EE 204.3

(Instructors: D. Lynch, A. Ortlepp)

Midterm Examination

Friday, Oct 25, 2013
8:30-9:20AM / 11:30AM - 12:20РM
Time Allowed: $\mathbf{5 0}$ minutes
Materials allowed: One 81/2" X 14" formula sheet,
Calculator
Language Translation Dictionary (paper)

Instructions:

- Answer all questions in pen in the space provided; show relevant work if possible (use page backs for rough work if necessary).
- Pay attention to signs and units!
- Any references to AC voltages are RMS and 60 Hz unless otherwise specified or obvious.
- State your assumptions; show relevant work. Use the space provided for your answer; use the back of previous page if required. (Calculate a number as an answer; don't leave it as an expression unless asked to do so. Also, don't forget units!).
- Put your name and student number on the cover page; put only your student number on all remaining pages.

p1	p2	p3	p4	p5	Total
3	6	9	4	3	$/ 25$

Name: \qquad

Student Number: \qquad

Section Attended (for return purposes): 8:30 (2C02) $\square \quad$ 11:30 (1B71) \square

1) Find the value of the total inductance of the arrangement shown in the figure below.
[1]

$$
L_{T}=
$$

\qquad
2) Find the value of the total capacitance of the arrangement shown in the figure below.
[1]

$$
C_{T}=\quad 10 \mu F
$$

3) What is the voltage across a 100 mH inductor if the expression for the current is: $i(t)=(0.5+3 t) A$?
[1]

$$
v_{L}=L d i / d t=.1 H(3)=.3 \mathrm{~V}
$$

$$
V_{L}=\square .3 \mathrm{~V}
$$

\qquad
4) What is the expression for the current through the inductor after the switch is closed?

[3]

$$
i(t)=100\left(1-e^{-t / 1 m s}\right) m A
$$

\qquad

$$
\begin{aligned}
& \tau=L / R_{T h}(=100 \Omega)=\cdot 1 \mathrm{H} / 100 \Omega=1 \mathrm{~ms} ; \tau=\mathrm{L} / \mathrm{R}=.1 \mathrm{H} / 100=1 \mathrm{~ms} \\
& I_{i}=0\left(i\left(t=0^{-}=0\right) I_{f}=\frac{10 \mathrm{~V}}{100 \Omega}=100 \mathrm{~mA}\right. \\
& i(t)=I_{f}-\left(I_{f}-I_{i}\right) e^{-t / \tau} A=100\left(1-e^{-t / 1 m s}\right) m A
\end{aligned}
$$

current is positive, in the direction shown by the arrow.
5) The capacitor in the circuit below has an initial charge of 12 V as shown. What is the expression for the current for the period after the switch is closed?
[3]

$$
-i(t)=-8 e^{-t / 1.5 m s} m A
$$

\qquad
$\tau=R_{T h} C=(1 \mathrm{k} \Omega+500 \Omega)(1 \mu F)=1.5 \mathrm{~ms}$
$I_{i}=\frac{12 \mathrm{~V}}{1.5 k \Omega}=-8 m A \quad I_{f}=0$
$i(t)=I_{f}-\left(I_{f}-I_{i}\right) e^{-t / \tau} A=-8\left(e^{-t / 15 m s}\right) m A$
We generally considered current into the capacitor during the charging phase as positive, so this should be negative. -1 if not
\qquad
6) Determine the following phasor voltages and currents (give answers in the same form as the question):
[3]
a) $120 \angle 0^{\circ} V+120 \angle 90^{\circ} V=$ $170 \angle 45^{\circ} \mathrm{V}$
b) $60 \angle 135^{\circ} V-30 \angle-45^{0} V=$ $90 \angle 135^{\circ} \mathrm{V}$
if we ADDED them the result would be 60 , but to subtract, we reverse the vector.
c) $(20+j 30) V+(-30+j 10) V=$ $(-10+j 40) V$
7) Determine the following complex impedances, Z :
[3]
a) For a circuit that draws $2 \angle-45^{\circ} \mathrm{A}$ from a $120 \angle 0^{\circ} \mathrm{V}$ source: \qquad
b) A 330Ω resistor in series with a capacitive reactance of 200Ω \qquad
Rectangular form was expected, but either is correct
c) An ideal 100 mH inductor connected across a 60 Hz source \qquad
Polar form was expected, but either is correct
8) Draw and label the Power Triangle if the Apparent Power, $S=$ $1000 \angle 60^{\circ} V A$
[1]

Need the drawing and all 4 labels!

9) Determine the Reactive Power consumed by a fully loaded 10 Hp motor which has an efficiency of 90% and a Power Factor of 0.65 lagging. (Note: $1 \mathrm{Hp}-746 \mathrm{~W}$)
[2]
Q \qquad 9691 VAR \qquad
$Q=\frac{10 H p\left(746^{W} / H p\right)}{9} \tan \left(\cos ^{-1}(.65)\right)=9691 V A R_{\text {Inductive }}$
as long as it's shown as positive, the "Inductive" is not necessary in this case
\qquad
10) For the load represented by the Power Triangle shown below, determine the value and type (C or L) of reactor that will improve the power factor to 0.9 leading if it is to be connected across a 600 VAC 60 Hz source.
\qquad

$Q_{\text {New }}=(1000 \mathrm{~W}) \tan \left(\cos ^{-1}(.9)\right)=484 V A R_{\text {Capacitive }}$
$\Delta Q=Q_{\text {New }}-Q_{\text {Old }}=(-484 V A R)-(-1733 V A R)=+1249 V_{A R}($ Ind $)$
$X_{L}=\frac{|V|^{2}}{\Delta Q}=\frac{600^{2}}{1249}=288.2 \Omega$
$L=\frac{288.2 \Omega}{377}=764.5 \mathrm{mH}$
11) Consider the single transformer circuit shown in the figure below.

a) If the current drawn from the $120 \mathrm{VAC}(60 \mathrm{~Hz})$ source is $3 \angle 26^{\circ} \mathrm{A}$, what is the apparent power, S, delivered to the load impedance, Z_{l} ?
[1]

$$
\begin{aligned}
& S=V I^{*}=(120 \angle 0 V)(3 \angle 26 A)^{*}=360 \angle-26^{0} V A \\
& Z=\frac{V}{I}=\frac{120 \angle 0 V}{3 \angle 26 A}=40 \angle-26^{0} \Omega
\end{aligned}
$$

b) If the phasor voltage and current of the source are as given in a) and Z_{l} is $10 \angle-26^{0} \Omega$, determine the P:S turns ratio? ($\mathrm{P}: \mathrm{S}=$ Primary to Secondary)
[1]

$$
\begin{aligned}
& \frac{Z_{S}}{Z_{1}}=\left(\frac{P}{S}\right)^{2} \\
& \frac{P}{S}=\sqrt{\frac{40}{10}}=2 \\
& P: S=2: 1
\end{aligned}
$$

\qquad
12) Consider the multi-transformer circuit shown in the figure below. Each of the coils in each of the transformers is 50 turns. $Z_{L}=1920 \angle 45^{\circ} \Omega$.
a) Determine the voltage required at the load (i.e. across Z_{L}) which will result in an Apparent Power, S, of $480 \angle 45^{\circ} \mathrm{VA}$ being delivered to the load.
[2]
V: \qquad 960 V \qquad
The angle is arbitrary, so any or none will do.
b) Draw the interconnections between the source, E, transformers, TR1 and TR2, and
load impedance, Z_{L} which will result in an Apparent Power, S, of $480 \angle 45^{\circ} V A$
being delivered to the load. (i.e. Interconnect E to the primary(s) of TR1, the
secondary(s) of TR1 to the primary(s) of TR2, secondary(s) of TR2 to the load.
b) Draw the interconnections between the source, E, transformers, TR1 and TR2, a
load impedance, Z_{L} which will result in an Apparent Power, S, of $480 \angle 45^{\circ} V A$
being delivered to the load. (i.e. Interconnect E to the primary(s) of TR1, the
secondary(s) of TR1 to the primary(s) of TR2, secondary(s) of TR2 to the load.
b) Draw the interconnections between the source, E, transformers, TR1 and TR2, a
load impedance, Z_{L} which will result in an Apparent Power, S, of $480 \angle 45^{\circ} V A$
being delivered to the load. (i.e. Interconnect E to the primary(s) of TR1, the
secondary(s) of TR1 to the primary(s) of TR2, secondary(s) of TR2 to the load.
b) Draw the interconnections between the source, E, transformers, TR1 and TR2, a
load impedance, Z_{L} which will result in an Apparent Power, S, of $480 \angle 45^{\circ} V A$
being delivered to the load. (i.e. Interconnect E to the primary(s) of TR1, the
secondary(s) of TR1 to the primary(s) of TR2, secondary(s) of TR2 to the load. You may not need all the windings!.)

The angle is arbitrary, so any or none will do.

$$
\begin{aligned}
S & =V I^{*} \\
Z & =\frac{V}{I} \\
|S| & =|Z||I|^{2} \\
|I| & =\sqrt{\frac{S}{Z}}=.5 \mathrm{~A} \\
|V| & =\frac{480 \mathrm{VA}}{.5 \mathrm{~A}}=960 \mathrm{~V}
\end{aligned}
$$

many options to get the 960 V out; we need two 1:2 step up configurations.
\qquad

