Pre-Calculus 11 Chapter 6 Rational Expressions and Equations.
Date: \qquad Block: \qquad Name:

Lesson Notes 6.2: Multiplying and Dividing Rational Expressions
Objectives:

- comparing operations on rational expressions to the same operations on rational numbers
- identifying non-permissible values when performing operations on rational expressions
- determining the product or quotient of rational expressions in simplest form

Multiplying Rational Expressions
When you multiply rational expressions, you follow procedures similar to those for multiplying rational numbers.

$$
\begin{aligned}
\left(\frac{5}{8}\right)\left(\frac{4}{15}\right) & =\frac{(5)(4)}{(8)(15)}=\frac{(5)(4)}{(2)(4)(3)(5)} \\
& =\frac{5^{(5)(4)(4)}}{2(4)(3)(5)} 1=\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{4 x^{2}}{3 x y}\right)\left(\frac{y^{2}}{8 x}\right) & =\frac{\left(4 x^{2}\right)\left(y^{2}\right)}{(3 x y)(8 x)} \\
& =\frac{14 x^{2} y^{2}}{24 x^{2} y^{2}}=\frac{y}{6}, x \neq 0, y \neq 0
\end{aligned}
$$

Values for the variables that result in any denominator of zero are nonpermissible. Division by zero is not defined in the real-number system.

Example 1) Multiply. Write your answer in simplest form. Identify all non-permissible values.
a) $\frac{a^{2}-a-12}{a^{2}-9} \times \frac{a^{2}-4 a+3}{a^{2}-4 a}$

non-perm. $a \neq-3$ $a \neq 3$ $a \neq 0$ $a \neq 4$
b) $\frac{d}{2 \pi r} \times \frac{2 \pi r h}{(d-2)}$

$=\frac{d h}{(d-2)}$
c) $\frac{y^{2}-9}{r^{3}-r} \times \frac{r^{2}-r}{y+3}=$
 $\begin{aligned} & r\left(r^{2}-1\right) \\ & r(r-1)(r+1)\end{aligned}=$

non-perm.

$$
\begin{aligned}
& \text { lon-perm. } \\
& r \neq 0, r \neq 1, r \neq-1, \quad y \neq-3
\end{aligned}
$$

Dividing Rational Expressions
Dividing rational expressions follows similar procedures to those for dividing rational numbers.

Multiply by the Reciprocal

$$
\begin{aligned}
\frac{5}{3} \div \frac{1}{6} & =\frac{5}{3} \times \frac{6}{1} \\
& =10
\end{aligned}
$$

$$
\begin{aligned}
\frac{3 x^{2}}{y^{2}} \div \frac{x}{y} & =\frac{3 x^{2}}{y^{2}} \times \frac{y}{x} \\
& =\frac{3 x}{y}, x \neq 0, y \neq 0
\end{aligned}
$$

Example 2) Determine the quotient in simplest form. Identify all non-permissible values.

$$
\begin{aligned}
& \text { a) } \frac{x^{2}-4}{x^{2}-4 x} \div \frac{x^{2}-x-6}{x^{2}+x-20} \\
& \text { (b) } \frac{c^{2}-6 c-7}{c^{2}-49} \div \frac{c^{2}+8 c+7}{c^{2}+7 c} \\
& =\frac{(x+2)(x-2)}{x(x-4)} \div \frac{(x+3)(x-2)}{(x+5)(x-4)} \\
& =\frac{(c+1)(c-7)}{(c+7)(c-7)} \div \frac{(c+7)(c+1)}{c(c+7)} \\
& \begin{array}{l}
\text { non } \\
\text { permissible: } \\
x \neq 0
\end{array}=\frac{(x+2)(x-2)}{x(x-4)} \cdot \frac{(x+5)(x-4)}{(x+3)(x-2)+1} \\
& \begin{array}{l}
x \neq 4 \\
x \neq-5
\end{array}=\frac{(x+2)(x+5)}{x(x+3} \\
& =\frac{(c+1)(c-7)}{(c+7)(c-7)} \cdot \frac{c(c+7)}{\frac{(c+7)(c+1)}{\text { hon }}}
\end{aligned}
$$

$$
\begin{aligned}
& c \neq 7 \\
& c \neq 0 \\
& c \neq-1
\end{aligned}
$$

Example 3) Simplify. What are the non-permissible values?

Example 4) Two points on a coordinate grid are represented by $\mathrm{M}(p-1,2 p+3)$ and $\mathrm{N}(2 p-5, p+1 / \mathrm{I})$.
a) What is a simplified rational expression for the slope of the line passing through M and N ?
b) Write a rational expression for the slope of any line that is perpendicular to MN .
a).

$$
\begin{aligned}
\text { Slope } M N & =\frac{\Delta y}{\Delta X}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{(2 p+3)-(p+1)}{(p-1)-(2 p-5)} \\
& =\frac{2 p+3-p-1}{p-1)-2 p+5}=\frac{p+2}{-p+4}=\frac{p+2}{-(p-4)}
\end{aligned}
$$

r). $\left.\begin{array}{l}l_{1}=m_{1} \\ l_{2}=m_{2}\end{array}\right\} \quad l_{1}+l_{2}=m_{1} \cdot m_{2}=-1$

$$
m_{M N}=\frac{p+2}{-(p-4)}
$$

$$
m_{h}=\Theta\left[\frac{\theta(p-4)}{(p+2)}\right]=\frac{p-4}{p+2}
$$

$$
\begin{aligned}
& \text { a) } \frac{2 m^{2}-7 m-15}{2 m^{2}-10 m} \div \frac{4 m^{2}-9}{6} \times(3-2 m)=\frac{(2 m+3)(m-5)}{2 m(m-5)} \div \frac{(2 m+3)(2 m-3)}{6} \cdot(3-2 m) \\
& =\frac{(2 m+3)(m-5)}{2 m(m-5)} \cdot \frac{6}{(2 m+3)(2 m-3)} \cdot(3>2 m)(-1)(2 m+3) \\
& =\frac{-6}{2 m}=\frac{-3}{m} \\
& \text { non-permi. } \\
& m \neq 0 \\
& m \neq 5 \\
& \text { b) } \frac{3 x+12}{3 x^{2}-5 x-12} \div \frac{12}{3 x+4} \times \frac{2 x-6}{x+4} \\
& =\frac{3(x+4)}{(3 x+4)(x-3)} \div \frac{12}{(3 x+4)} \cdot \frac{2(x-3)}{x+4} \\
& =\frac{3(x+4)}{(3 x+4)(x-3)} \cdot \frac{(3 x+4)}{12} \cdot \frac{2(x-3)}{(x+4)} \\
& =\frac{6}{12}=\frac{1}{2} \\
& m \neq \frac{-3}{2} \\
& m \neq \frac{3}{2} \\
& \text { non-perm. } \\
& x \neq \frac{-4}{3} \\
& x \neq 3 \\
& x \neq-4
\end{aligned}
$$

Example 5) Write an expression to represent the length of the rectangle. Simplify your answer.

$$
\begin{aligned}
A & =L \cdot W \Rightarrow \frac{A}{w}=L \\
L & =\frac{x^{2}-25}{1} \div \frac{x^{2}+x-20}{x-4} \\
& =\frac{(x-5)(x+5)}{1} \div \frac{(x-4)(x+5)}{x-4}=\frac{\left(x-x^{x}-25\right)}{1}(x+5) \\
L & =\frac{w=-\frac{x+x-x-20}{x-4}}{(x-4)(x+4)}
\end{aligned}
$$

Example 6) What is an expression for the area of $\triangle \mathrm{PQR}$? Give your answer in simplest form.

$$
\begin{aligned}
& \text { Area } \Delta=\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot \frac{x^{2}-2 x-24}{x^{2}-9} \cdot \frac{x+3}{x-6} \\
& =\frac{1}{2} \cdot \frac{(x-6)(x+4)}{(x-3)(x+3)} \cdot \frac{(x+3)}{(x-6)} \\
& =\frac{(x+4)}{2(x-3)}
\end{aligned}
$$

