
FRONTIER: HIGH PERFORMANCE DATABASE ACCESS USING

STANDARD WEB COMPONENTS IN A SCALABLE MULTI-TIER

ARCHITECTURE

S. Kosyakov, J. Kowalkowski, D. Litvintsev, L. Lueking, M. Paterno, S.P. White, Fermilab, Batavia, IL 60510, USA

Lauri Autio, Rovaniemi Polytechnic, Rovaniemi, Finland*

B. Blumenfeld, P. Maksimovic, M. Mathis, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract
A high performance system has been assembled using

standard web components to deliver database information

to a large number of broadly distributed clients. The CDF

Experiment at Fermilab is establishing processing centers

around the world imposing a high demand on their

database repository. For delivering read-only data, such

as calibrations, trigger information, and run conditions

data, we have abstracted the interface that clients use to

retrieve data objects. A middle tier is deployed that

translates client requests into database specific queries

and returns the data to the client as XML datagrams. The

database connection management, request translation, and

data encoding are accomplished in servlets running under

Tomcat. Squid Proxy caching layers are deployed near

the Tomcat servers, as well as close to the clients, to

significantly reduce the load on the database and provide

a scalable deployment model. Details the system’s

construction and use are presented, including its

architecture, design, interfaces, administration,

performance measurements, and deployment plan.*

INTRODUCTION

The CDF experiment has a widely distributed

environment for data processing and analysis. Access to

their centralized database repository is critical, and a

model using database replication [1], while successful,

was difficult to sustain while meeting the ever-increasing

load. Long distance network transactions with the

database encountered very high latencies for processing

farms located far from the Fermilab site. An effort was

initiated to find a solution that would provide a multi-tier

delivery system to distribute the load on the central

system, and provide much improved performance for both

local and distant clients. Experience in D0 with a multi-

tier approach [2] seemed inappropriate for CDF due to its

CORBA-based client interface and other implementation

details specific to D0.

* Through collaboration with Fermilab and The

University of Helsinki

Requirements and Technology Choices

The requirements for the system include many aspects

from design to performance and support. The system must

be easily installed, maintained, and administered. It must

fit easily within the existing experiment framework, and

provide a library that will link seamlessly into CDF C++

client code. The system must be highly available with no

single points of failure, and readily scalable to thousands

of simultaneous clients while minimizing the number of

open connections to the database. It should provide a

caching mechanism that will enable remote clients to

operate even while decoupled from the central Fermilab

database. Remote caches must be easily managed and

support features like cache purging or refresh. Database

schema changes should not affect the client API or client

access and adding new table access should not affect

basic server code. In other words, old clients do not need

to be rebuilt to accommodate a database or schema

change. The system must be capable of operating on

private networks and behind firewalls.

In addition, it is required that the system includes tools

for deployment and administration, and monitoring

facilities so the overall health of the system can be

assessed. It is also highly desirable that the system be

built with as many commodity components as possible to

reduce the development time, improve reliability, promote

reusability, and reduce maintenance costs. For a more

complete discussion of the use cases and requirements, as

well as additional details of the design refer to the

Frontier Roadmap document [3].

Several existing technologies were examined to

understand which might be appropriate for our needs.

Tomcat [4] was chosen as the servlet container engine

because it is under active development and provides many

features satisfying our needs, including database

connection pool management, and JDBC as the database

API. HTTP was the obvious choice as the server-client

transport protocol because of its ubiquity in web

applications, and cURL was originally employed in our

client library, although it has been replaced with our own

simpler implementation of the needed functionality.

Several existing approaches were explored for the

framework for the client-server exchange including

SOAP, Apache Axis [5], and Java JDO [6]. It was

FERMILAB-CONF-04-367-CD

decided that a simple framework could be built to provide

an efficient capability for requesting and delivering very

large data objects.

Including a proxy-caching server layer in the system

brings many of the systems most important features,

including low latency, high scalability, ease of

deployment and maintainability. Several proxy caching

products were examined, but squid[7] meets the large

majority of our needs. It is widely used, highly

configurable, and freely available. It provides extensive

access control, a variety of cache sharing protocols, and

an array of monitoring options. Although such a service

is generally not used for caching dynamic content pages,

i.e. content coming from web service such as Tomcat, it is

very effective in providing read-only access to the static

database information we are serving.

DESIGN AND IMPLEMENTATION

The overall view of the system is shown in Figure 1.

The principal components are a server hierarchy that

application clients contact with requests for desired data

objects. The server layer, in turn, translates the client

request into a data query and returns to the client the

desired information in a serialized form. The Frontier

client library receives the encoded object, de-serializes its

contents, and delivers it to the client.

Figure 1 Overall view of the Frontier system.

CDF had an existing framework that starts with a

template, written in JAVA, specifying the persistent

objects stored in their database. With this template, they

build their database tables, client C++ Headers, and

interface to the database through OTL, MySQL, or more

recently ODBC. Frontier converted CDF’s existing tools

for generating the client components to now generate the

Frontier client interface, and what is needed in the middle

tier servlet to map the client request to the database

schema.

Client Request Protocol

The request, which the client sends to the server layer,

uses a standard URI with name-value parameters we refer

to as the client request protocol. The simple protocol

includes a description of the needed data object and

includes a type, encoding format, and key or keys. It has

the form:

type (’’string_name:version_number’’ &

encoding=BLOB|CVS|XML & key1=value1 &

key2=value2 …

The string_name:version_number is the type name and its

version number appended into one string. This forces the

type and versioning information to ride together and

prevents conflict with other versioning that will be

present in the requests and results. The encoding

parameter expresses the format of the returned result.

There is no default, it must be supplied for each request in

the URI and may be different for each. The keys are used

to identify particular instance of the data objects. Each of

these keys is specific to a type, such as “CID” for a

calibration type and “DataRun” for a CDF query for a

particular set of calibration runs.

There is an implicit, or hidden, parameter in this style

of request, which is the method name. The request can be

viewed as a method call and the method name is implicit

in this request - it is always assumed to be “Retrieve

Data”. This query works for locating class definitions and

catalog information as well as for the data itself. If a

definition of a type or class is viewed as an instance of a

type called ”Description”, then the instance could be the

name of the type. Using the query for type information

and by using the attributes argument, one can construct a

generic browsing tool that allows one to transfer the

information into a statistical analysis tool such as R [8] or

ROOT [9].

Structure of Reply and Returned Data Format

The Frontier server reply to the client consists of

metadata describing the enclosed data payload(s), and a

reply can consist of a sequence of zero or more individual

payloads. Different types or instances of data objects are

never coalesced into a single payload bundle; they are

received as distinct items. The reply is an XML datagram

in which the XML serves as a descriptive wrapper around

the data payload. The datagram XML’s protocol identifies

the data being returned, detailing the contents of each

section of data being returned and the quality of the data

section.

The datagram provides identifying information about

the product including name, version, and XML protocol

version. There is a wrapper around data being returned

which describes the number of payloads being returned,

their types, versions, and encoding method. The actual

data payload follows, then a summary of the quality,

which identifies any errors encountered in producing the

data, including syntax errors, and the number of records

in the payload. An MD5 checksum is included so the

client can verify the integrity of the data.

Frontier Servlet Design

The Frontier servlet’s responsibility is to translate client

requests into data queries, and return the resulting

information in serialized form. The overall design is

shown in Figure 2 with a sequence illustrating the flow of

a request through the servlet. First, the client sends its

request to the servlets’ URI (1). The servlets’ Command

Parser parses the request and sends the information to a

Servicer Factory (2), which gets an XML Server

Descriptor (XSD)(3) from the database, and uses its

content to create a Servicer.(4). The Servicer, in-turn,

queries the database for the desired object information,

and forwards it to an Encoder. The Encoder serializes the

information with the wrapper, and sends a response back

to the client.

Figure 2 Frontier servlet design and operation.

The servlet is built using ANT and each module has an

associated JUnit test. The servlets are deployed using the

standard Tomcat administration deployment and

application management tools.

An important feature provided by the XSD is data

objects can be described and made available to the system

without modifying the servlet code itself. The Frontier

server can obtain data from virtually any data source for

which there exists a JDBC driver. This also includes a

wide range of ODBC sources, including flat files, which

can be accessed through a JDBC-ODBC bridge. In fact,

the XSD does not limit the server to read-only access - it

could be easily extended to support object creation and

updates.

XSD - XML Server Descriptor

The XSD itself contains a complete set of information

describing 1) the object structure along with hints for

marshalling, de-marshalling, and instantiation in the client

address space, 2) the source of the object, for example

table name, and 3) how to get the object from the source,

i.e. a set of parameters or keys. The format of the current

version of XSD was chosen to be optimal for use with

JDBC API compatible data sources. The actual XSD’s are

stored in the database for consistency and version

management.

The Frontier server architecture was designed to be

open for adding new methods of describing and obtaining

objects. Those methods could include descriptor-based

methods (like XSD) or plugin-based methods if there

would be requirement for very complex server-side data

processing. Plugins are Java classes combined in a single

or multiple Jar files. Those Jar files are stored in a

database in the same way as XSD, and are dynamically

loaded into JVM upon request.

The XSDs provide flexible way of writing schema and

database technology-independend applications. In the

case of CDF, XSDs are auto-generated based on the their

primary data template description of each object.

However, XSDs are flexible enough to describe complex

forms of data retrieval. In the case of relational databases

(specifically Oracle for CDF) it includes complex joins,

sub-queries, stored PL/SQL function and procedure calls.

In all cases, XSDs take full responsibility for obtaining

the persistent objects for user applications.

The format of the XSD is shown below, followed by a

description of each element.

<descriptor type="CalibRunLists“

 version="1" xsdversion="1">

<attribute position="1“ type="int“

 field="calib_run" />

<attribute position="2" type="int“

 field="calib_version" />

<attribute position="3" type="string“

 field="data_status" />

<select>

 calib_run, calib_version, data_status </select>

<from> CalibRunLists </from>

<where>

 <clause> cid = @param </clause>

 <param position="1" type="int“

 key="cid"/>

</where>

<final> </final>

</descriptor>

• descriptor - Top level tag describing the data;
type - Name of the specific object type, version -
Version number of the object, xmlversion - The

version of XML which is being used to process the

descriptor.

• attribute - Describes a datum which is being

returned; position - The location of the datam in

the select tag this attribute is decribing; type -

How the data will be marshalled out. This is also

the value returned when the client requests a

description. Valid values are: int, long, double,
float, string, bytes, date; field - The name of the

field provided to the client when asked for a

description.

• select - The fields returned from a query.

• where - A wrapper around tags which describe a

specific where clause or clauses.

• clause - The SQL for the where clause to be used

in the query; arameters may be passed in by using

the keyword “@param”.

• param - Identifies which “@param” keyword to

replace with what value; position - Which

keyword to replace with this parameter; type -

How that keyword string is to be translated. Valid

values are: int, long, double, string, date; key -
What key, supplied on the URL, which is being

substituted into the parameter.

• final - Any final SQL clause which in the query.

Frontier Client Library API

Frontier provides a convenient C/C++ client API that

clients can use to communicate with the Frontier service.

The API provides a uniform, portable, reliable, and

transparent way to obtain data from Frontier. The API

supports a basic set of datatypes employed in a typical

database, and also allows user applications to extend the

datatype set to support application specific data

structures. In addition, the API provides multiple ways to

specify the Frontier servers and squid proxies to be

contacted, and facilitates automatic failover if a server or

proxy is unavailable. It allows requesting many objects

of any type in a single query.

The API automatically parses and de-multiplexes

responses into object instances, validates responses, and

verifies the MD5 checksum of each object instance to

eliminate possible transfer errors. The interface

accommodates hardware architecture specifics, such as

byte order, and operand 32/64 word bit widths. It provides

typed access methods to the object data (de-marshalling),

and warns, or signal errors, when a type mismatch occurs.

A forced refresh of any object in squid cache can be

requested and a fresh copy of the object obtained directly

from the Frontier server. The API is compatible with

C++ and C programs, and the C++ API can be compiled

with or without C++ exceptions support.

TESTING

Extensive testing was performed to verify that the

system would satisfy the desired functionality, reliability,

and performance requirements. Many configurations of

servers and caching proxies were assembled to test

various features of the system, cache stability, and overall

data throughput. Tests were done to stress the Tomcat

server and squid proxy by running multiple clients and

filling the cache. In one set of tests all the CDF

calibration data, representing 10.9 GB, was loaded into a

squid cache with no performance degradation.

In another set of tests CDF reconstruction jobs were run

on a processing farm at the San Diego Super Computing

Center. In the test, 100 clients ran and requested data

objects. In one case the data was accessed directly from

the Oracle server at Fermilab, and in a second case the

calibration data was obtained through the Frontier system

with a squid cache server located at San Diego. Access

durations for the 75 object types needed in the processing

job were compared, and a factor of nearly 1000 in

decreased access time for many objects is observed for

the Frontier case relative to direct Oracle.

DEPLOYMENT

The Frontier system is being deployed for CDF at the

present time. A general overview is shown in Figure 4. A

high availability system of two or more server machines

is being installed at Fermilab, each machine running a

Tomcat-Squid pair of services. A network load balancing

and failover box provides access to the servers from CDF

systems throughout the world through a single domain

name. We refer to the installation at Fermilab as the

launchpad, as it represents the starting point for all

objects. Squid caching servers are established at remote

processing facilities and configured to allow access for

clients local to them, to the Fermilab launchpad. The

Squid installation procedure is straightforward and we

anticipate many more in the near future, as the Fronteir

client is propagated through the CDF code-base and used

at CDF collaboration sites.

Figure 3 Overview of Frontier Deployment.

ACKNOWLEDGMENTS

We would like to thank the CDF Experiment and the

Fermilab Computing Division for their support and

cooperation throughout this project. Special thanks go to

Frank Weurthwein, Elliot Lipeles, and the Run II

hardware support team for their contributions in our

testing on the CDF CAF facilities at Fermilab and UCSD.

REFERENCES

[1] D. Bonham, et al,”Database Usage and

Performance for the Fermilab Run II

Experiments,” CHEP04, Interlaken Switzerland,

Sept. 27 – Oct 1, 2004.

[2] J. Kowalkowski, et. al., ”Serving Database

Information Using a Flexible Server in a Three

Tier Architecture,” CHEP03, UCSD, La Jolla

CA, March 24-28, 2003, THKT003.

[3] The Frontier Roadmap: http://whcdf03/ntier-

wiki/ProjectDescription?action=AttachFile&do=

get&target=TheNewFroNtier1_2.pdf

[4] The Jakarta project http://jakarta.apache.org

[5] The Axis project http://ws.apache.org/axis

[6] JDO http://java.sun.com/products/jdo/ .

[7] Squid home page http://www.squid-cache.org/ .

[8] The “R” project page http://www.r-project.org .

[9] The ROOT home page http://root.cern.ch .

http://whcdf03/ntier-wiki/ProjectDescription?action=AttachFile&do=get&target=TheNewFroNtier1_2.pdf
http://whcdf03/ntier-wiki/ProjectDescription?action=AttachFile&do=get&target=TheNewFroNtier1_2.pdf
http://whcdf03/ntier-wiki/ProjectDescription?action=AttachFile&do=get&target=TheNewFroNtier1_2.pdf
http://jakarta.apache.org/
http://java.sun.com/products/jdo/
http://www.squid-cache.org/
http://www.r-project.org/
http://root.cern.ch/

