

Specifies one or more actions to be performed before transitioning away from a state.

May be included in: <action-state>, <decision-state>, <subflow-state>, 

<view-state>

May contain: <action>, <bean-action>, <evaluate-action>, <set>

<flow>

Defines a flow. This is the root element of a flow definition.

May be included in: <inline-flow>

May contain: <action-state>, <attribute>, <decision-state>, <end-
actions>, <end-state>, <exception-handler>, <global-transitions>, 

<import>, <inline-flow>, <input-mapper>,  <output-mapper>, <start-
actions>, <start-state>, <subflow-state>, <var>, <view-state>

<global-transitions>

Defines one or more transitions that can be used throughout a flow (by all states).

May be included in: <flow>

May contain: <transition>

<if>

Defines a condition and resulting transition for a <decision-state>.

May be included in: <decision-state>

Attribute Description

else An optional state to transition to if the test expression evaluates 

to false.

test A boolean expression defining criteria to be tested.

then The state to transition to if the expression evaluates to true.

<import>

Imports a flow definition into the current flow. Encourages flow reuse.

May be included in: <flow>

Attribute Description

resource The resource containing the flow definition to be imported.

<inline-flow>

Defines an inline flow.

May be included in: <flow>

May contain: <flow>

Attribute Description

id The ID of the inline flow.



APPENDIX E

Spring Web Flow definition reference P87

<input-attribute>

Defines an input attribute.

May be included in: <input-mapper>

Attribute Description

name The name of the input attribute.

required Specifies whether or not this input attribute is required.

scope The scope of the input attribute. If not specified, the default scope 

type is used.

<input-mapper>

Defines an input mapper for a flow or subflow.

May be included in: <attribute-mapper>, <flow>

May contain: <input-attribute>, <mapping>

<mapping>

Defines a mapping rule, mapping the value of a source expression to a property of a target data struc-
ture.

May be included in: <input-mapper>, <output-mapper>

Attribute Description

from The source value type. A type conversion will be performed if the 

source type differs from the target type.

required If true, this is a required mapping. An error will occur if the 

source is null.

source An expression that resolves to the value to be mapped.

target An expression that defines the target property to be set.

target-collection An expression that defines a collection that the mapped value 

should be added to. (Use this instead of target.)

to The target value type. A type conversion will be performed if the 

target value differs from the source type.

<method-arguments>

Declares a collection of one or more arguments to be passed in an invocation of a <bean-action>.

May be included in: <bean-action>

May contain: <argument>



P88 APPENDIX E

Spring Web Flow definition reference

<method-result>

Specifies where the result of a <bean-action> invocation should be placed.

May be included in: <bean-action>

Attribute Description

name The name of an attribute that will contain the return value of the 

target <bean-action> method. 

scope The scope of the return value attribute.

Valid values: request, flash, flow, conversation, 

default

Default value: default

<output-attribute>

Defines an output attribute.

May be included in: <output-mapper>

Attribute Description

name The name of the output attribute.

required Specifies whether or not this output attribute is required.

scope The scope of the output attribute. If not specified, the default 

scope type is used.

<output-mapper>

Defines an output mapper for a flow or subflow.

May be included in: <attribute-mapper>, <end-state>, <flow>

May contain: <mapping>, <output-attribute>

<render-actions>

Specifies one or more actions to be performed prior to rendering the view of a view state.

May be included in: <view-state>

May contain: <action>, <bean-action>, <evaluate-action>, <set>

<set>

Sets a scoped attribute value.

May be included in: <action-state>, <end-actions>, <entry-actions>, <exit-
actions>, <render-actions>, <start-actions>, <transition>

May contain: <attribute>

Attribute Description

attribute The name of the attribute to set. May be a nested path using Java-

Beans notation.

name An optional name qualifier for this set action. When specified, this 

action will qualify execution result event identifiers by prefixing 

them with this name.



APPENDIX E

Spring Web Flow definition reference P89

<set> (continued)

Attribute Description

scope The scope of the attribute.

Valid values: default, request, flash, flow, 

conversation

Default value: default

value The attribute value expression.

<start-actions>

Specifies one or more actions to be performed as a flow begins.

May be included in: <flow>

May contain: <action>, <bean-action>, <evaluate-action>, <set>

<start-state>

Declares the beginning state of a flow. 

May be included in: <flow>

idref References the ID of the state that starts the flow.

<subflow-state>

Declares a subflow state. The execution of the current flow is suspended and a new subflow begins.

May be included in: <flow>

May contain: <attribute>, <attribute-mapper>, <entry-actions>, 

<exception-handler>, <exit-actions>, <transition>

Attribute Description

flow The name of the subflow.

id The ID of the subflow state.

<transition>

Defines a transition. 

May be included in: <action-state>, <global-transitions>, <subflow-state>, 

<view-state>

May contain: <action>, <attribute>, <bean-action>, <evaluate-action>, 

<set>

Attribute Description

on The criteria that triggers this transition. Typically, a static value 

that indicates the last event that occurred in the flow. May also be 

a boolean expression.

on-exception The fully qualified class name of an exception type that should trig-

ger the transition. (Used instead of the on attribute.)

to The ID of a state that the flow should transition to upon being trig-

gered.



P90 APPENDIX E

Spring Web Flow definition reference

 

<value>

The value of an attribute (as text contained in this element). This is the longhand alternative to the 

value attribute of the <attribute> element.

May be included in: <attribute>

<var>

Defines a flow variable. Flow variables are automatically created when a flow starts.

May be included in: <flow>

Attribute Description

bean References a bean in the Spring application context that defines 

the initial flow variable value. The bean must not be scoped as a 

singleton. Not required if the name attribute matches the bean ID.

class An alternative to the bean attribute that specifies the type of the 

variable to be instantiated directly.

name The name of the variable. When used without the bean or 

class attribute, this name is also used as the ID of a bean in 

the Spring application context that will be used as the variable’s 

initial value. (The bean must not be scoped as a singleton.)

scope The scope of the variable.

Valid values: request, flash, flow, conversation, 

default

Default value: default

<view-state>

Declares a view state in the flow. Displays a view to the user.

May be included in: <flow>

May contain: <attribute>, <entry-actions>, <exception-handler>, <exit-
actions>, <render-actions>, <transition>

Attribute Description

id The ID of the view state.

view The logical name of the view (to be looked up using a Spring MVC 

view resolver).



P91

appendix F:
Customizing Spring

configuration



P92 APPENDIX F

Customizing Spring configuration

One of the most significant new features in Spring 2 is the ability to create custom

Spring configuration XML elements. No more will you be limited to only <bean>

elements. With Spring 2 you can extend Spring’s configuration with custom ele-

ments that are more terse and clearer to read.

 Throughout the printed book, you found examples of how common Spring

configuration tasks have been greatly simplified by the addition of new elements

that come packaged as part of the Spring 2 distribution. For example, in chapter

4 you saw how aspects can be declared with elements like <aop:aspect> and

<aop:pointcut>. And in chapter 5, we looked at how to declare transactions with

<tx:advice>.

 While the prepackaged configuration elements are very handy, you may find

that you’d like to create your own. To illustrate how custom configuration ele-

ments are useful, let’s first look at a <bean> that is declared without using a cus-

tom element:

<bean id="babelFish" class=

   ➥ "org.springframework.remoting.jaxrpc.

        ➥ JaxRpcPortProxyFactoryBean">

  <property name="wsdlDocumentUrl" 

      value="http://www.xmethods.com/sd/2001/BabelFishService.wsdl" />

  <property name="portInterface" 

      value="com.sia.tryit.BabelFishRemote" />

  <property name="serviceInterface" 

      value="com.sia.tryit.BabelFishService" />

  <property name="namespaceUri" 

      value="http://www.xmethods.net/sd/BabelFishService.wsdl" />

  <property name="serviceName" value="BabelFishService" />

  <property name="portName" value="BabelFishPort" />

</bean>

This <bean> declaration exhibits a few shortcomings of using plain-vanilla <bean>

and <property> elements to declare a Spring bean:

■ It’s not immediately evident what this bean does. You learned in chapter 8

that a JaxRpcPortProxyFactoryBean is used to configure a web service in

Spring. But if this is the first time you’ve seen JaxRpcPortProxyFactory-

Bean, you’re probably scratching your head wondering what all of that XML

means.

■ The XML is verbose. JaxRpcPortProxyFactoryBean requires that several

properties be set. While the <property> element gets the job done, it does

consume a lot of space in the configuration file.



APPENDIX F

Customizing Spring configuration P93

■ Although you may not fully understand what a JaxRpcPortProxyFactory-

Bean does, you do know that is the class being used. Although this is not typ-

ically a problem when developing Spring applications, it may be too much

information if you’re developing a Spring-based component library. As it is,

the client of your component library knows exactly which class implements

the component. If you later decide to switch to a different implementation

class (or to even rename/repackage the class), your users would have to

change their code to reflect your API changes.

At the time of this writing, there’s no other way to declare a JaxRpcPortProxy-

FactoryBean in Spring other than to use <bean> and <property> elements.

Spring doesn’t come with a configuration element specifically for configuring

web services. This presents us with an opportunity to develop one as an example

of how to develop custom Spring configuration elements.

 In Spring, one or more configuration elements are grouped together under a

namespace. There are five steps to creating a custom Spring XML namespace:

1 Define the namespace grammar using XML Schema.

2 Create a namespace handler class.

3 Create a bean definition parser for each of the elements in the namespace.

4 Declare the namespace and its handler for deployment.

5 Bundle the custom configuration in a JAR file.

The first thing we must do is to decide what our custom XML should look like. For

that, we’ll define an XML grammar using XML schema.

F.1 Defining a namespace

As you’ve seen, the XML required to declare a JaxRpcPortProxyFactoryBean is a

bit too verbose and nonexpressive for our taste. Wouldn’t it be better if we could

declare a web service in Spring using something like this:

<ws:proxy id="foo"

    wsdlDocumentUrl=

        ➥ "http://www.xmethods.com/sd/2001/BabelFishService.wsdl"

    portInterface="com.sia.tryit.BabelFishRemote"

    serviceInterface="com.sia.tryit.BabelFishService"

    namespaceUri="http://www.xmethods.net/sd/BabelFishService.wsdl"

    serviceName="BabelFishService"

    portName="BabelFishPort"

  />



P94 APPENDIX F

Customizing Spring configuration

This <ws:proxy> element carries the same information as the more verbose

<bean> declaration, but is much more terse. And the name of the element gives us

some clue as to what it does.

 XML Schema is an appropriate mechanism for defining the grammar of one or

more XML elements. Listing F.1 shows an XML Schema that defines the <proxy>

element.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema 

    xmlns="http://www.springinaction.com/schema/spring/webservice"

    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

    targetNamespace=

        "http://www.springinaction.com/schema/spring/webservice" 

    elementFormDefault="qualified"

    attributeFormDefault="unqualified">

  <xsd:element name="proxy">

    <xsd:complexType>

      <xsd:attribute name="id" type="xsd:string" />

      <xsd:attribute name="wsdlDocumentUrl" type="xsd:string"

          use="required" />

      <xsd:attribute name="portInterface" type="xsd:string"

          use="required" />

      <xsd:attribute name="serviceInterface" type="xsd:string"

          use="required" />

      <xsd:attribute name="namespaceUri" type="xsd:string"

          use="required" />

      <xsd:attribute name="serviceName" type="xsd:string"

          use="required" />

      <xsd:attribute name="portName" type="xsd:string"

          use="required" />

      <xsd:attribute name="serviceFactoryClass"

          type="xsd:string" />

    </xsd:complexType>

  </xsd:element>

</xsd:schema>

The attributes of the <proxy> element mirror the properties of the JaxRpcPort-

ProxyFactoryBean class. All of them are described in XML as xsd:string and

most of them are required. 

 This brings up another benefit of a custom configuration element. Although

JaxRpcPortProxyFactoryBean will verify the fields that are required at runtime,

Listing F.1 Defining the XML grammar for a custom configuration element

Declares <proxy> element

Declares 
attributes of 
<proxy>



APPENDIX F

Customizing Spring configuration P95

this XML Schema will help Schema-aware XML editors catch missing attributes as

they’re being edited. 

NOTE Although I wrote the XSD file in listing F.1 by hand, you may want to con-
sider using an XSD inference tool. This is especially true if you’re unfa-
miliar with XSD or if your custom XML will be quite complex. An XSD

inference tool takes an example XML file and makes reasonable guesses
to generate an XSD schema that will validate the example XML. Several
XML editors come with an XSD inference feature. For a standalone XSD

inference tool, I like Trang (http://www.thaiopensource.com/relaxng/
trang.html). 

XML Schema defines the grammar used to express the custom configuration ele-

ment(s). But there needs to be some logic written to tell Spring what to do with

those elements. Next, we’ll create a namespace handler that will put some mean-

ing behind the grammar.

F.2 Creating namespace handlers

The simplest and most common way to build a namespace handler is to subclass

Spring’s NamespaceHandlerSupport class. WebServiceNamespaceHandler

(listing F.2) extends NamespaceHandlerSupport to tell Spring how to interpret

our custom <proxy> element.

package com.springinaction.config;

import org.springframework.beans.factory.xml.

    ➥ NamespaceHandlerSupport;

public class WebServiceNamespaceHandler 

    extends NamespaceHandlerSupport {

  public WebServiceNamespaceHandler() {}

  public void init() {

    registerBeanDefinitionParser("proxy",

        new WebServiceProxyBeanDefinitionParser());

  }

}

Namespace handler classes typically don’t process the individual elements.

Instead, a namespace handler dispatches element parsing to one or more bean

definition parsers. In the case of WebServiceNamespaceHandler, we register

Listing F.2 A namespace handler for handling web service <proxy> elements

Maps
WebServiceProxyBeanDefinitionParser

to <proxy>



P96 APPENDIX F

Customizing Spring configuration

WebServiceProxyBeanDefinitionParser as the class that will do the actual han-

dling of the <proxy> element. WebServiceProxyBeanDefinitionParser is shown

in listing F.3.

package com.springinaction.config;

import org.springframework.beans.MutablePropertyValues;

import org.springframework.beans.factory.config.BeanDefinition;

import org.springframework.beans.factory.support.

    ➥ BeanDefinitionReaderUtils;

import org.springframework.beans.factory.support.

    ➥ BeanDefinitionRegistry;

import org.springframework.beans.factory.support.RootBeanDefinition;

import org.springframework.beans.factory.xml.

    ➥ AbstractBeanDefinitionParser;

import org.springframework.beans.factory.xml.ParserContext;

import org.springframework.remoting.jaxrpc.

    ➥ JaxRpcPortProxyFactoryBean;

import org.springframework.util.StringUtils;

import org.w3c.dom.Element;

public class WebServiceProxyBeanDefinitionParser 

    extends AbstractBeanDefinitionParser {

  private static final String ID = "id";

  private static final String WSDL_URL = "wsdlDocumentUrl";

  private static final String PORT_INTERFACE = "portInterface";

  private static final String SERVICE_INTERFACE = 

      "serviceInterface";

  private static final String NAMESPACE_URI = "namespaceUri";

  private static final String SERVICE_NAME = "serviceName";

  private static final String PORT_NAME = "portName";

  private static final String SERVICE_FACTORY_CLASS = 

      "serviceFactoryClass";

  protected BeanDefinition parseInternal(

      Element element, ParserContext context) {

    BeanDefinitionRegistry registry = context.getRegistry();

    RootBeanDefinition beanDef = new RootBeanDefinition();

    beanDef.setBeanClass(JaxRpcPortProxyFactoryBean.class);

    String id = element.getAttribute(ID);

    if(!StringUtils.hasText(id)) {

      id = BeanDefinitionReaderUtils.generateBeanName(

          beanDef, registry, false);

    }

    MutablePropertyValues mpv = new MutablePropertyValues();

Listing F.3 definition parser for the <proxy> element

Creates bean 
definition

Sets bean ID



APPENDIX F

Customizing Spring configuration P97

    mpv.addPropertyValue(WSDL_URL,

        element.getAttribute(WSDL_URL));

    mpv.addPropertyValue(PORT_INTERFACE,

        element.getAttribute(PORT_INTERFACE));

    mpv.addPropertyValue(SERVICE_INTERFACE,

        element.getAttribute(SERVICE_INTERFACE));

    mpv.addPropertyValue(NAMESPACE_URI,

        element.getAttribute(NAMESPACE_URI));

    mpv.addPropertyValue(SERVICE_NAME,

        element.getAttribute(SERVICE_NAME));

    String portName = element.getAttribute(PORT_NAME);

    if(StringUtils.hasText(portName)) {

      mpv.addPropertyValue(PORT_NAME, portName);

    }

    String serviceFactory =

        element.getAttribute(SERVICE_FACTORY_CLASS);

    if(StringUtils.hasText(serviceFactory)) {

      mpv.addPropertyValue(

          SERVICE_FACTORY_CLASS, serviceFactory);

    }

    beanDef.setPropertyValues(mpv);

    registry.registerBeanDefinition(id, beanDef);

    return beanDef;

  }

}

The primary job of a bean definition parser is to parse the XML of a configuration

element and to register one or more beans with the Spring container.

WebServiceProxyBeanDefinitionParser’s whole purpose in life is to simplify

configuration of JaxRpcPortProxyFactoryBean, so that is the class of the bean

that it will register. 

 WebServiceProxyBeanDefinitionParser starts by creating a bean definition

object and setting that bean definition’s class to JaxRpcPortProxyFactoryBean. It

then looks at each of the attributes for the <proxy> element (as defined in the

XML Schema) and maps their values to properties of the bean definition (by way

of a MutablePropertyValues object). Once all of the properties have been set, it

registers the bean definition with the bean definition registry. The Spring con-

tainer takes over from there and creates the bean.

Sets 
required 
attributes

Sets 
optional 
attributes

Registers bean 
definition



P98 APPENDIX F

Customizing Spring configuration

F.2.1 Writing a simple bean definition parser

One thing that may have caught your eye about the WebServiceProxyBeanDefi-

nitionParser is that it directly maps the attributes of the <proxy> element to

properties of the same name on JaxRpcPortProxyFactoryBean. For example, the

wsdlDocumentUrl attribute of the <proxy> element gets mapped directly to the

wsdlDocumentUrl property on JaxRpcPortProxyFactoryBean. When you are

defining a custom element that is doing a simple one-to-one mapping of

attributes to properties such as this, there is a simpler way to define the bean defi-

nition parser.

 Spring’s AbstractSimpleBeanDefinitionParser is a special implementation

of a bean implementation parser that automatically does one-to-one mappings

from configuration attributes to bean properties. Listing F.4 shows a new imple-

mentation of WebServiceProxyBeanDefinitionParser that is made much sim-

pler by extending AbstractSimpleBeanDefinitionParser.

package com.springinaction.config;

import org.springframework.beans.factory.xml.        

          ➥ AbstractSimpleBeanDefinitionParser;

import org.springframework.remoting.jaxrpc.

    ➥ JaxRpcPortProxyFactoryBean;

import org.w3c.dom.Element;

public class WebServiceProxyBeanDefinitionParser 

    extends AbstractSimpleBeanDefinitionParser {

  protected Class getBeanClass(Element element) {

    return JaxRpcPortProxyFactoryBean.class;

  }

}

The only method that you must implement when extending AbstractSimpleBe-

anDefinitionParser is getBeanClass(). This method tells AbstractSimpleBe-

anDefinitionParser what bean you want configured in the Spring context. In

this case, we tell it that we’re configuring a JaxRpcPortProxyFactoryBean. 

F.3 Packaging custom configuration elements

Now that you’ve defined the grammar of the custom XML element and have writ-

ten a namespace handler and a bean definition parser to process the element,

we’re almost ready to bundle up the configuration element for use in any project

Listing F.4 A simpler form of a web service bean definition parser



APPENDIX F

Customizing Spring configuration P99

that needs to declare a web service bean. But first, we need a way to tell Spring

about the namespace and how it should be handled.

 The Spring container looks for two files under the META-INF/ directory in its

classpath to give it clues about custom configuration elements. These two files are:

■ spring.schemas—Maps a schema URI to an actual XML Schema in the class-

path

■ spring.handlers—Maps a namespace URI to the namespace handler class that

will process configuration elements in that namespace

Custom namespaces are declared in a Spring configuration file using the standard

approach for declaring a namespace in any XML file. For example, if you consider

a typical Spring configuration file, you might find that the <beans> element is

written as follows:

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:aop="http://www.springframework.org/schema/aop"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

        http://www.springframework.org/schema/aop 

        http://www.springframework.org/schema/aop/

            ➥ spring-aop-2.0.xsd">

…

</beans>

In this example, there are two namespaces in play:

■ The default namespace is the Spring beans namespace. This namespace’s

URI is http://www.springframework.org/schema/beans and its schema

URI is http://www.springframework.org/schema/beans/spring-beans-

2.0.xsd. 

■ The aop namespace references Spring’s set of configuration elements for

aspect-oriented programming (see chapter 4 of the printed book). Its URI is

http://www.springframework.org/schema/aop and its schema URI is

http://www.springframework.org/schema/aop/spring-aop-2.0.xsd.

When Spring encounters a custom namespace in its configuration file, it will use

the mapping(s) defined in the spring.schemas file to map the namespace’s logical

schema URI to a physical XML Schema definition in the classpath. For our custom

namespace, we want to map the logical schema URI http://www.springinac-

tion.com/schema/spring/webservice/spring-webservice.xsd to the physical



P100 APPENDIX F

Customizing Spring configuration

spring-webservice.xsd file defined in listing F.1. Consequently, here’s what the

spring.schemas file will look like to declare that mapping:

http\://www.springinaction.com/schema/spring/webservice/spring-  

    ➥ webservice.xsd=com/springinaction/config/spring-webservice.xsd

Here we’re saying that the XML Schema definition can be found in the classpath

in com/springinaction/config.

 But the schema definition isn’t enough for Spring to be able to use your cus-

tom configuration element. You also must tell Spring which namespace handler

to use when processing the XML. That’s what the spring.handlers file is for. This

file maps a namespace URI to the fully qualified class name of the namespace han-

dler that processes the namespace’s XML. Here’s what the spring.handlers file

looks like to map http://www.springinaction.com/schema/spring/webservice

to be handled by WebServiceNamespaceHandler:

http\://www.springinaction.com/schema/spring/webservice=

    com.springinaction.config.WebServiceNamespaceHandler

With spring.schemas and spring.handlers defined, you’re ready to package the

custom configuration namespace.

F.3.1 Packaging the custom namespace

At this point, you could begin using the custom configuration namespace in your

application as is. As long as all of the classes and files created in this section are in

the proper location in the classpath, they’ll be available to your application. But

the real benefit of creating a custom namespace is in creating reusable configura-

tion elements that can be used across many projects. Therefore, you’ll want to cre-

ate a JAR file containing the namespace code.

 You can use any number of mechanisms for producing the JAR file, including

Ant’s <jar> task, running Maven 2’s “package” goal, or simply using the jar util-

ity at the command line. Regardless of which approach you take, you’ll want to

be sure that the structure of the JAR file matches what Spring will expect. To

recap, here’s the JAR file structure for the web service namespace we created in

this section:

/META-INF/spring.handlers

/META-INF/spring.schemas

/com/springinaction/config/spring-webservice.xsd

/com/springinaction/config/WebServiceNamespaceHandler.class

/com/springinaction/config/WebServiceProxyBeanDefinitionParser.class



APPENDIX F

Customizing Spring configuration P101

 Now place the JAR file in your application’s classpath and you’re ready to use

the new configuration element.

F.3.2 Using the custom namespace

As with Spring’s built-in configuration elements, you’ll need to declare your cus-

tom namespace in the <beans> element:

<beans xmlns="http://www.springframework.org/schema/beans"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xmlns:ws="http://www.springinaction.com/schema/spring/webservice"

    xsi:schemaLocation="http://www.springframework.org/schema/beans 

        http://www.springframework.org/schema/beans/

            ➥ spring-beans-2.0.xsd

        http://www.springinaction.com/schema/spring/webservice 

        http://www.springinaction.com/schema/spring/webservice/   

             ➥ spring-webservice.xsd">

…

</beans>

Here we’ve bound the namespace to the ws prefix (short for web service). Declared

like this, the <proxy> element can be used as follows:

<ws:proxy id="foo"

    wsdlDocumentUrl=

        "http://www.xmethods.com/sd/2001/BabelFishService.wsdl"

    portInterface="com.sia.tryit.BabelFishRemote"

    serviceInterface="com.sia.tryit.BabelFishService"

    namespaceUri="http://www.xmethods.net/sd/BabelFishService.wsdl"

    serviceName="BabelFishService"

    portName="BabelFishPort"

  />

As you can see, the <ws:proxy> element is significantly simpler than the equiva-

lent JaxRpcPortProxyFactoryBean declaration. It’s also much more expressive in

that <ws:proxy> is clear in its purpose. 


