
● Concisely define each of the following key terms: atomic literal, collection literal, set,

bag, list, array, dictionary, structured literal, and extent.

● Create logical object-oriented database schemas using the object definition language (ODL).

● Transform conceptual UML class diagrams to logical ODL schemas by mapping classes (abstract and

concrete), attributes, operations (abstract and concrete), association relationships (one-to-one, one-to-

many, and many-to-many), and generalization relationships.

● Identify the type specifications for attributes, operation arguments, and operation returns.

● Create objects and specify attribute values for those objects.

● Understand the steps involved in implementing object-oriented databases.

● Understand the syntax and semantics of the object query language (OQL).

● Use OQL commands to formulate various types of queries.

● Gain an understanding of the types of applications to which object-oriented databases have been applied.
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I
n Chapter 14, we introduced you to object-oriented
data modeling. You learned how to conceptually
model a database using UML class diagrams. In this

chapter, we will describe how such conceptual object-
oriented models can be transformed into logical
schemas that can be directly implemented using an
object database management system (ODBMS).

As you will learn later, although relational data-
bases are effective for traditional business applications,

they have severe limitations (in the amount of pro-
gramming required and DBMS performance) when it
comes to storing and manipulating complex data and
relationships. In this chapter, we will show how to
implement applications within an object-oriented data-
base environment. In Appendix D, you will learn about
object-relational databases, which are the most popular
way object-oriented principles are implemented in
DBMSs.
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In this chapter, we will adopt the Object Model proposed by the Object
Database Management Group (ODMG) (see www.odmg.org) for defining and
querying an object-oriented database (OODB). For developing logical schemas, we
will specifically use the object definition language (ODL), a data definition lan-
guage for OODBs specified in the ODMG 3.0 standard (Cattell et al., 2000). The
ODMG was formed in 1991 by OODB vendors to create standards, and hence make
OODBs more viable. Just as an SQL data definition language (DDL) schema can
be implemented in a SQL-compliant relational DBMS (see Chapters 7 and 8), a
logical schema created using ODL can be implemented in an ODMG-compliant
ODBMS.

We will use examples similar to the ones you saw earlier in Chapter 14 to show
how to map conceptual UML class diagrams into logical ODL schemas. You will learn
how to map classes (abstract and concrete), attributes, operations (abstract and con-
crete), association relationships (unary and binary), and generalization relation-
ships from a UML class diagram into corresponding ODL constructs.

Recall from Chapter 7 that, in addition to the DDL component, SQL has a
data manipulation language (DML) component that allows users to query or
manipulate the data inside a relational database. A similar language, called object
query language (OQL), has been specified in the ODMG 3.0 standard to query
object databases (Cattell et al., 2000). We will describe how various types of
queries can be formulated using OQL. The ODMG has prescribed versions of
ODL and OQL for C++, Smalltalk, and Java. We use a generic version in our
examples.

In Chapter 14, we showed a conceptual object-oriented model for the Pine Valley
Furniture Company. In this chapter, we will transform this conceptual model into a
logical ODL schema. Finally, we will discuss the types of applications for which
ODBMSs are well suited and describe briefly some of the applications developed
using existing ODBMS products.

OBJECT DEFINITION LANGUAGE

In Chapter 7, you learned how to use the SQL DDL to specify a logical schema
for a relational database. Similarly, the ODL allows you to specify a logical schema for
an object-oriented database. ODL is a programming-language-independent specifi-
cation language for defining OODB schemas. Just as an SQL DDL schema is portable
across SQL-compliant relational DBMSs, an ODL schema is portable across ODMG-
compliant ODBMSs.

Defining a Class

Figure 15-1 shows a conceptual UML class diagram (see Chapter 14 for an expla-
nation of the notation for a class diagram) for a university database, an example with
which all readers are familiar. For the time being, we will focus on the Student and
Course classes and their attribute properties. In ODL, a class is specified using the
class keyword, and an attribute is specified using the attribute keyword. The Student
and Course classes are defined as follows:

class Student {
attribute string name;
attribute Date dateOfBirth;
attribute string address;
attribute string phone;

// plus relationship and operations . . .
};
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class Course {
attribute string crse_code;
attribute string crse_title;
attribute short credit_hrs;

// plus relationships and operation . . .
};

We have highlighted the ODL keywords in bold. We have added comments (pre-
ceded by the “//” sign) to indicate that we need to add the relationships and opera-
tions (see Figure 15-1) to the classes at a later stage. Note that next to an attribute
keyword, we have specified the type of the attribute followed by the attribute’s name.

Defining an Attribute

An attribute’s value is either a literal or an object identifier. As we discussed in
Chapter 14, each object has a unique identifier. Because an object retains its identi-
fier over its lifetime, the object remains the same despite changes in its state. In con-
trast, literals do not have identifiers and, therefore, cannot be individually refer-
enced like objects. Literals are embedded inside objects. You can think of literal
values as constants. For example, the string Mary Jones, the character C, and the inte-
ger 20 are all literal values.

The Object Model supports different literal types, including atomic literals, col-
lection literals, and structured literals. Examples of atomic literal types are string,
char (character), boolean (true or false), float (real number), short (short integer),
and long (long integer).

A collection literal is a collection of elements, which themselves could be of any
literal or object type. The collection literal types supported by the ODMG Object
Model include set, bag, list, array, and dictionary. A set is an unordered collection of
elements of the same type without any duplicates. A bag is an unordered collection of
elements that may contain duplicates. In contrast to sets and bags, a list is an ordered
collection of elements of the same type. An array is a dynamically sized ordered col-
lection of elements that can be located by position. A dictionary is an unordered
sequence of key-value pairs without any duplicates.

A structured literal, also known as a structure, consists of a fixed number of
named elements, each of which could be of literal or object type. The Object Model
supports the following predefined structures: Date, Interval, Time, and Timestamp.
In addition, it supports user-defined structures, examples of which will be given later.

Let us now go back to the ODL schema for the university database. The attributes
name, address, and phone of Student and crse_code and crse_title of Course are all of
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string type. A string attribute can store a string of alphanumeric characters enclosed
within double quotes. The attribute credit_hrs of Course is short because its value is
always an integer less than 216. In addition to these atomic literal types, the schema
also specifies the structured literal type Date for the dateOfBirth attribute of Student.

Defining User Structures

In addition to the standard data types provided by ODL, you can define struc-
tures yourself by using the struct keyword. For example, you can define a structure
called Address that consists of four components—street_address, city, state, and
zip—all of which are string attributes.

struct Address {
string street_address;
string city;
string state;
string zip;

};

Similarly, you can define Phone as a structure consisting of an area code and a
personal_number. Note that the latter is specified as a long integer, because it is
more than 216.

struct Phone {
short area_code;
long personal_number;

};

Their structures can now be used as the structure for elements of other struc-
tures. For example, if a student can have more than one phone number, the phone
attribute could be defined as follows:

attribute set � phone � phones;

Defining Operations

We can also define the operations for the two classes. In ODL, you specify an opera-
tion using parentheses after its name. The ODL definition for Student is now as follows:

class Student {
attribute string name;
attribute Date dateOfBirth;

//user-defined structured attributes
attribute Address address;
attribute Phone phone;

//plus relationship
//operations

short age( );
float gpa( );
boolean register_for(string crse, short sec, string term);

};

We have defined all three operations shown in Figure 15-1: age, gpa, and register_for.
The first two are query operations. The register_for operation is an update operation
that registers a student for a section (sec) of a course (crse) in a given term. Each
of these arguments, shown within parentheses, is preceded by its type.1 We also have
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to specify the return type for each operation. For example, the return types for age
and gpa are short (short integer) and float (real number), respectively. The return
type for the register_for operation is boolean (true or false), indicating if the regis-
tration was successfully completed or not. If the operation does not return any value,
the return type is declared as void.

Each type of object has certain predefined operations. For example, a set object
has a predefined “is_subset_of” operation, and a data object (attribute) has a prede-
fined boolean operation “days_in_year.” See Cattell et al. (2000) for a thorough cov-
erage of predefined object operations.

Defining a Range for an Attribute

If you know all the possible values that an attribute can have, you can enumerate
those values in ODL. For example, if you know that the maximum number of sec-
tions for a course is eight, you can use the keyword enum before the attribute name
(section) within the CourseOffering class and the possible values after the name, as
shown in the following:

class CourseOffering {
attribute string term;
attribute enum section {1, 2, 3, 4, 5, 6, 7, 8};

//operation
short enrollment( )

};

Defining Relationships

Finally, we will add the relationships shown in Figure 15-1 to the ODL schema.
The ODMG Object Model supports only unary and binary relationships. There are
two binary relationships and one unary relationship in Figure 15-1. As discussed in
Chapter 14, a relationship is inherently bidirectional. In Figure 15-1, we have provided
names for both directions of a relationship. For example, we have named the relation-
ship between Student and Course Offering Takes when traversing from the former
to the latter and Taken by when traversing in the reverse direction. We use the ODL
keyword relationship to specify a relationship.

class Student {
attribute string name;
attribute Date dateOfBirth;
attribute Address address;
attribute Phone phone;

// relationship between Student and CourseOffering
relationship set < CourseOffering> takes inverse CourseOffering::taken_by;

// operations
short age( );
float gpa( );
boolean register_for(string crse, short sec, string term);

};

Within the Student class, we have defined the “takes” relationship, using the rela-
tionship keyword. The name of the relationship is preceded by the class the relation-
ship targets: CourseOffering. Because a student can take multiple course offerings,
we have used the keyword “set” to indicate that a Student object is related to a set of
CourseOffering objects (and the set is unordered). This relationship specification
represents the traversal path from Student to CourseOffering.

The ODMG Object Model requires that a relationship be specified in both direc-
tions. In ODL, the inverse keyword is used to specify the relationship in the reverse
direction. The inverse of “takes” is “taken_by” from CourseOffering to Student. In the
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class definition for Student, we have named this traversal path (taken_by), preceded by
the name of the class from where the path originates (CourseOffering), along with a
double colon (::). In the class definition for CourseOffering shown below, the relation-
ship is specified as “taken_by,” with the inverse being “takes” from Student. Because a
course offering can be taken by many students, the relationship links a set of Student
objects to a given CourseOffering object. For a many-to-many relationship such as this,
therefore, you must specify a collection (set, list, bag, or array) of objects on both sides.

class CourseOffering {
attribute string term;
attribute enum section {1, 2, 3, 4, 5, 6, 7, 8};

// many-to-many relationship between CourseOffering and Student
relationship set <Student> taken_by inverse Student::takes;

// one-to-many relationship between CourseOffering and Course
relationship Course belongs_to inverse Course::offers;

//operation
short enrollment( );

};

The ODBMS would automatically enforce the referential integrity of the relation-
ships you specify in an ODL schema (Bertino and Martino, 1993; Cattell et al., 2000).
For instance, if you delete a Student object, the ODBMS will automatically derefer-
ence its links to all CourseOffering objects. It will also dereference links from all
CourseOffering objects back to that Student object. If you link a Student object to a
set of CourseOffering objects, the ODBMS will automatically create inverse links.
That is, it will create a link from each of the CourseOffering objects back to the
Student object in question.

We have specified another relationship, “belongs_to,” for the CourseOffering
class, with the inverse being “offers” from Course. Because a course offering
belongs to exactly one course, the destination of the belongs_to traversal path is
Course, implying that a CourseOffering object can be linked to only one Course
object. In specifying the “one” side of an association relationship, therefore, you
simply specify the destination object type, not a collection (e.g., set) of an object
type.

We show below how to specify the relationships and operation for Course. We
have specified the offers relationship within Course, with the inverse being
belongs_to. But because the course offerings are ordered within a course (according
to section number within a given term), we have used list, as opposed to set, to denote
the ordering within the collection. Both directions of the unary relationship shown
in Figure 15-1, has_prereqs and is_prereq_for, begin and terminate in the Course
class, as specified in the following Course definition.

class Course {
attribute string crse_code;
attribute string crse_title;
attribute short credit_hrs;

// unary relationship for prerequisite courses
relationship set <Course> has_prereqs inverse Course::is_prereq_for;
relationship set <Course> is_prereq_for inverse Course::has_prereqs;

// binary relationship between Course and CourseOffering
relationship list <CourseOffering> offers inverse CourseOffering::belongs_to;

//operation
short enrollment( );

};

The complete schema for the university database is shown in Figure 15-2. Notice
that we have introduced the ODL keyword extent to specify the extents of the classes.
The extent of a class is the set of all instances of the class within the database (Cattell
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et al., 2000). For example, the extent called “students” refers to all the Student
instances in the database.

Defining an Attribute with an Object Identifier as Its Value

In all the examples that you have seen so far, an attribute’s value is always a lit-
eral. Recall that we said that it could also be an object identifier. For instance, there
could be an attribute called “dept” within Course that represents the department
offering a course. Instead of storing the department’s name, the attribute could store
the identifier for a Department object. We need to make the following changes:

class Course {
// the dept attribute’s value is an object identifier

attribute Department dept;
// other attributes, operations, and relationships . . .
};
class Department {

attribute short dept_number;
attribute string dept_name;
attribute string office_address;

};

The type of the dept attribute is Department, implying that the attribute’s value
is an object identifier for an instance of Department. This is akin to representing a
unidirectional relationship, from Course to Department. The ODBMS, however,
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class Student {
( extent students)

attribute string name;
attribute Date dateOfBirth;
attribute Address address;
attribute Phone phone;
relationship set �CourseOffering� takes inverse CourseOffering::taken_by;
short age( );
float gpa( );
boolean register_for(string crse, short sec, string term);

};

class CourseOffering {
( extent courseofferings)

attribute string term;
attribute enum section {1, 2, 3, 4, 5, 6, 7, 8};
relationship set �Student� taken_by inverse Student::takes;
relationship Course belongs_to inverse Course::offers;
short enrollment( );

};

class Course {
( extent courses)

attribute string crse_code;
attribute string crse_title;
attribute short credit_hrs;
relationship set �Course� has_prereqs inverse Course::is_prereq_for;
relationship set �Course� is_prereq_for inverse Course::has_prereqs;
relationship list �CourseOffering� offers inverse CourseOffering::belongs_to;
short enrollment( );

};

F i g u r e  1 5 - 2
ODL schema for university database



does not automatically maintain the referential integrity of such unidirectional rela-
tionships specified through attributes. If most of the references in user queries are
from Course to Department (e.g., finding the name of the department offering a
given course), not vice versa, and referential integrity is not an issue, then represent-
ing such a relationship in one direction using an attribute reference provides a more
efficient alternative.

DEFINING MANY-TO-MANY RELATIONSHIPS,
KEYS, AND MULTIVALUED ATTRIBUTES

Figure 15-3a shows a many-to-many relationship between Employee and Project. To
make an assignment, you need an Employee object, as well as a Project object. Hence,
we have modeled Assignment as an association class with features of its own. The fea-
tures include the start_date, end_date, and hours attributes and the assign operation. In
Figure 15-3b, we have broken the many-to-many relationship between Employee and
Project into two one-to-many relationships, one from Employee to Assignment and the
other from Project to Assignment. Although we could have specified the many-to-many
relationship directly in ODL, we could not have captured the features special to
Assignment unless we decomposed the relationship into two one-to-many relationships.
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The class diagram shown in Figure 15-3b can now be transformed into the fol-
lowing ODL schema:

class Employee {
( extent employees
// emp_id is the primary key for Employee

key emp_id)
attribute short emp_id;
attribute string name;
attribute Address address;
attribute float salary;
attribute Date date_hired;
attribute enum gender {male, female};

// multivalued attribute
attribute set <string> skills;
relationship set <Assignment> works_on inverse Assignment::allocated_to;

// the following operations don’t return any values
void hire( );
void fire( );
void add_skill(string new_skill);

};
class Assignment {
( extent assignments)

attribute Date start_date;
attribute Date end_date;
attribute short hours;
relationship Employee allocated_to inverse Employee::works_on;
relationship Project for inverse Project::has;

// the following operation assigns an employee to a project
void assign (short emp, string proj);
};
class Project {
( extent projects
// proj_id is the primary key for Project

key proj_id);
attribute string proj_id;
attribute string proj_name;
attribute enum priority {low, medium, high};
attribute Date begin_date;
attribute Date completion_date;

//multivalued attribute
attribute set <string> skills_required;
relationship set <Assignment> has inverse Assignment::for;
long total_emp_hours( );

};

In the ODL schema, we have specified the candidate keys for Employee and Project
using the keyword called key. Note that each Employee or Project instance in an object
database is inherently unique; that is, you do not require an explicit identifier to
enforce the uniqueness of objects. However, specifying a key ensures that no two objects
belonging to a class have the same value for the key attribute(s). The scope of uniqueness
is confined to the extent of the class. Hence, before specifying a key for a class, you
must specify its extent. The emp_id attribute must have a unique value for each
Employee object; the same applies to proj_id of Project. ODL also supports compound
keys, that is, keys consisting of more than one attribute. For example, if an employee is
uniquely identified by name and address, then you could specify the key as follows:

keys {name, address}

This schema also illustrates how to define a multivalued attribute, an attribute
that may have multiple values at a given point in time. The skills attribute of
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Employee and the skills_required attribute of Project are each specified as a set of
string values.

Defining Generalization

ODL supports unary and binary association relationships, but not relationships
of higher degree. It allows you to represent generalization relationships using the
extends keyword. In Figure 15-4, we show a UML class diagram that you first saw in
Chapter 14. Three subclasses—Hourly Employee, Salaried Employee, and Consultant—
are generalized into a superclass called Employee. The ODL schema corresponding
to the class diagram is given below:

class Employee {
( extent employees)

attribute short empName;
attribute string empNumber;
attribute Address address;
attribute Date dateHired;
void printLabel( );

};
class HourlyEmployee extends Employee {
( extent hrly_emps)

attribute float hourlyRate;
float computeWages( );

};
class SalariedEmployee extends Employee {
( extent salaried_emps)

attribute float annualSalary;
attribute boolean stockOptions;
void contributePension( );

};

15-10 C H A P T E R  15 O B J E C T- O R I E N T E D  D ATA B A S E  D E V E L O P M E N T

printLabel( )

empName

empNumber

address

dateHired

Employee

computeWages( )

hourlyRate

Hourly

Employee

contributePension( )

annualSalary

stockOption

Salaried

Employee

computeFees( )

contractNumber

billingRate

Consultant

employee
type

employee
type

employee
type

{disjoint, incomplete}

F i g u r e  1 5 - 4
UML class diagram showing employee
generalization



class Consultant extends Employee {
( extent consultants)

attribute short contractNumber;
attribute float billingRate;
float computeFees( );

};

The subclasses HourlyEmployee, SalariedEmployee, and Consultant extend
the more general Employee class by introducing new features. For example,
HourlyEmployee has two special features, hourlyRate and computeWages, in addition
to the common set of features inherited from Employee. All the classes, including
Employee, are concrete, implying that they can have direct instances. Employee is a
concrete class because the subclasses are incomplete.

Defining an Abstract Class

Figure 15-5 shows an example of an abstract class called Student, which cannot
have any direct instances. That is, a student has to be an instance of Graduate
Student or of Undergraduate Student (note the “complete” constraint among the
subclasses). In the logical schema, we specify Student as an abstract class as follows:

abstract class Student {
( extent students

key stu_number)
attribute long stu_number;
attribute string name;
attribute Date dateOfBirth;
attribute Address address;
attribute Phone phone;
relationship set <CourseOffering> takes inverse CourseOffering::taken_by;
boolean register_for(string crse, short section, string term);
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// abstract operation
abstract float calc_tuition( );

};

Notice that the calc_tuition operation of Student is abstract, implying that, at this
level, the operation’s form is specified but not its implementation. We have used the
abstract keyword to specify both the abstract class and the abstract operation.2 The
subclasses are defined as follows:

class GraduateStudent extends Student {
( extent grads)

attribute char undergrad_major;
attribute GRE gre_score;
attribute GMAT gmat_score;
float calc_tuition( );

};
class UndergradStudent extends Student {
( extent undergrads)

attribute SAT sat_score;
attribute ACT act_score;
float calc_tuition( );

};

Because both of the subclasses are concrete, the calc_tuition operations
within them must also be concrete. Therefore, although each subclass inherits the
form of the operation from Employee, it still has to provide the method. The
calc_tuition operation is specified separately within each subclass, thereby illus-
trating polymorphism. The fact that it is concrete is indicated by the absence of
the abstract keyword.

Defining Other User Structures

The schema definition contains user-defined structures such as GRE, GMAT,
SAT, and ACT, which specify the types for the various test scores. Although a prede-
fined structure, such as Date or Time, allows you to use it readily for attribute specifi-
cation, you can define additional structures that could be used for the same purpose.
We define the structures for the test scores as follows:

struct GRE {
Score verbal_score;
Score quant_score;
Score analytical_score;

};
struct GMAT {

Score verbal_score;
Score quant_score;

};
struct SCORE {

short scaled_score;
short percentile_score;

};
struct SAT { . . . };
struct ACT { . . . };

The GRE structure consists of a verbal score, a quantitative score, and an analyti-
cal score, whereas the GMAT structure does not have an analytical score. The type of
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class Salesperson {
( extent salespersons

key salespersonID)
attribute string salespersonID;
attribute string salespersonName;
attribute Phone salespersonTelephone;
attribute Phone salespersonFax;
relationship SalesTerritory serves inverse 

SalesTerritory::represented_by;
float totalCommission( );

};

class SalesTerritory {
( extent salesterritories

key territoryID)
attribute char territoryID;
attribute char territoryName;
relationship set�Salesperson� represented_by 

inverse Salesperson::serves;
relationship set�Regular Customer� consists_of inverse

Regular Customer::does_business_in;
};

class Order {
( extent orders

key orderID)
attribute string orderID;
attribute Date orderDate;
relationship Customer submitted_by inverse 

Customer::submits;
relationship list�OrderLine� contains inverse 

OrderLine::contained_in;
float orderTotal( );

};

class OrderLine {
( extent orderlines)

attribute short orderedQuantity;
relationship Order contained_in inverse 

Order::contains;
relationship Product specifies inverse 

Product::specified_in;
long orderlineTotal( );

};

F i g u r e  1 5 - 6  ( C o n t i n u e s )
ODL schema for 

Pine Valley Furniture Company database

each of these scores, in turn, is a structure called SCORE, which consists of a scaled
score (e.g., 680) and a percentile score (e.g., 95 percent).

OODB DESIGN FOR PINE VALLEY 
FURNITURE COMPANY

In Chapter 14, we developed a conceptual object-oriented model for the Pine
Valley Furniture Company in the form of a class diagram (see Figure 14-18). We will
now transform this conceptual model into a logical ODL schema, which may be used
to implement an object-oriented database system for the company.

The ODL schema is shown in Figure 15-6. By now you should be able to under-
stand clearly how each class, attribute, operation, and relationship in the class dia-
gram has been mapped to an equivalent ODL construct in the logical schema. A few
points need some mention, however. The definitions of the Address and Phone
structures are not shown in the figure because they were given previously. Notice that
the type for the salespersonFax attribute of Salesperson is Phone, indicating that the
attribute shares the same type as salespersonTelephone. Also, although the class dia-
gram does not specify any of the collections as ordered, we ordered some of them in
the ODL schema. For example, the collection of order lines contained within an
Order object is specified as a list, implying that the order line objects are ordered or
sorted.

Another thing to note is how we mapped the two many-to-many relationships,
each with an association class, into two one-to-many relationships. The first one is
between Order and Product with an association class called OrderLine. In the logical
schema, we defined a class called OrderLine that participates in two one-to-many
relationships, one with Order and the other with Product. The other many-to-many
relationship with an association class is Supplies, which was similarly mapped into
two one-to-many relationships, one between Supplier and Supplies and the other
between RawMaterial and Supplies.
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abstract class Customer {
( extent customers

key customerID)
attribute string customerID;
attribute string customerName;
attribute Address customerAddress;
attribute short postalCode;
attribute float balance;
attribute enum customerType {National, Regular};
attribute boolean National;
attribute boolean Regular;
relationship list�Order� submits inverse 

Order::submitted_by;
void mailInvoice(float amount);
void receivePaymt(float amount);

};

class Regular Customer extends Customer {
( extent reg_custs)

relationship set�Sales Territory�

does_business_in inverse
Sales Territory::consists of;

};

class National Customer extends Customer {
( extent nat_custs)

attribute string acctManager;
};

class WorkCenter {
( extent materialID

key workCenterID)
attribute char workCenterID;
attribute string workCenterLocation;
relationship set�Product� produces inverse 

Product::produced_in;
relationship list�Union Employee� employs inverse 

Employee::works_in;
};

class RawMaterial {
( extent rawmaterials

key materialID)
attribute string materialID;
attribute string materialName;
attribute enum unitOfMeasure {piece, box, 

carton, lb, oz, gallon, litre};
attribute float standardCost;
relationship set�Product� used_in inverse Product::uses;
relationship set�Supplies� listed_in inverse Supply::lists;

};

class Product {
( extent products

key productID)
attribute string productID;
attribute string productDescription;
attribute char productFinish;
attribute float standardPrice;
relationship ProductLine belongs_to inverse 

ProductLine::includes;
relationship set�OrderLine� specified_in 

inverse OrderLine::specifies;
relationship set�WorkCenter� produced_in

inverse WorkCenter::produces;
relationship set�RawMaterial� uses inverse 

RawMaterial::used_in;
float totalSales( );
boolean assignProd(string line);

};

class ProductLine {
( extent productlines)

attribute string productLineName;
relationship list�Product� includes inverse 

Product::belongs_to;
float totalSales( );

};

class Vendor {
( extent vendors)

attribute string vendorName;
attribute Address vendorAddress;

};

class Employee {
( extent employees

key employeeID)
attribute string employeeID;
attribute string employeeName;
attribute Address employeeAddress;
attribute enum employeeType {Management, Union};
relationship set�Skill� has inverse Skill::possessed_by;
boolean checkSkills(string product);

};

class Skill {
( extent skills);

attribute string skillName;
relationship set�Employee� possessed_by inverse 

Employee::has;
};
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CREATING OBJECT INSTANCES

When a new instance of a class is created, a unique object identifier is assigned.
You may specify an object identifier with one or more unique tag names. For exam-
ple, we can create a new course object called MBA 669 as follows:

MBA669 course ( );

This creates a new instance of Course. The object tag name, MBA699, can be
used to reference this object. We have not specified the attribute values for this
object at this point. Suppose you want to create a new student object and initialize
some of its attributes.

Cheryl student (name: “Cheryl Davis”, dateOfBirth: 4/5/77);

This creates a new student object with a tag name of Cheryl and initializes the
values of two attributes. You can also specify the values for the attributes within a
structure, as in the following example:

Jack student (
name: “Jack Warner”, dateOfBirth: 2/12/74,
address: {street_address “310 College Rd”, city “Dayton”, state “Ohio”, zip 45468},
phone: {area_code 937, personal_number 228–2252});

For a multivalued attribute, you can specify a set of values. For example, you can
specify the skills for an employee called Dan Bellon as follows:

Dan employee (emp_id: 3678, name: “Dan Bellon”,
skills: {“Database design”, “OO Modeling” });

Establishing links between objects for a given relationship is also easy. Suppose
you want to store the fact that Cheryl took three courses in fall 1999. You can write:

Cheryl student (takes: {OOAD99F, Telecom99F, Java99F });

where OOAD99F, Telecom99F, and Java99F are tag names for three course-offering
objects. This definition creates three links for the “takes” relationship, from the
object tagged Cheryl to each of the course offering objects.

Consider another example. To assign Dan to the TQM project, we write:

assignment (start_date: 2/15/2001, allocated_to: Dan, for TQM);

Notice that we have not specified a tag name for the assignment object. Such
objects will be identified by the system-generated object identifiers. The assignment
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class Union Employee extends Employee {
( extent union_emps)

relationship set�WorkCenter� works_in inverse
Work Center::employs;

relationship Management Employee supervised_by inverse
Management Employee::supervises;

};

class Management Employee extends Employee {
( extent mgmt_emps)

relationship set�Union Employee� supervise inverse
Union Employee::supervised_by;

}; 

class Supplies {
( extent supplies)

attribute float supply UnitPrice;
relationship RawMaterial lists inverse 

RawMaterial::listed_in;
relationship Supplier provided_by inverse 

Supplier::provides;
};

class Supplier extends Vendor {
( extent Suppliers)

attribute short contractNumber
relationship set�Supplies� provides inverse
Supplies::provided_by;

}
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object has a link to an employee object (Dan) and another link to a project object
(TQM).

When an object is created, it is assigned a lifetime, either transient or persistent.
A transient object exists only while some program or session is in operation. A persis-
tent object exists until it is explicitly deleted. Database objects are almost always
persistent.

OBJECT QUERY LANGUAGE

We will now describe the Object Query Language (OQL), which is similar to SQL-92
and has been set forth as an ODMG standard for querying OODBs. OQL allows you a
lot of flexibility in formulating queries. You can write a simple query such as

Jack.dateOfBirth

which returns Jack’s birth date, a literal value, or

Jack.address

. . . which returns a structure with values for street address, city, state, and zip. If
instead we want to simply find in which city Jack resides, we can write

Jack.address.city

Like SQL, OQL uses a select-from-where structure to write more complex
queries. Consider, for example, the ODL schema for the university database given in
Figure 15-2 . We will see how to formulate OQL queries for this database. Because of
the strong similarities between SQL and OQL, the explanations in the following sec-
tions are quite brief. For further explanations, you may want to review Chapters 7
and 8 on SQL and Chapter 14 on object modeling. The more interested reader is
referred to the chapter on OQL in Cattell et al. (2000).

Basic Retrieval Command

Suppose we want to find the title and credit hours for MBA 664. Parallel to SQL,
those attributes are specified in the select clause, and the extent of the class that has
those attributes is specified in the from clause. In the where clause, we specify the con-
dition that has to be satisfied. In the query shown below, we have specified the extent
courses of the Course class and bound the extent to a variable called c in the from
clause. We have specified the attributes crse_title and credit_hrs for the extent (i.e., set
of all Course instances in the database) in the select clause, and stated the condition
c.crse_code = “MBA 664” in the where clause.

select c.crse_title, c.credit_hrs
from courses c
where c.crse_code = “MBA 664”

Because we are dealing with only one extent, we could have left out the variable
c without any loss in clarity. However, as with SQL, if you are dealing with multiple
classes that have common attributes, you must bind the extents to variables so that
the system can unambiguously identify the classes for the selected attributes. The
result of this query is a bag with two attributes.

Including Operations in Select Clause

We can invoke operations in an OQL query similar to the way we specify attrib-
utes. For example, to find the age of John Marsh, a student, we invoke the age oper-
ation in the select clause.
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select s.age
from students s
where s.name = “John Marsh”

The query returns an integer value, assuming that there is only one student with
that name. In addition to literal values, a query can also return objects with identity.
For example, the query

select s
from students s
where s.gpa � = 3.0

returns a collection (bag) of student objects for which the gpa is greater than or equal
to 3.0. Notice that we have used the gpa operation in the where clause.

If we want to formulate the same query, but only for those students who do not
reside in Dayton, we can use the not operator as in SQL:

select s
from students s
where s.gpa � = 3.0
and not (s.address.city = “Dayton”)

Instead of using “not,” we could have specified the new condition as follows:

s.address.city ! = “Dayton”

where ! is the inequality operator.
Now suppose that we want to find the ages of all students whose gpa is less than

3.0. This query is

select s.age
from students s
where s.gpa � 3.0

Finding Distinct Values

The preceding query will return a collection of integers. It is possible that there
is more than one student with the same age. If you want to eliminate duplicates, you
can reformulate the query using the distinct keyword as shown below:

select distinct s.age
from students s
where s.gpa � 3.0

Querying Multiple Classes

In an OQL query, you can join classes in the where clause as in SQL. This is nec-
essary when the relationship that is the basis for the join has not been defined in the
object data model. When the relationship has been defined, then you can traverse
the paths for the relationships defined in the schema. The following query finds the
course codes of all courses that were offered in fall 2005.

select distinct y.crse_code
from courseofferings x,

x.belongs_to y
where x.term = “Fall 2005”

We have used distinct in the select clause because a course may have had multiple
offerings in the given term. In the from clause, we have specified a path from a
CourseOffering object to a Course object using the belongs_to relationship between
them. The variable y gets bound to the Course object where the path represented by
x.belongs_to terminates.
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Suppose that we want to find the number of students enrolled in section 1 of the
MBA 664 course. The enrollment operation is available in CourseOffering, but the
course code is available in Course. The query given below traverses from
CourseOffering to Course using the belongs_to relationship. The variable y repre-
sents the destination object for the x.belongs_to path.

select x.enrollment
from courseofferings x,

x.belongs_to y
where y.crse_code = “MBA 664”
and x.section = 1

The following query traverses two paths, one using the takes relationship and the
other using the belongs_to relationship, to find the codes and titles of all courses
taken by Mary Jones.

select c.crse_code, c.crse_title
from students s
s.takes x,

x.belongs_to c
where s.name = “Mary Jones”

We can also select a structure consisting of multiple components. For example,
the following query returns a structure with age and gpa as its attributes.

select distinct struct(name: s.name, gpa: s.gpa)
from students s
where s.name = “Mary Jones”

Writing Subqueries

You can use a select statement within a select statement. To select course codes,
course titles, and course offerings for which the enrollment is less than twenty, you can
write the following OQL command. (See Figure 15-2 for the design of the database.)

select distinct struct (code: c.crse_code, title: c_crse_title,
(select x
from c.offers x
where x.enrollment � 20 ))
from courses c

Recall that enrollment is an operation of a CourseOffering object and Course has a
1:M relationship offers with CourseOffering. This query returns a collection of dis-
tinct structures, each of which contains string values for course code and course title,
and an object identifier for a CourseOffering object that has enrollment below twenty.

You can also use a select statement within the from clause. In the example below,
we have written a query that retrieves the names, addresses, and gpas for those stu-
dents over age thirty with a gpa greater than or equal to 3.0.

select x.name, x.address, x.gpa
from (select s from students s where s.gpa � = 3.0) as x
where x.age � 30

Here x is the alias for the extent created by the select statement within the from
clause.

Calculating Summary Values

OQL supports all the aggregate operators that SQL does: count, sum, avg, max,
and min. For example, we can find the number of students in the university by using
the count operator as follows:

count(students)
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We could have also written this query as

select count (*)
from students s

Let us now consider the schema for the employee-project database that we saw
earlier (see Figure 15-3). Suppose we want to find the average salary of female
employees in the company. We use the avg function to do that in the following
query:

select avg_salary_female: avg (e.salary)
from employees e
where e.gender = female

To find the maximum salary paid to an employee, we use the max function:

max (select salary from employees)

To find the total of all employee salaries, we use the sum function:

sum (select salary from employees)

Calculating Group Summary Values

As in SQL, you can partition a query response into different groups. In the fol-
lowing query, we have used the group command to form two groups based on gen-
der: male and female. The query calculates the minimum salary for each of the two
groups.

select min (e.salary)
from employees e
group by e.gender

If we want to group the projects based on their priority levels, we can write the
following query:

select *
from projects p
group by

low: priority = low,
medium: priority = medium,
high: priority = high

This query returns three groups of project objects, labeled by the priority of the
group: low, medium, and high.

Qualifying Groups As with SQL, we can use the having command to impose a
condition or filter on each group as a whole. For example, in the following query, we
filter only those groups for which a total of more than 50 hours have been logged in.

select *
from projects p
group by

low: priority = low,
medium: priority = medium,
high: priority = high

having sum(select x.hours from p.has x) > 50

Using a Set in a Query

Sometimes you will have to find whether an element belongs to some set. To do
that, you should use the in keyword. Suppose we want to find the IDs and names of those
employees who are skilled in database design or object-oriented modeling. Note that
skills is a multivalued attribute, implying that it stores a set of values. In the where clause,
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we have used “in” to determine whether database design or object-oriented modeling
is one of the elements in an employee’s skill set.

select emp_id, name
from employees
where “Database Design” in skills
or “OO Modeling” in skills

Similarly, we can find those employees who have worked in a project whose ID is TQM9.

select e.emp_id, e.name
from employees e,

e.works_on a,
a.for p

where “TQM9” in p.proj_id

To find those projects that do not require C ++ programming skills, we can write

select *
from projects p
where not (“C ++ Programming” in p.skills_required)

Finally, you can use the existential quantifier exists and the universal quantifier
for all. The following query finds those employees who have been assigned to at least
one project.

select e.emp_id, e.name
from employees e
where exists e in (select x from assignments y

y.allocated_to x)

The select statement inside the where clause returns a set of employee objects
(i.e., their identifiers) allocated to all the assignments. The exists quantifier then
checks whether an employee object bound in the from clause is in that set. If so, that
employee’s ID and name are included in the response, otherwise not.

If we want to find the employees who have worked only on projects starting since
the beginning of 2005, we can use the for all quantifier as follows:

select e.emp_id, e.name
from employees e,

e.works_on a
where for all a: a.start_date > = 1/1/2005

In the from clause, the query finds a set of assignment objects that an employee
object is linked to through the works_on relationship. In the where clause, it applies
the condition (start_date > = 1/1/2001) to all the objects in the set using the for all
quantifier. Only if the condition is satisfied by all those objects are the employee’s ID
and name included in the query response.

Summary of OQL

We have illustrated in this section only a subset of the capabilities of OQL. See
Cattell et al. (2000) and Chaudhri and Zicari (2001) for more standard OQL features
and how OQL is implemented in various ODBMSs.

CURRENT ODBMS PRODUCTS 
AND THEIR APPLICATIONS

With the growing need in organizations to store and manipulate complex
data (e.g., image, audio, and video) and relationships, in applications ranging from
computer-aided design and manufacturing (CAD/CAM) to geographic information
systems to multimedia, ODBMS products are gaining popularity. But more than
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anything else, industry analysts believe that Internet and Web-based applications are
responsible for the sudden renewed interest in ODBMSs (King, 1997; Watterson,
1998). ODBMSs are certainly not overtaking RDBMSs, but they are viable products
for selected applications.

ODBMSs allow organizations to store diverse components (objects) associated
with their Web sites (Watterson, 1998). The proliferation of complex data types on the
Web and the need to store, index, search, and manipulate such data have provided
ODBMS technology an edge over other database technologies. To counter this emerging
technology, major relational database vendors such as Oracle, Informix, IBM, and
Sybase have come up with universal databases, also known as object-relational DBMSs
(ORDBMSs), as a possible alternative. An ORDBMS is a hybrid relational DBMS that
somehow incorporates complex data as objects (King, 1997; also see Appendix D).
However, these systems raise concerns relating to performance and scalability.
Moreover, the fundamental mismatch between relational and object technology may
induce many firms to adopt the pure ODBMS option.

The types of applications for which ODBMSs are particularly useful include bill-of-
materials data (see Figure 14-16), telecommunications data supporting navigational
access, health care, engineering design, finance and trading, multimedia, and geo-
graphic information systems. Several commercial ODBMS products are currently
available. Examples include ObjectStore, Versant ODBMS, GemStone, Objectivity,
POET Object Server, and NeoAccess (see Table 15-1).

Watterson (1998) and Barry & Associates (http://www.service-architecture.com/

object-oriented-databases/) provide several examples of real-world applications of
ODBMSs. Lucent Technologies’ Customer Support Division used GemStone to share
information globally on customers’ switches. Motorola used Objectivity to store
complex celestial information for one of its satellite networks. Groupe Paradis, a
retirement-plan management company in France, uses O2 to access over 100 giga-
bytes of data spread across several databases. And companies such as GTE,
Southwest Airlines, and Time Warner have used ObjectStore to develop dynamic
Web applications that require integrating pieces of information from various
sources on the fly. The Chicago Stock Exchange uses Versant ODBMS for its
Internet-based trading system.

Industry experts predict that ODBMSs represent the most promising of the
emerging database systems. While for traditional business applications, relational
DBMSs are expected to maintain their hold on the market, the data for many appli-
cations, such as the ones just described, cannot be easily flattened to two-dimensional
database tables. Also, accessing the data from various tables requires you to perform
joins, which could become very costly.
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Table 15-1 ODBMS Products

Company Product Web site

GemStone Systems GemFire www.gemstone.com

Objectivity Objectivity/DB www.objectivity.com

Versant Versant Object Database www.versant.com

Other Links Related to ODBMS Products

Barry & Associates www.odbmsfacts.com

Doug Barry’s The Object Database Handbook wiley.com

Object database newsgroup news://comp.databases.object

Rick Cattell’s The Object Database Standard www.mkp.com

ODMG 3.0

Object Database Management Group www.odmg.org

Chaudhri and and Zicarl’s Succeeding with www.wiley.com/compbooks/chaudhri

Object Databases 
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S u m m a r y

In this chapter, you learned how to implement an
object-oriented database system using the object def-
inition language. We introduced you to the syntax and
semantics of ODL. You learned how to transform a con-
ceptual schema, represented in the form of a UML class
diagram, to a logical schema, defined using ODL
constructs. You also learned how to populate an OODB
by creating new instances and specifying attribute values
for those instances. We also introduced you to OQL, a
language designed for querying OODBs. Using OQL,

we showed you how to write various types of OODB
queries.

The chapter also discussed the types of applications for
which ODBMSs are well suited. It briefly described some of
the applications for which current ODBMSs have been used.

While Chapter 14 provided you with the conceptual
underpinnings of OODB design, this chapter provides you
with the knowledge required to actually implement an
object-oriented database system using an ODMG-compliant
ODBMS.

C h a p t e r  R e v i e w

K e y  T e r m s

Array Collection literal List
Atomic literal Dictionary Set
Bag Extent Structured literal

R e v i e w  Q u e s t i o n s

1. Define each of the following terms:

a. object class

b. atomic literal

c. relationship

d. structured literal

e. extent

2. Contrast the following terms:

a. list; bag; dictionary

b. set; array

c. collection literal; structured literal

3. Explain the concept of an object identifier. How is an object
identifier different from a primary key in a relational system?

4. What is the purpose of the struct keyword in ODL?

5. What is the purpose of the enum keyword in ODL?

6. Explain the meaning of the term relationship set for many of
the relationships in Figure 15-2.

7. Explain the hazards of representing a relationship in ODL by
implying that an attribute’s value is an object identifier
rather by using the relationship clause.

8. Explain the meaning of the extends keyword in ODL.

9. Explain the parallels and differences between SQL and
OQL.

10. Explain how a many-to-many relationship is represented
using an ODL schema.

11. Explain how multivalued attributes are handled in ODL.

12. Explain how to define an abstract class in ODL.

13. When is it necessary to join classes in the where clause of
OQL when querying multiple classes?

14. What can be done in an OQL group by clause that cannot be
done in SQL?

15. Explain how a unary relationship is represented using
ODL.

16. What does the following OQL query return?

select distinct struct (custid: x.cid, balance: x.bal)
from customers x
where x.state = “MA”

17. What type of object does the following OQL query return?

select a
from items a
where price �� 19.99
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18. When creating an object instance in ODL, how do you spec-
ify multivalued attributes?

19. Explain how to write ODL commands to establish links
between objects (i.e., object instances) for a given
relationship.

20. Perform some research on the Internet on OODBMS prod-
ucts. A good starting place is the links provided at the end of
the chapter. Compare various OODBMSs currently on the
market in terms of features, capacity, and scalability. How do
they compare with RBMS products?

1. Develop an ODL schema for the following problem situation.
A student, whose attributes include studentName, Address,
phone, and age, may engage in multiple campus-based activi-
ties. The university keeps track of the number of years a given
student has participated in a specific activity and, at the end
of each academic year, mails an activity report to the student
showing his participation in various activities.

2. Develop an ODL schema for a real estate firm that lists
property for sale. The following describes this organization:

• The firm has a number of sales offices in several states;
location is an attribute of sales office.

• Each sales office is assigned one or more employees. Attributes
of employee include employeeID and employeeName. An
employee must be assigned to only one sales office.

• For each sales office, there is always one employee assigned
to manage that office. An employee may manage only the
sales office to which he or she is assigned.

• The firm lists property for sale. Attributes of property
include propertyName and location.

• Each unit of property must be listed with one (and only
one) of the sales offices.

• A sales office may have any number of properties listed,
or may have no properties listed.

• Each unit of property has one or more owners. Attributes
of owner are ownerName and address. An owner may own
one or more units of property. For each property that an
owner owns, an attribute called percentOwned indicates
what percentage of the property is owned by the owner.

3. Develop an ODL schema for some organization that you are
familiar with—Boy Scouts/Girl Scouts, sports team, and so
on. Include at least four association relationships.

4. Develop an ODL schema for the following situation (state
any assumptions you believe you have to make in order to
develop the schema): Stillwater Antiques buys and sells
one-of-a-kind antiques of all kinds (e.g., furniture, jewelry,
china, and clothing). Each item is uniquely identified by an
item number and is also characterized by a description, ask-
ing price, condition, and open-ended comments. Stillwater
works with many different individuals, called clients, who
sell items to and buy items from the store. Some clients only
sell items to Stillwater, some only buy items, and some oth-
ers both sell and buy. A client is identified by a client num-
ber and is also described by a client name and client
address. When Stillwater sells an item in stock to a client,

the owners want to record the commission paid, the actual
selling price, sales tax (tax of zero indicates a tax exempt
sale), and date sold. When Stillwater buys an item from a
client, the owners want to record the purchase cost, date
purchased, and condition at time of purchase.

Problems and Exercises 5 through 13 all pertain to the ODL

schema in Figure 15-2. Write OQL queries for these exercises.

5. Find the names and phone numbers of all those students
who took only one course in fall 2003.

6. Find the code and titles of all courses that were offered in
both the winter 2003 and fall 2003 terms.

7. Find the total enrollment for all sections of the MBA 664
course being offered in winter 2004.

8. Find the prerequisite courses (code and title) for the MIS
385 course.

9. Find all those students who reside in Cincinnati and who
took the MBA 665 course in fall 2001.

10. Find the total credit hours for all prerequisite courses for
the MIS 465 course.

11. Find the average age and gpa of students, grouped by the
city they live in.

12. Find the names and phone numbers of all students who are
taking sections 1 and 2 of the MBA 665 course in winter
2004.

13. Find the minimum enrollment among all the sections of
each three-credit-hour course being offered in the winter
2004 term. The response should by grouped by course, and
the group label should be crse_code.

Problems and Exercises 14 through 21 all deal with the Pine

Valley Furniture Company ODL schema in Figure 15-6. Write

OQL queries for each of these exercises.

14. List all products with an ash finish.

15. List the customers who live in California or Washington.
Order them by postalCode, from high to low.

16. Determine the average standard price of each product line.

17. Which employees were hired during 1999?

18. For every product that has been ordered, determine the
total quantity that has been ordered. List the most popular
product first and the least popular last.

19. Produce a list of customers for each sales territory.

20. List the total sales of each product.

21. List the total sales for each work center.

P r o b l e m s  a n d  E x e r c i s e s
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1. Interview a database administrator in a company with which
you are familiar. Ask this person to explain the potential
benefits of an ODBMS for that organization. Are they plan-
ning to use an ODBMS? Why or why not?

2. Using Table 15-1 and your own Internet searches, visit sev-
eral sites for vendors of ODBMSs. Prepare a summary of

one of the products you find. How does its DDL compare
to the ODL in this chapter? How does its query language
compare to the OQL explained in this chapter? What
claims does the vendor make about the relative advan-
tages of its product versus other ODBMS or relational
products?

F i e l d  E x e r c i s e s
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base product rollouts and a new extended version of relational

database technology emerged that was dubbed the “object
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ORDBMS technology (see Appendix D) is compared with the
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