NAME:

Instructions: There are 4 problems – you are required to solve them all. Please show detailed work for full credits. This is a close book exam. Please do NOT use calculator or cell phone during the exam.

ID:

1. A bivariate population of (X, Y) is sampled independently on three occasions. On the first, a random sample of size n_0 is taken and only $T = \min(X, Y)$ is observed for each pair. On the second, a random sample of size n_1 is taken, and only the X-marginal is observed for each pair. Finally, a random sample of size n_2 is taken, and only the Y-marginal is observed for each pair. Therefore, the combined set of observations is of the form (T, X, Y), where $T = (T_1, ..., T_{n_0}), X = (X_{11}, ..., X_{1n_1})$ and $Y = (Y_{21}, ..., Y_{2n_2})$. Assume the following two-parameter probability model for (X, Y):

$$P(X > x, Y > y) = \exp\left[-\frac{1}{\theta}\left(x^{\frac{1}{\delta}} + y^{\frac{1}{\delta}}\right)^{\delta}\right],$$

 $x > 0, y > 0, \theta > 0, 0 < \delta \le 1$ with unknown parameters θ and δ .

- (a) Find the joint pdf of (*T*, *X*, *Y*).
- (b) Identify the distributions of T_1 , X_{11} and Y_{21} .
- 2. Suppose X_1, \ldots, X_n are iid Possion(μ).
 - (a) Find the Cramér-Rao lower bound for the variance of an unbiased estimator of μ .
 - (b) Find the ML estimator $(\hat{\mu})$ of μ
 - (c) Find the mean and variance of $\hat{\mu}$. What can you conclude from this?
 - (d) Find the ML estimator (\hat{h}) of $h(\mu) = \mu^2 e^{-\mu}$.
 - (e) Prove or disprove the following statement: \hat{h} is an unbiased estimator of $h(\mu)$.
 - (f) Find the best unbiased estimator of $h(\mu)$.
- 3. Suppose we have two independent random samples from two normal populations: $X_1, X_2, \dots, X_{n_1} \sim N(\mu_1, 9\sigma^2)$, and $Y_1, Y_2, \dots, Y_{n_2} \sim N(\mu_2, \sigma^2)$.
- (a) At the significance level α , please construct a test using the pivotal quantity approach to test whether $\mu_1 = 2\mu_2$ or not. (*Please include the derivation of the pivotal quantity, the proof of its distribution, and the derivation of the rejection region for full credit.)
- (b) At the significance level α , please derive the likelihood ratio test for testing whether $\mu_1 = 2\mu_2$ or not.
- (c) Subsequently, please show whether this LR test derived in part (b) is equivalent to the one derived in part (a).

4. Let X and Y be random variables with joint pdf $f_{X,Y}(x, y) =$

$$\frac{1}{2\pi\sigma_{X}\sigma_{Y}\sqrt{1-\rho^{2}}}\exp\left\{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2\rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]\right\},$$

where $-\infty < x < \infty$, $-\infty < y < \infty$. Then X and Y are said to have a *bivariate normal distribution*. The joint moment generating function for X and Y is

$$M(t_1, t_2) = \exp\left[t_1\mu_X + t_2\mu_Y + \frac{1}{2}\left(t_1^2\sigma_X^2 + 2\rho t_1 t_2\sigma_X\sigma_Y + t_2^2\sigma_Y^2\right)\right].$$

(a) Please derive the conditional pdf of Y|X = x;

(b) Furthermore, suppose it is known that $\sigma_X^2 = \sigma_Y^2$, please construct an exact test to test whether $\rho = 0$ or not at the significance level α . Please include all key steps for full credits.