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Modeling Uncertainty in Latent Class Membership: 
A Case Study in Criminology 

Kathryn ROEDER, Kevin G. LYNCH, and Daniel S. NAGIN 

Social scientists are commonly interested in relating a latent trait (e.g., criminal tendency) to measurable individual covariates 
(e.g., poor parenting) to understand what defines or perhaps causes the latent trait. In this article we develop an efficient and 
convenient method for answering such questions. The basic model presumes that two types of variables have been measured: 
response variables (possibly longitudinal) that partially determine the latent class membership, and covariates or risk factors that 
we wish to relate to these latent class variables. The model assumes that these observable variables are conditionally independent, 
given the latent class variable. We use a mixture model for the joint distribution of the observables. We apply this model to a 
longitudinal dataset assembled as part of the Cambridge Study of Delinquent Development to test a fundamental theory of criminal 
development. This theory holds that crime is committed by two distinct groups within the population: adolescent-limited offenders 
and life-course-persistent offenders. As these labels suggest, the two groups are distinguished by the longevity of their offending 
careers. The theory also predicts that life-course-persistent offenders are disproportionately comprised of individuals born with 
neurological deficits and reared by caregivers without the skills and resources to effectively socialize a difficult child. 

KEY WORDS: Classification error; Latent class analysis; Mixture models. 

1. INTRODUCTION 

Latent class analysis, a technique widely used in the so- 
cial sciences, is based on the theory that individuals dif- 
fer in their behaviors due to some unobservable latent 
trait (Clogg 1995; Langeheine and Rost 1988; Muthen and 
Shedden 1999; Rost and Langeheine 1997). Social scien- 
tists often are interested in relating latent traits to some 
other variables, with the ultimate purpose of understand- 
ing what defines or perhaps causes the latent trait (Nagin, 
Farrington, and Moffitt 1995). If the latent traits could be 
observed, then it would be a simple matter to analyze the 
data using techniques such as contingency table analysis. 
In this article we develop a technique for handling uncer- 
tainty in latent class assignment by building a complex mix- 
ture model for the full dataset. This method is applied to 
a longitudinal study of youths to answer a key question in 
criminology. 

The aim of life-course and developmental theories of 
crime and deviance (Farrington 1986; Hawkins, Lisher, 
Catalano, and Howard 1986; Huizinga, Esbensen, and Wei- 
her 1991; Loeber and LeBlanc 1990; Moffitt 1993; Sampson 
and Laub 1991, 1993) is to document and explain the evo- 
lution of crime and deviance from childhood through adult- 
hood. Because of its developmental emphasis, this literature 
aims to identify the causes for population differences in 
trajectories of offending. As a first step toward this end, 
Nagin and Land (1993) developed a semiparametric esti- 
mation procedure designed to identify distinctive groupings 
of offending trajectories. Fitting the model to a sample of 
British males who were tracked from ages 10-32, four dis- 
tinctive age-crime trajectories were discovered. 
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In this article we investigate a theory proposed by Moffitt 
(1993) positing that the interaction of two key factors- 
poor neurological development and poor parenting-is 
highly predictive of criminal career development. To test 
this theory, we extend the mixture model approach of Land, 
McCall, and Nagin (1996) and Nagin and Land (1993) to in- 
corporate time-stable covariates. We apply these methods to 
the longitudinal study of British males just described (Sect. 
6). The methods that we develop go beyond those in the lit- 
erature in two ways: We allow for the uncertainty of latent 
class membership; and we develop a model for multivariate 
analysis of risk factors (Sects. 3-5). 

Although a joint probability model for offending patterns 
and risk factors is appealing, the resulting mixture model 
is complex. There are three levels of choices in the model 
structure. First, our semiparametric approach requires us to 
estimate the number of latent classes, K. Next, the form 
of each trajectory must be specified; for our application, 
even the marginal model for offending patterns has 3K+1 

possible models. Finally, with the addition of covariates, 
the model space quickly escalates to unmanageable propor- 
tions. It is impractical to consider a complete search of the 
set of all possible models. Such an endeavor would be com- 
putationally intensive and tedious, as each model requires 
a careful choice of starting values to ensure covergence. In 
this article we develop approximations that allow fast, ef- 
ficient comparison of a large number of competing models 
using standard software, after a preliminary exploration of 
the space of trajectories is completed (Sects. 4-5). 

In contrast to a full mixture approach, a common prac- 
tice is to do a two-stage analysis. In the first stage, response 
variables are used to categorize individuals by latent trait; 
then, in a second stage, standard methods of analysis are 
used to identify cross-group differences. As Clogg (1995) 
pointed out, there are inherent dangers in this classify- 
analyze paradigm, which ignores the uncertainty of latent 
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trait assignment. In addition to examining the aforemen- 
tioned hypotheses using our mixture models, we examine 
the importance of accounting for uncertainty in group mem- 
bership by comparing our results to those obtained using the 
classify-analyze approach (Sect. 6). 

Although the methods developed in this article are aimed 
at a model designed specifically for criminology data, the 
techniques for handling uncertainty in latent class analysis 
are quite generally applicable. 

2. DATA 

A central goal of developmental research on criminal be- 
havior is to determine the risk factors that distinguish crim- 
inals from noncriminals and chronic offenders from infre- 
quent offenders. To explore risk factors, we analyze a panel 
dataset of criminal involvement (Farrington and West 1990) 
comprising a prospective longitudinal survey of 403 males 
from London. Data collection began in 1961-1962, when 
the youths were 8 years old, and continued for 22 years. 
Their criminal involvement is measured by convictions for 
criminal offenses. For those convicted of at least one crime 
(36%), the average number of convictions over the obser- 
vation period is 4.4. 

According to Moffitt's (1993) theory, criminal and delin- 
quent acts are committed by two groups: adolescent-limited 
offenders and life-course-persistent offenders. As the la- 
bels are intended to suggest, the two groups differ in the 
longevity of their offending careers. For the life-course- 
persistent offenders, criminality is part of an ongoing pat- 
tern of antisocial behavior that has its origins in childhood 
and continues throughout life. In childhood, life-course- 
persistent offenders are the most troublesome children, in 
adolescence they are delinquent, and as adults they com- 
mit crimes and abuse themselves and those around them. 
Moffitt argues that these offenders commonly suffer from 
neurological deficits that make them inattentive and very 
difficult infants and children. However, such deficits are not 
in themselves sufficient to result in a lifetime of antisocial 
behavioral pattern. Another necessary factor in the develop- 
ment of a propensity for chronic antisocial behavior is being 
reared by caretakers who lack the financial, psychological, 
and child-rearing skills necessary to effectively socialize a 
difficult child. By contrast, the brief tenure of offending of 
the adolescent-limited offenders does not reflect a funda- 
mental failure in the person's capacity for socialization or 
the effectiveness of caretakers in providing such socializa- 
tion. Indeed, Moffitt argues that some degree of delinquency 
is normal and simply represents a passing phase in the de- 
velopmental process. 

The Cambridge dataset is particularly rich in measure- 
ments of three categories of risk factors: (1) intelligence 
and attainments, which includes IQ and success in school; 
(2) antisocial family and parenting factors, which includes 
measurements taken during early adolescence of parental 
child-rearing practice and of antisocial behavior of parents 
and siblings; and (3) hyperactivity, impulsivity, and atten- 
tion deficits, which includes reports by teachers, parents, 
and the individual himself of restlessness, impulsive and 

daring behavior, and an inability to concentrate. (For re- 
views of the association of these risk factors with antisocial 
behaviors, see Wilson and Herrnstein 1985 for the first cat- 
egory, Loeber and Stouthamer-Loeber 1986 for the second, 
and Moffitt 1993 for the third.) 

Our analysis focuses on the two risk factors identified 
by Moffitt: neurological deficiency and poor parenting. We 
recorded the risk factors into a binary format, with the 
transformed variable coded 1 if the individual scored high 
for the potential risk factor (i.e., generally the highest/ 
lowest quartile of the measurement scale) and 0 otherwise. 

Following Nagin et al. (1995), we create an 11-period 
panel, starting at age 10, in which each period is a 2-year 
interval. We observe the number of crimes committed by 
the ith subject in the jth time period, Yij, for n = 403 
subjects at J = 11 time periods of length b = 2 years; 
Yi = (Yi,... ,Yij) denotes the crime history for the ith 
individual. The time stable binary variables Zi, representing 
the two risk factors, are also given for each individual. 

3. THE MODEL 

Our goal is to identify childhood covariates that predict 
a tendency toward criminal behavior. A useful construct to 
facilitate understanding of the relationship between trajec- 
tories of crime and risk factors is a latent trait that ex- 
plains differences in individual behavior. It is assumed that 
risk factors can influence (and be influenced by) latent class 
and that the latent class determines the likelihood of crim- 
inal behavior, but that criminal behavior and risk factors 
are conditionally independent, given latent class. That is, 
given the latent class, nothing more can be learned about 
the criminal activity from the risk factor, or vice versa. This 
conditional independence assumption greatly simplifies the 
resulting models, which allows for more flexible modeling 
of other components of the problem. 

An unobservable discrete variable Ci indicates the latent 
class of the ith individual. This variable is assumed to take 
on K distinct values, each of which corresponds to a distinct 
expected crime trajectory. 

At this stage, the model could be developed in two equiv- 
alent ways, either 

K 

f(y,z) = E Pr(C= k)Pr(zlC = k)Pr(ylC= k), (1) 
k=l 

where Pr(zJC = k) is modeled as a multinomial (assuming 
that Z is a categorical variable) or 

K 

f(y, z) Pr(z) Z Pr(C = kl z)Pr(ylC = k), (2) 
k=l 

where Pr(C kl z) is modeled as a K-outcome logit with 
covariate Z. From the former representation, it is clear that 
the model follows a standard finite mixture distribution with 
Kf components (e.g., Lindsay 1995). We utilize the latter 
approach because we found it more convenient for estima- 
tion purposes. Moreover, this approach extends naturally to 
continuous covariates, Z. 
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Others have either treated Z as a covariate in the model 
for Y (e.g., Land et al. 1996; Nagin and Land 1993) or rele- 
gated it to a post hoc analysis (e.g., Nagin et al. 1995). The 
former approach is not helpful in addressing the research 
question of why individuals are on different criminal tra- 
jectories. Rather, it attempts to determine how covariates 
modify trajectories. The latter approach is not rigorous sta- 
tistically, because these post hoc analyses do not account 
for uncertainty in latent class assignment. 

3.1 Modeling the Risk Factors 

We use a polychotomous logistic regression model to re- 
late the set of risk factors to the criminal career trajectories. 
Let 

Pk(z) = Pr(C = k| Z = z) - exp{Ok + )kZ} 
~~!1exp{ Ok + -Y'Z}' 

where Z = (Z... , Zr) is a vector of random variables 
that are potential risk factors and interactions of these risk 
factors, Ok is a scalar, and _Yk = ('Ylk,. . ., rrk) is a vector 
of length r. Let 0 = (02,... ,OK) and -y (72,.. ,7K); 
for identifiability, we take 01 = 0 and 71 0. With this 
parameterization, level 1 is considered the baseline level, 
and the log odds of membership in level k versus 1 are linear 
in Z: log{pk(z)/pI(z)} = + YZ We wish to determine 
whether -yk varies by k. For instance, if 'Yh,2 '=h,K 

0, then Zh is not related to criminal career trajectories. 

3.2 Modeling the Trajectories 

Although the focus of this article is modeling the rela- 
tionship between Z and C, we use the longitudinal data Y 
to learn about the unobservable C. To model Y IC, we adopt 
Nagin and Land's (1993) model, with minor modifications 
(see also Greene 1997). However, most of the methods that 
we present are applicable regardless of how the distribution 
of Y IC is modeled. For example, in Nagin and Temblay 
(1999), Y IC follows a censored normal distibution. 

We call the model for Y IC a mixture of zero-inflated 
Poissons (MZIP), because it is a generalization of the zero- 
inflated Poisson (ZIP) model studied by Lambert (1992). 
These models were developed to handle situations where 
more O's are present than expected if the data were Poisson 
distributed. In the criminology application, the zero infla- 
tion occurs because individuals seem to enter periods of 
dormancy during which the probability of crime is strictly 
0. Nagin and Land's model makes the convenient assump- 
tion that periods of delinquent activity or dormancy occur 
in periods of fixed length b (the observation period). The 
individual is assumed to be active during all of b with prob- 
ability 1 - Pij. During periods of activity, a Poisson (Aijk) 
model is used to describe the probability distribution of the 
number of crimes committed by individual i during time 
period j assuming that he is a member of latent class k. 
Notice that an individual may be active but still have no 
recorded offenses. 

We assume that the observed crime histories Y - 
........ ., Yn) are independent and that, conditional on Ci 
k, (1) a subject's counts are independent across time periods 

and (2) are distributed as ZIP's within a time period 

Yj IC, = k rf with probability pi 
2 Ct k ~ Poisson(Aijk) with probability 1 - Pij 

(3) 

The parameters Pij and Aijk are assumed to be linear in 
their canonical parameterizations with log Aijk = Tijk and 
logit(pij) = log[pig/(1 - Pij)] = Xija, where Tij and Xij 
are vectors of covariates. 

Among the best-documented facts about crime is the 
age-crime curve. On average, rates of offending rise rather 
rapidly during the early adolescence, reach a peak in the late 
teenage years, and then begin a gradual but steady decline 
(Farrington 1986; Hirschi and Gottfredson 1983). Conse- 
quently, for the crime trajectory, Aiuk, we use a quadratic 
function of the age of the individual, Tij = (1, tij, t). By 
allowing /3k = (/30k, /1k, /2k) to vary over latent classes, we 
obtain K age-crime trajectories. The propensity to com- 
mit crimes Pij, which Nagin and Land call the intermit- 
tency parameter, may also change with age, so let Xij 

T ij. 
Given Ci = k, the probability of observing the ith indi- 

vidual's crime history is 

qik = lPr(Yij Ci = k), (4) 

where each term in the product is distributed as a ZIP, 

Pij + (1pij)e-- ijk Yij = O 
Pr (Yij Ci k) -f -+1 ij)e k Yyi i 0 . 

I (l Pij) yij! ijk Yj > 

The marginal likelihood based on y is 

L(y;0,Cc,/ =>J E pkqik, (6) 
i k 

where Pk = Pr(C = k). The joint likelihood based on (y, z) 
is 

(y, z; 0,y a,,3) = f Pr(Zi = Zi) p(z)qk (7) 
i k 

Both likelihoods are identifiable under mild conditions, in- 
cluding those specified by Lambert (1992) for ZIP regres- 
sion models and a restriction that no trajectory has mean 0. 

Our model for Y IC differs from Nagin and Land's in 
that we use a logit rather than a probit link for Pij and we 
model time-stable covariates with a logit link in the model 
for CIZ. Nagin and Land include time-stable covariates as 
a composite variable in the covariate vectors, T and X, 
and also include a lag variable for prior behavior in the 
intermittency parameter. 

4. ESTIMATION 
The parameters of this model can be estimated by a direct 

maximization procedure available in SAS (Jones, Nagin, 
and Roeder in press). But use of this procedure is dependent 
upon a careful choice of starting values. Here we present 
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an EM algorithm (Dempster, Laird, and Rubin 1977) that 
leads to a factorization of the likelihood into independent 
components. Insights into the model gleaned from the EM 
representation motivate a highly economical algorithm for 
preliminary model screening. 

4.1 Maximizing the Likelihood Using the EM Algorithm 

Two latent variables underly the model for f(y, z; 0, 
-y, a, /): An individual belongs to a particular criminal ca- 
reer trajectory (C = k), and an individual is in either a 
dormant (D = 1) or an active (D = 0) state. Treating the 
latent variables (Cl, ... , Cn, DI1, ... , DJn) as missing data 
leads naturally to the use of the EM algorithm. (See Lam- 
bert 1992 for similar results for the ZIP model.) The pri- 
mary advantages of this algorithm are numerical stability 
and a factorization of the likelihood. It is easy to imple- 
ment the EM algorithm in this setting using software de- 
signed for fitting generalized linear models (GLM's). The 
primary disadvantage is speed of convergence. 

The EM algorithm requires the iterative expectation 
(E) and maximization (M) of the complete log-likelihood 
l(y, z, c, d; 0, y, a, 3), which equals 

log 171 7 Pk(Zi) 
i k 

X t [Pij Pr (Yij ICi = k,I Dij = l)iIfDii=1T 

I{Ci=k} 

x [(1 - pij) Pr(Yij Ci = ,Dij = 0)] Dij=ol 

x Pr(Zi). (8) 

We fit the saturated model for the covariates (Z), and thus 
gain no information from these observations. Consequently, 
these terms may be dropped from the likelihood. 

Let Cik and dij be the estimates of E[I{Ci = k}l Y, Z] 
and E[I{Dij = I}IY, Z] obtained in the E step: 

Cik =Pr(Ci =kYi, Zi)= Pk(Zijqik 

and 

dij = Pr(Dij = 1IY,Zi) = PijPr(Y2j 3ij Dij = 1) (10) Pr (Yij Zi) 

where 

eAijk Ayij 
Pr(YijIZiIDij -0) - ZPk(Zi) ijk (11) 

k Yjj!. 

Note that d4j simplifies to 

{ 
(1 + E~ pk(Z2)e-ii X{Tij})- (12)- 

The conditional expectation of (8), given Y and Z, equals 

S S Cik {Ok + Yk Zi }-log [ exp{ 0 + VI Zi 
ik Iz + 

+ dijXija - log(l + eXiji) 

+ E Cik k (1 - dij)(YijTij/3k _ eTi/j3k) 
i k j 

L(O,'-y) + L(a) + Z LAk). (13) 
k 

This function is easy to maximize, because it splits into 
K + 2 independent terms. To estimate (0, -y, a, ,3), itera- 
tively maximize (13) and update dij and Cik with current 
parameter estimates. 

The maximization over (0, -y, a, /) can be implemented 
using GLM functions with extensions of the methods de- 
scribed by Lambert (1992). For instance, when K = 2, a 
standard weighted logistic regression analysis can be per- 
formed to maximize L(0, -y). This can be achieved by es- 
sentially creating two copies of the data and then using 
the posterior probabilities as weights to obtain a likelihood 
identical to L(0, -y). 

When K > 2, a series of separate simple logistic re- 
gression functions can be fit as a replacement for poly- 
chotomous logistic regression. Each level, k = 2, .. ., K, is 
compared against the baseline category, k = 1. In a stan- 
dard polychotomous regression setting, this approximation 
yields highly efficient estimators (Begg and Gray 1984). 

For each simple logistic regression (group k vs. 1), we 
augment the data with n extra "data values." The first n 
copies have weights equal to (Clk, C2k, ... I Cnk), whereas the 
second set have weights (cl1, C21, ... I, cnl). The augmented 
covariates are (Z1, . . ., ZnI Z 1,.. ,I Zn), and the augmented 
binary response vector is n ls, followed by n Os. With the 
augmented dataset, one can estimate (Ok, 'k) using weighted 
logistic regression. 

When estimating ca, suppose that no is the number of ob- 
servations with Yij = O. Say Yijl I... I Yijno are 0. Augment- 
ing the data with no extra "data values" and using weighted 
logistic regression leads to a likelihood equivalent to the 
likelihood that we wish to maximize (Lambert 1992). For 
this model, the augmented binary response vector has n x J 
O's followed by no l's. The augmented covariates are the 
original n x J values, (Tll, .. ., TnJ), plus the covariates 
associated with Yij 0 0, (Tijl, .. ., T inO ). The appropriate 
weights are (1-dll, . . ., 1 - dnJId, dI..., dinO) 

For a ZIP model, 13 can be estimated using weighted 
log-linear Poisson regression with weights (1 - dij) (Lam- 
bert 1992). For an MZIP model, K independent runs, with 
weights Cik x (1 - dij), are required to estimate /3k, k - 

1, . .. I K. 

4.2 An Approximation 

Recall that we are primarily interested in making infer- 
ences about the relationship between C and Z, which is 
parameterized by (0, y). However, the full likelihood de- 
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pends on many parameters, namely I = (0, y, cx,p3). A 
subset of these parameters, b = (ca,,(3), can be viewed as 
nuisance parameters. Here we develop an approximation 
that involves estimating b based on the marginal likelihood 
(6). The approximation allows models for CIZ to be fit us- 
ing standard software for GLM's. We emphasize that exact 
maximization, as described in Section 4.1, is not difficult but 
is tedious if a very large number of models for C IZ are en- 
tertained in the model selection process. For instance, with 
the approximation described herein, hundreds of models can 
be compared in a manner of minutes with little user inter- 
vention. Alternatively, fitting a single model using a SAS 
procedure that maximizes the full likelihood takes 10-15 
minutes for a dataset of size comparable to the Cambridge 
dataset. In addition, the full maximization requires the user 
to specify starting values for each model considered. 

The marginal likelihood can be maximized using the 
techniques described in Section 4.1 by simply replacing 
Pk(z) by Pk in the definition of Cik and dij; let Cm denote 
the resulting marginal posterior probability of membership, 
Pr(Ci = k yi). As is usual for mixture problems, Pk is maxi- 
mized by 1/n Ei cm. Call this marginal estimator (tm. Next, 
we obtain an estimate of (0, -y) by plugging bm into (13) 
and using the EM algorithm; call this approximate maxi- 
mum likelihood estimator (MLE) (0a v'a- 

Because only the first term in (13) depends on (0, ), the 
approximation involves iteratively computing Cik from (9) 
and maximizing L(0, -y) to update (0, -y). In the first cycle, 
one could use cmj for Cik. This approximation falls short of 
a full maximization, because b is not updated as the EM 
iterates. In our analysis we have found that this approxi- 
mation, even without iterations of the EM algorithm, yields 
an estimate of (0, -y) suitable for exploratory data analysis. 
Thus models for C IZ can be fit with no more effort than in 
a standard GLM setting. 

From the marginal maximization, we obtain a root-n con- 
sistent estimator of b under the usual regularity conditions 
for mixture models (e.g., Redner and Walker 1984, thm. 
3.1). In general this estimator is not as efficient as the full 
MLE. The approximate estimator of (0, -y) is also not fully 
efficient, but for fixed K it is root-n consistent, under some 
regularity conditions. Proof of this theorem follows from 
the so-called plug-in theorem (e.g., van der Vaart 1998, 
thm. 5.31). 

Because it is difficult to determine a priori when these ap- 
proximations are sufficiently accurate for a particular pur- 
pose, we recommend using the approximation in the pre- 
liminary analyses when many models are being compared. 
Then, when this number has been winnowed down to a 
modest size, we recommend computing the full MLE's for 
the final analysis. 

5. RISK FACTOR ANALYSIS 
The objective of our analysis is to identify risk factors 

for the various criminal careers. This is statistically equiv- 
alent to determining whether ay differs across latent groups. 
If Z is categorical and D-dimensional, then the data can be 
imagined as generating an unobservable contingency table 

that is (D + 1) dimensional. We wish to determine which 
covariates are associated with particular latent classes. If 
latent classes were observable, then evaluating hypotheses 
of this sort would be simple even if Z included continu- 
ous covariates. The appropriate analysis would be either 
a contingency table analysis or a (polychotomous) logistic 
regression. 

In this section we give a conservative approximation for 
testing hypotheses about the relationship between Z and C. 
The approximation can also be used as the basis of a model 
selection procedure such as the Bayesian information crite- 
rion (BIC; Schwarz 1978). The approximation is nearly as 
simple to compute as fitting a GLM, and the computations 
of the test statistic follow naturally from the parameter es- 
timation phase using standard software. The approximation 
also illustrates the problems inherent in the classify-analyze 
approach. 

To test a hypothesis with the classify-analyze approach, 
one classifies an individual to the group with the largest 
posterior probability, Pr(Ci = k Yi), then performs the risk 
factor analysis as though C were known. The likelihood for 
this model is based on the conditional density of C given 
Z, Pr(Ci Zi) = Hlk Pk(Z)I{Ci=k}. 

Assuming that Ci is known, the log-likelihood can be 
written as 

1(0, -y; clz) = , , I{Ci = k} (Ok + k4Zi) 
i k 

-log (Zexp{01 +<Zi }). (14) 

The problem with this analysis is that C is not actually 
observed. Treating it as if it were known can cause biases 
in both the estimate of (0, y) and the test statistic. 

To account for uncertainty in group membership, a like- 
lihood approach based on the mixture model can be devel- 
oped. The test of a nested hypothesis Ho: ay E Qo versus 
H1: -a E Qi can be conducted using a likelihood ratio test: 

A = 2[ max logL (y, ; 0, ) 

-max log L(y,z; 0,y, D)]. (15) 

As the mixture likelihood is not regular, it is unclear 
whether A is approximately chi-squared distributed under 
the null hypothesis. When testing K = p versus p + 1, 
classical asymptotic results are known to fail for two rea- 
sons: The null hypothesis is on the boundary of the param- 
eter space and, due to a certain lack of identifiability, it 
is not clear how to count degrees of freedom (Ghosh and 
Sen 1985). But for the problem at hand, the null hypothe- 
sis is not on the boundary of the parameter space, and the 
difference in dimension of competing models is clearly de- 
fined. Thus it seems likely that the traditional chi squared 
approximation will apply. 

Often the objective is to choose among several compet- 
ing models. In our application we use the BIC to select a 
model, regarding it as an approximation to the Bayes fac- 
tors for the competing models. (Kass and Raftery 1995 is a 
good reference for Bayes factors. In particular, their section 
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3 provides definitions of, and suggestions on how to inter- 
pret Bayes factors, their section 4 discusses use of the BIC 
as an easily computed approximation, and their section 8 
compares the use of Bayes factors with more standard non- 
Bayesian approaches to model selection.) Raftery (1995) 
has pointed out several practical difficulties commonly en- 
contered when using the more standard p value-based ap- 
proach to model selection, and showed how using the BIC 
provides a better approach. 

One advantage of the BIC over traditional hypothesis 
testing is that it has good properties under weaker regu- 
larity conditions than the likelihood ratio test. For instance, 
Keribin (1998) demonstrated that under certain conditions, 
the BIC consistently determines the right number of compo- 
nents in the mixture model. Leroux (1992) and Roeder and 
Wasserman (1997) provided additional theoretical justifica- 
tion for the BIC in the mixture setting. Moreover, the BIC 
is consistent even when the models are not nested (Nishii 
1988). 

One important aspect of the work of Kass and Raftery 
(1995) and Raftery (1995) that we do not consider is the 
use of model averaging to account for model uncertainty. 
In our application we have two model selection problems; 
in Section 6.1 we choose a model for the number of la- 
tent classes, and in Section 6.2 we choose among many 
models describing the effects of two risk factors on class 
membership. In each case we find that a single model dom- 
inates all others, so that model uncertainty is not a problem 
for us. 

5.1 Another Approximation 

Some insights into (14) can be gained by the following 
representation. Recall that 

log f (y z; tp0 

=log f(Y' z, C;1F,) log f(cly, Z; tF8 (16) 
lo (Y z, C; IF o) f of(cly Z; 'Io)' 

Taking the conditional expectation, with respect to the ob- 
servables (Y, Z) evaluated at P0, yields 

R(I1, to) =Q(I1, t'o) -P(1, to), (17) 

where 

R(P1, Po) log f(t z;tp> 

[(F F)log ;(Y' Zc; 'i)] 

W(F1, to) = E [log f (Y' z' C'IF1) kYIZ 

and 

P(qfllqto) =E [log 3ri1l;tl y z] 

We define Pi = argmaxO 7EQ1 ,Lf(y, z; ,y,d) and P 
=argmax0 7},Q0<L:(y, z; 0, -y, d>). With a standard likeli- 

hood ratio test, the simpler hypothesis oy E Q0 is rejected if 
2RQ(T1, Po) is greater than a preselected chi-squared value 

with degrees of freedom equal to the difference in dimen- 
sion of the hypotheses. 

By Jensen's inequality, P(41, To) < 0, so a conservative 
hypothesis test can be based on 2Q(i, 'To). The advan- 
tage of this approximation is that Q(TI, TO) is computed 
as a byproduct of the EM algorithm; see (13). We conjec- 
ture that little is lost by approximating P(T1, To) by 0, 
provided that very little additional information about latent 
class membership is obtained from Z, given that Y was 
already observed. This conjecture is motivated by the fol- 
lowing argument. Let Pm denote the MLE for P when -a 
is constrained to be 0; this null model is exactly equiva- 
lent to the marginal model. Let Tf be the MLE for the 
richest model for CIZ to be considered. Furthermore, de- 
fine cm f(c = kIy,z;Pnm) and cf =- f(c = kIy,z;Pf) 
accordingly. Presumably, P(Ti, To) is bounded by 

~cm log{fk/c }(18) E E Cik if{Ck I Cimk }-(8 
i k 

This term is small relative to Q(Qi,,T'o) if the posterior 
probability of membership is essentially unchanged when 
we learn about Z. 

An even more convenient approximate hypothesis test 
emerges if the MLE for b is essentially equivalent whether 
computed using the full likelihood (7) or the marginal like- 
lihood (6). This equivalence also occurs if (18) is small rel- 
ative to Q('T'1, To). Under this assumption, cI, 41o 4?,n. 
Hence the test statistic 2 Q(IQ'I, T'O) is approximately equal 
to 

2{ max L(O,-y) - max L(0,-y)}, (19) 

where L(0, -y) is defined in (13). But this is just the classify- 
analyze test [see (13)] with I{Ci = k} replaced by the 
posterior probability of group membership. From this ap- 
proximation, the nature of the error in the classify-analyze 
approach is made clear. The classify-analyze approach ex- 
aggerates the certainty of group membership, which tends 
to inflate the precision of the estimated risk factors, -y (see 
Sect. 6). 

These approximations also apply in the model selection 
context. The BIC is defined as logC - p/2 log n, where 
p is the dimension of the model and n is the number of 
subjects. From the foregoing arguments, it follows that 
an approximate procedure can be based on replacing log L 
with L(0, -y) and picking the model with the largest approx- 
imate BIC. 

To compute L(O, y), substitute parameter estimates ob- 
tained as described in Section 4.1, or the approximate es- 
timates obtained as described in Section 4.2, into (13). We 
found that the approximate estimates were sufficient for the 
model screening phase (see Sect. 6). 

6. APPLICATION 

In this section we apply the methods just described to 
data from the Cambridge Study of Delinquent Develop- 
ment. Of particular interest is whether the life-course- 
persistent and adolescent-limited trajectories predicted by 
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Table 1. BIC Values for a Selection of MZIP Models 

Model K Order /? BIC Probability 

1 2 2,2 9.80 * 

2 3 0,2,2 35.80 .014 
3 3 2,2,2 30.80 * 

4 4 0,2,0,2 40.02 .966 
5 4 2,2,1,2 36.14 .020 
6 4 0,2,2,2 0 * 

NOTE: Order indicates whether the trajectory was fit with a constant (0), linear (1), or quadratic 
(2) function. In each case, the trajectories are ordered from least to most number of crimes 
committed as an adult. Define A\BIC as BlCj - BIC6. The intermittency parameter was fit with 
a constant function for all of the models given here; any other form resulted in an inferior BIC 
score. 

* Probability less than 10-3 

the Moffitt theory are present in the data, and whether 
the analysis supports Moffitt's predictions about the dis- 
tinctive etiology of the former group. Specifically, we 
test for an interaction between symptoms of neurologi- 
cal deficits and poor child-rearing practice in heighten- 
ing the probability of following a trajectory of chronic 
offending. 

To address the research question, we used a model se- 
lection procedure. This involved estimating the number of 
latent classes, the order of the polynomial for each latent 
trajectory, and the covarariates to include in the model. 
We approached this question in two stages. First, using the 
marginal likelihoood, we determined K and the form of the 
trajectories. Then, conditional on this model, we considered 
the covariate models. 

6.1 Estimating the Number of Latent Classes 
In their analysis of the Cambridge data, Nagin and Land 

(1993) proposed a four-group model. They fitted each group 
with a trajectory quadratic in time, except for the group that 
had a very low constant probability of offending. For the 
intermittency parameter, they also used a quadratic function 
of time. 

To determine the validity of this model, we conducted 
a model search of all possible models within the class for 
K < 5; for K = 5, the best model reduced to a four-group 
model. The order of the model was selected for each tra- 
jectory and for the intermittency parameter (0 = constant, 
1 = linear, 2 = quadratic); this constitutes a total of 3K+1 

models, for K = 1, . . ., 5. This analysis was based on the 
marginal likelihood for the offending patterns. Table 1 gives 
the BIC values for the best-fitting models, including the best 
model for each of K =2, 3,4. Using the criterion of Jeffreys 
(1961), as presented by Kass and Raftery (1995), there is 
strong evidence for a four-group model. Furthermore, there 
is strong evidence that model 4 is the best four-group model 
considered. The posterior probability that a model is correct 
is approximated by exp{BJCj }/ Ej exp{BJCj } (Kass and 
Wasserman 1995; Schwarz 1978). Model 4 clearly domi- 
nates the others by this criterion, and hence we do not take 
a model averaging approach. 

Our BIC analysis supports a four-group model much like 
the one fit by Nagin and Land (1993) (Fig. 1). The fitted 
model captures essentially the same features in the data as 
the model proposed by Nagin and Land, but the model 

C) 4- W~~~~~~~~ =3 6~~~~~~~~ 
0) 

W a N t Sb~~~~~~~~~~~~~~~~~~~~~~---kR f f - ----- 

o 

-- / - - - ------- 

10 15 20 25 30 

Age 

Figure 1. Biannual Conviction Rate by Age and Offender Group. Expected trajectories (solid lines) are estimated using the marginal likelihood 
mixture model. Observed trajectories are obtained as a weighted average over all of the observations (weights = c,k). Trajectories are labeled as 
never-convicted (NC;... + . .), adolescent-limiteds (AL's; - - - * - -), low-level chronics (LLC's; - - o - -), and high-level chronics (HLC's; - x -). 
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Table 2. Parameter Estimates for Model 4 

Group Parameter Estimate Error Test p-value 

NC /30 -4.85 .32 -15.3 * 

AL 02 -1.28 .23 -5.52 * 

'30 -15.52 3.32 -4.67 * 

'31 16.24 3.80 4.27 * 
/2 -4.52 1.07 -4.22 * 

LLC 03 -2.16 .30 -7.22 * 

00 -1.18 .20 -5.84 * 

HLC 04 -2.11 .24 -8.68 * 

'30 -4.59 .82 -5.64 * 

'31 5.19 .82 6.32 * 

/2 -1.36 .20 -6.73 * 

All ao -.20 .16 -1.30 .193 

NOTE: Trajectories are labeled as never convicted (NC), adolescent limiteds (ALs), low-level 
chronics (LLC's), and high-level chronics (HLC's). 

* Probability less than 1 03 

selected by the BIC is somewhat simpler. Contrary to Na- 
gin and Land's fit, model 4 fits two trajectories and the in- 
termittency parameter with a constant function rather than 
a quadratic. Nagin and Land labeled the four groups as 1 
= never convicted (NC), 2 = adolescent limiteds (AL's), 3 
= low-level chronics (LLC's), and 4 = high-level chron- 
ics (HLC's). The chronic groups are labeled as such be- 
cause these individuals continue to commit a low level of 
crimes even as they enter their thirties. In constrast, the 
adolescent-limited group essentially terminates criminal ac- 
tivity as they enter their twenties. 

Figure 1 clearly shows that the model provides a fairly 
good fit to the data. This four-group model is generally con- 
sistent with Moffitt's theory. It includes the two key groups 
in her taxonomy: adolescent limited and chronic offenders. 
Although Moffitt does not specifically predict a nonoffender 
group, our measure of criminal involvement (official statis- 
tics on conviction) is a highly filtered measure of criminal- 
ity. However, the low-level chronic trajectory is clearly not 
anticipated by her theory. Thus our findings support Mof- 
fitt's main prediction about distinctive developmental tra- 
jectories but suggests that a richer taxonomy may be nec- 
essary. 

Table 2 gives the parameter estimates for the selected 
model. Notice that the intermittency parameter appears to 
be insignificant; however, dropping it from the model low- 
ers the BIC value by 44 units, a very significant difference 
by Jeffreys's (1961) criterion. The NC group is by far the 
largest (66%), followed by the AL group (18%), but a sub- 
stantial portion of the population (15%) is considered to be 
chronic offenders. 

For each individual in the study, we computed the maxi- 
mum posterior membership probabilities (argmaxk cm). The 
median assignment probabilities for each group are high 
(Table 3), suggesting that a majority of individuals can be 
classified to a particular latent class with high probability. 
It is clear from the positions of the first quartiles of these 
modal probabilities that the model has little ambiguity when 
assigning to either the NC or the HLC classes, but some- 
what more for the other two classes. Overall, this anal- 

Table 3. Distribution of the Maximum Posterior 
Membership Probabilities, in Percents 

1st 0 Median 3rd 0 

NC 94 94 94 
AL 67 75 92 
LLC 59 77 93 
HLC 91 100 100 

ysis provided additional support in favor of the four-group 
model. 

6.2 Risk Factor Analysis 

We turn now to question whether probability of mem- 
bership in the HLC group is heightened by the interaction 
of symptoms of neurological deficits and poor child-rearing 
practice. Some of the hallmarks of the sort of neurological 
deficits emphasized by Moffitt are impulsivity, inattention, 
and a propensity to engage in risky behaviors. The Cam- 
bridge data includes such a measure, which its principal 
investigators call daring (Farrington and West 1990). The 
dataset also includes an index of poor parenting practice 
that measures such behaviors as lack of supervision, harsh 
and erratic punishment, and neglect. To test the impact of 
these covariates on trajectory group membership, we con- 
ducted a risk factor analysis. 

The analysis investigated the effect of daring, of child- 
rearing, and of the interaction between these two factors. 
The models were allowed to differ for each level: baseline 
= NC versus 2 = AL, 3 = LLC, and 4 = HLC. For each 
level, we fit 7 models, for a total of 343 models: a = null 
model, b = daring, c = rearing, d = daring + rearing, e = 
daring + rearing + daring x rearing, f = daring + daring x 
rearing, and g = daring x rearing. Models f and g are some- 
what unconventional, as they include an interaction without 
including all main effects. Model g was included because it 
most closely reflects the hypothesis of Moffitt. 

Using the BIC, we selected the model g for each level. 
By Jeffreys's (1961) criterion, there is very strong support 
for this model. Table 4 presents the BIC scores for all seven 
models that have the same set of covariates for each level. 
None of the models excluded from the table garners ap- 
preciable probability using the BIC criterion. Because the 
chosen model attains a very high posterior probability, we 
do not use a model-averaging approach in our analyses. 
Table 5 presents the estimated parameter values. Compar- 
ing the parameter estimates obtained for the trajectories in 
Tables 2 and 5 clearly demonstrates introducing the covari- 

Table 4. BIC for the Covariate Models 

Model zABIC Probability Approximate probability 

a 0 * * 
b 13.2 .009 .018 
c 3.0 * * 
d 8.5 * * 
e 4.9 * * 
f 13.2 .009 .005 
g 17.9 .982 .977 

NOTE: In each case the same model was fit for each level. The approximate probability was 
computed using the BIG obtained from the approximate fits. ABIC = BICy -BIG1 . 

* Probability less than 10-3. 
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Table 5. Parameter Estimates, K = 4 and 
Covariate = Daring x Rearing 

Group Parameter Estimate Error Test p-value 

NC /3o -4.83 .30 -16.17 * 

AL /3o -15.58 3.29 -4.73 * 

p1 16.46 3.76 4.37 * 

/2 -4.61 1.06 -4.33 * 

LLC /3o -1.24 .19 -6.59 * 

HLC /3o -4.54 .82 -5.51 * 

p1 5.12 .83 6.20 * 

/2 -1.33 .20 -6.63 * 

All o -.22 .16 -1.40 .162 

AL 0 -1 .52 .25 -6.07 * 

ay 2.37 .77 3.08 .002 

LLC 0 -2.31 .32 -7.31 * 

ay 2.41 .88 2.75 .006 

HLC 0 -2.61 .30 -8.85 * 

ay 3.45 .70 4.95 * 

NOTE: * Probability less than 103 

ates does not change the estimated trajectories in a mean- 
ingful way. 

The results generally conform to Moffitt's contention that 
neither neurological deficit nor poor parenting alone is suf- 
ficient to instigate the developmental process that results in 
chronic antisocial behavior. The highly significant interac- 
tion term of daring and poor parenting for the probability of 
the HLC group conforms exactly with her prediction. This 
interaction is also significant for the AL group, which does 
not conform to her theory. However, the magnitude of the 
impact rather than its statistical significance is the critical 
factor in judging her prediction. 

Table 6 reports calculations of the group membership 
probabilities obtained from the model. The first row of the 
table reports the marginal probabilities without covariates 
for the model as reported in Table 2. The second row re- 
ports these probabilities for the model with covariates for 
the case in which at most one of the risk factors, poor 
parenting or daring, is present. The third row reports prob- 
abilities where both risk factors are present. Observe that 
when at most one risk factor is present, group membership 
probabilities conform closely to the marginal rates. How- 
ever, when both risk factors are present, the probabilities 
change dramatically. The probability of the NC trajectory 
plunges from .72 to .15. The largest absolute increase is for 
the HLC group, which increases by a factor of seven, from 
.05 to .34. The next largest increase is for the LLC group, 
which increases by a factor of two, from .16 to .35. The 

Table 6. Latent Class Membership Probabilities, in Percents, K = 4 

NC AL LLC HLC 

Marginal 66 18 8 8 
Not Both 72 (70) 16 (17) 7 (7) 5 (6) 
Both 15 (23) 35 (29) 16 (16) 34 (32) 

NOTE: Marginal probabilities were obtained based on the no covariate model. The other proba- 
bilities were computed using the covariate model that included only the interaction term (daring 
X( rearing). Not both and Both indicate the number of risk factors present. The probabilities in 
parentheses were obtained using the approximation. 

Table 7. Parameter Estimates Obtained Using 
the Approximation, K = 4 

Model 0 a 

AL -1.40 1.60 
LLC -2.33 1.93 
HLC -2.52 2.81 

probability of the AL group also increases by a factor of 
two, but in absolute terms the increase is smallest, from .07 
to .16. Thus, judged in terms of magnitude of the increases, 
the results reasonably conform to Moffitt's predictions. 

6.3 Analysis of Approximations 

To search the large space of models, we implemented the 
approximate model-searching process described in Sections 
4 and 5. Finally, for a subset of those models, we fit the 
full-likelihood model. From Table 4 we can also see that 
the approximation identifies the same top models as those 
found by the exact procedure. 

Table 7 presents the estimated parameter estimates ob- 
tained via the approximation. These parameter estimates 
are attenuated relative to the MLE's. In fact, a slight atten- 
uation was observed for all the models investigated. Never- 
theless, the approximation proved to be an effective vehicle 
for identifying the best models in the class. Moreover, the 
latent class membership probabilities computed using the 
approximation do not vary substantially from those com- 
puted using the MLE's (Table 6). 

Table 8 gives the parameter estimates and their associ- 
ated standard errors obtained using the classify-analyze ap- 
proach. Although the parameter estimates are only slightly 
attenuated relative to the MLE's, the estimated standard 
deviations are clearly underestimated even in this exam- 
ple, where the maximum posterior probabilities are quite 
high. 

7. SUMMARY AND CONCLUSIONS 

In this analysis we have tested a prominent theory in psy- 
chology about the development of adolescent-limited versus 
life-course-persistent antisocial behavior. Our findings gen- 
erally conform to the predictions of the theory. Specifically, 
we found evidence of both types of trajectories of criminal 
offending anticipated by the theory. We also found that the 
probability of following the high-level chronic trajectory 
was dramatically increased for individuals who displayed 
evidence of neurological deficits and who were subject to 

Table 8. Parameter Estimates Obtained Using the 
Classify-Analyze Procedure, K = 4 

Group Parameter Estimate Standard error 

AL 0 -1.66 .15 
ay 2.20 .50 

LLC 0 -2.44 .21 
a ~~2.10 .62 

HLC 0 -2.78 .25 
a ~~3.32 .54 
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poor child-rearing practice. However, the results were not 
fully consistent with Moffitt's theory. We found evidence of 
a fourth group not anticipated by her theory: the low-level 
chronics. We also found the probability of membership in 
the adolescent-limited group is significantly related to the 
interaction of poor parenting and daring. 

Conventional practice in studies of latent traits is to use 
the classify-analyze paradigm-assign subjects to the la- 
tent category that is most likely and then treat this classi- 
fication variable as though it were observed without error. 
This approach can cause errors in the statistical inferences. 
To avoid these errors, we have presented a simple method 
for accounting for the uncertainty inherent in classifying 
individuals to latent traits. 

The model is designed for a situation where a response 
variable Y and a covariate or risk factor Z are measured. A 
latent trait variable C that takes on a finite number of states 
is assumed to "explain" the association between Y and Z; 
that is, Y and Z are assumed to be conditionally indepen- 
dent, given C. The likelihood of (Y, Z) is simple to ex- 
press because of the conditional independence assumption. 
Given this structure, we illustrate that it is relatively easy 
to estimate the relationship between C and Z and to per- 
form hypothesis tests about the parameters describing this 
relationship. We also discuss an approximation that facili- 
tates implementation of the procedure using standard soft- 
ware. We contrast this with the classify-analyze method, 
which is based on the conditional distribution of C given 
Z. The classify-analyze approach produces incorrect infer- 
ences because it ignores the uncertainty about C. Although 
Y tells us a good deal about latent class membership, we 
observe Y, not C, and thus inference should account for 
residual uncertainty about C. With our approximation it is 
almost as easy to perform the correct analysis as it is to 
use the classify-analyze approach. The approximation may 
not always work, but it is superior to the classify-analyze 
approach. 

Our application focuses on an example from criminology, 
but taxonomic theorems are commonplace in the social sci- 
ences (e.g., categories of organizations, types of personal- 
ities), so our method potentially has wide applicability. In 
contrast to the criminology application, for many such ap- 
plications the response variable Y is not a count variable 
or even a longitudinal record. Many of our results still ap- 
ply, provided that the response variable yields a sufficient 
amount of information about group membership to provide 
an estimate of the probability of latent class membership; 
that is, Pr(C = k1Y). Our analysis shows that unless there 
is very little uncertainty about latent class membership, it 
is preferable to work with the full-mixture likelihood prob- 
ability than to classify the subject to the latent class with 
the highest membership probability. 

[Received March 1997. Revised January 1999.] 
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