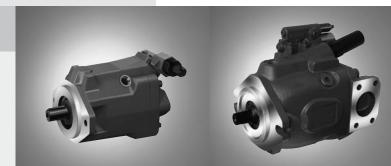
Axial Piston Variable Pump A10VO

RE 92703/08.11 1/56


Replaces: 10.07

RE 92708/03.08

and RE 92707/11.10

Data sheet

Series 52/53 Size 10 to 100 Nominal pressure 250 bar Maximum pressure 315 bar Open circuit

Series 52 Series 53

Contents

Type code for standard program	2
Technical data	5
DR - Pressure control	10
DRG - Pressure control remotely operated	11
DRF (DFR) DRS (DFR1) - Pressure and flow control	12
LA Pressure, flow and power control	13
EP - Electro-proportional control	14
EK - Electro-proportional control	15
EP / EK – with pressure and flow control	16
ED - Electro-hydraulic pressure control	18
ER - Electro-hydraulic pressure control	19
Dimensions, size 10 to 100	20
Dimensions, through drive	47
Summary of mounting options	50
Combination pumps A10VO + A10VO	51
Connector for solenoids	52
Installation instructions	54
General instructions	56

Features

- Variable pump in axial piston swashplate design for hydrostatic drives in an open circuit
- The flow is proportional to the drive speed and the displacement.
 The flow can be steplessly varied by adjusting the swash-plate angle.
- Stable storage for long service life
- High permissible drive speed
- Favorable power-to-weight ratio compact dimensions
- Low noise
- Excellent suction characteristics
- Axial and radial load capacity of drive shaft
- Pressure and flow control
- Electro-hydraulic pressure control
- Power control
- Electro-proportional swivel angle control
- Short response times

Type code for standard program

A10V(S)	0			/	5			_	V				
01	02	03	04		05	06	07		08	09	10	11	12

	Axial piston unit	10	18	28	45	60 ¹⁾	63	85	100	
01	Swashplate design, variable,	•	-	_	-	-	-	-	-	A10VS
UI	nominal pressure 250 bar, maximum pressure 315 bar	_	•	•	•	•	•	•		A10V

Operation mode

02 Pump, open circuit

Size (NG)

Control device

		ssure control	-			•	•	•	•	•	•	•	•	DR
		with flow contr	ol, hydraulic		-	-								
			X-T open			•	_	•	•	•	_	●3)	_	DFR
						_	•	-	-	-	•	• 2)	•	DRF
			X-T plugged			•	_	•	•	•	_	●3)	_	DFR1
							•	_	-	-	•	2)	•	DRS
			Electrically overridable (n	egative characteris	stic)	-	0	0	0	-	•	•	0	EF.D. ⁴⁾
		with pressure of	cut-off, remotely operated		`									
		hydraulic	· ·			•	•	•	•	•	•	•	•	DRG
		electrical	negative characteristic		U = 12 V	-	•	•	•	•	•	•	•	ED71
04					U = 24 V	-	•	•	•	•	•	•	•	ED72
			positive characteristic		U = 12 V	-	•	•	•	•	•	•	•	ER71 ⁵⁾
					U = 24 V	_	•	•	•	•	•	•	•	ER72 ⁵⁾
	Pov	ver control with	oressure cut-off				1						,	
				Start of control	10 to 35 bar	-	•	•	•	_	•	•	•	LA5D
					36 to 70 bar	-	•	•	•	_	•	•	•	LA6D
					71 to 105 bar	_	•	•	•	_	•	•	•	LA7D
					106 to 140 bar	_	•	•	•	_	•	•	•	LA8D
					141 to 230 bar	_	•	•	•	_	•	•	•	LA9D
		remotely opera		Start of control	see LA.D	-	•	•	•	_	•	•	•	LA.DG
		Flow control, X		Start of control	see LA.D	-	•	•	•	_	•	•	•	LA.DS
			lectrically overridable acteristic), X-T plugged	Start of control	see LA.D	_	•	•	•	_	•	•	•	LA.S

- 1) Series 52 units are delivered as standard with 60 cm³. Higher values on request.
- 2) Series 53 only with D flange
- 3) Series 52 only with C flange
- 4) See RE 92709
- 5) The following must be taken into account during project planning:

Excessive current levels (I > 1200 mA with 12 V or I > 600 mA with 24 V) to the ER solenoid can result in undesired increase of pressure which can lead to pump or system damage:

- Use I_{max} current limiter solenoids.
- An intermediate plate pressure controller can be used to protect the pump in the event of overflow.

 An accessory kit with intermediate plate pressure controller can be ordered from Bosch Rexroth under part number R902490825.
- ullet = available O = on request = not available

Type code for standard program

A10V(S)	0			/	5			-	V				
01	02	03	04		05	06	07		08	09	10	11	12

			10	18	28	45	60 ¹⁾	63	85	100	
	Electro-proportional control (positive characte	ristic) with									
	pressure control	U = 12 V	-	•	•	•	-	•	•	О	EP1D
		U = 24 V	-	•	•	•	-	•	•	О	EP2D
	Pressure and flow control,	U = 12 V	-	•	•	•	-	•	•	О	EP1DF
	X-T open (load sensing)	U = 24 V	-	•	•	•	-	•	•	О	EP2DF
	Pressure and flow control,	U = 12 V	-	•	•	•	-	•	•	0	EP1DS
	X-T plugged (load sensing)	U = 24 V	-	•	•	•	-	•	•	0	EP2DS
04	Electrohydraulic pressure control	U = 12 V	_	•	•	•	-	•	•	0	EP1ED
04		U = 24 V	-	•	•	•	-	•	•	0	EP2ED
	Pressure and flow control with controller	U = 12 V	-	•	•	•	-	•	•	0	EK1DF
	cut-off, X-T open (load sensing)	U = 24 V	-	•	•	•	-	•	•	0	EK2DF
	Pressure and flow control with controller cut-off, X-T plugged (load sensing)	U = 12 V	_	•	•	•	_	•	•	0	EK1DS
	care con, con progget (cone concord)	U = 24 V	_	•	•	•	_	•	•	О	EK2DS
	Electrohydraulic pressure control with	U = 12 V	_	•	•	•	-	•	•	0	EK1ED
	controller cut-off	U = 24 V	-	•	•	•	_	•	•	О	EK2ED
	Series										
05	Series 5, index 2		•	_	•	•	•	_	•	-	52 ²⁾
US	Series 5, index 3		_	•	•	•	-	•	•	•	53 ³⁾⁴⁾

Direction of rotation

06	With view on drive shaft	clockwise	R
06		counter clockwise	L

Seals

07 FKM (fluor-caoutchouc)	V
Drive shaft	10 18 28 45 60 ¹⁾ 63 85 100

	Dilve Silait		10	10	20	43	OO '	03	03	100	
	Splined shaft	standard shaft	•	•	•	•	•	•	•	•	S
	ANSI B92.1a	similar to shaft "S" however for higher input torque	-	•	•	•	•	•	_	1	R
08		reduced diameter, not for through drive	•	•	-	•	•	•	•	•	U
		similar to shaft "U", however for higher torque	-	_	-	•	•	•	•	•	W
	Parallel shaft key to DIN 688	5, not for through drive	•	•	_	_	_	_	_	_	Р

- 1) Series 52 units are delivered as standard with 60 cm³. Higher values on request.
- 2) Control DR, DFR, DFR1, DRG, ED and ER: delivery with size 10, 28, 45, 60 and 856) only in series 52
- 3) Control DR, DRF, DRS, DRG, ED and ER: delivery with size 18, 63, 855 and 100 only in series 53
- 4) Control EF., LA.., EP.. and EK.. Delivery with size 18 to 100 only in series 53
- 5) Control DRF and DRS: delivery with size 85 only with D flange in series 53
- 6) Control DFR, DFR1: delivery with size 85 only with C flange in series 52

Type code for standard program

A10V(S)	0			/	5			_	V				
01	02	03	04		05	06	07		08	09	10	11	12

	Mounting flange		10	18	28	45	60 ¹⁾	63	85	100	
	ISO 3019-2 (DIN)	2-hole	•	-	-	-	-	-	-	-	Α
0	ISO 3019-1 (SAE)	2-hole	•	•	•	•	•	•	•	•	С
		4-hole	-	_	-	_	•	•	● 2)	•	D

Service line port	10	18	28	45	60 ¹⁾	63	85	100	
SAE flange port at rear, metric fixing thread (not for through drive)	-	•	•	•	•	•	•	•	11
SAE flange port on opposite side, metric fixing (for through drive)	hread _	•	•	•	•	•	•	•	12
SAE flange port at side, 90° offset, metric fixing (not for through drive and only available for cou		-	-	•	-	-	-	-	13 ³⁾
Metric threaded ports, rear (not for through driv	e) •	-	-	-	-	-	-	-	14

Through drive		10	18	28	45	60 ¹⁾	63	85	100	
Without through drive, standard for	Without through drive, standard for versions 11, 13 and 14								•	N00
SAE J744 flange	coupling for splined shaft ⁴⁾									
Diameter	diameter									
82-2 (A)	5/8 in 9T 16/32DP	-	•	•	•	•	•	•	•	K01
	3/4 in 11T 16/32DP	-	•	•	•	•	•	•	•	K52
11 101-2 (B)	7/8 in 13T 16/32DP	-	-	•	•	•	•	•	•	K68
	1 in 15T 16/32DP	-	_	-	•	•	•	•	•	K04
127-4 (C)	1 1/4 in 14T 12/24DP	-	_	-	-	•	•	•	•	K15
	1 1/2 in 17T 12/24DP	-	_	-	-	-	-	•	•	K16
127-2 (C)	1 1/4 in 14T 12/24DP	-	_	-	_	-	_	•	•	K07
	1 1/2 in 17T 12/24DP	-	_	-	_	-	_	•	•	K24

Connector for solenoids	10	18	28	45	60 ¹⁾	63	85	100		
12 DEUTSCH molded connector, 2-pin – without suppressor diode	-	•	•	•	•	•	•	•	Р	٦

¹⁾ Series 52 units are delivered as standard with 60 cm³. Higher values on request.

²⁾ Only available in series 53. For controller designation and series assignment, please refer to positions 04, 05, including footnotes.

³⁾ Port plate 13 only available with counter-clockwise rotation.

⁴⁾ Coupling for splined shaft as per ANSI B92.1a

Hydraulic fluid

Prior to project design, please see our data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

When using environmentally acceptable hydraulic fluids, the limitations regarding technical data and seals must be observed. Please contact us. When ordering, indicate the hydraulic fluid that is to be used.

Operating viscosity range

For optimum efficiency and service life we recommend that the operating viscosity (at operating temperature) be selected the range

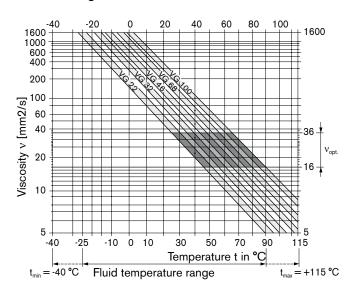
```
v_{\rm opt} = opt. operating viscosity 16 ... 36 mm<sup>2</sup>/s
```

referred to reservoir temperature (open circuit).

Limits of viscosity range

For critical operating conditions the following values apply:

```
v_{\text{min}} = 10 \text{ mm}^2/\text{s} for short periods (t \leq 1 min) at max. perm. case drain temperature of 115 °C.
```


Please note that the max. case drain temperature of 115 °C is also not exceeded in certain areas (for instance bearing area). The fluid temperature in the bearing area is approx. 5 K higher than the average case drain temperature.

```
v_{max} = 1600 mm<sup>2</sup>/s
for short periods (t \leq 1 min)
on cold start
(p \leq 30 bar, n \leq 1000 rpm, t<sub>min</sub> -25 °C)
```

Depending on the installation situation, special measures are necessary at temperatures between -40°C and -25°C. Please contact us.

For detailed information on operation with low temperatures see data sheet RE 90300-03-B.

Selection diagram

Notes on the selection of the hydraulic fluid

In order to select the correct hydraulic fluid, it is necessary to know the operating temperature in relation to the ambient temperature. In an open circuit this is the reservoir temperature.

The fluid should be selected so that within the operating temperature range, the viscosity lies within the optimum range (v_{opt}) , see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

Example: at an ambient temperature of X $^{\circ}$ C the operating temperature in the reservoir is 60 $^{\circ}$ C. In the optimum operating viscosity range (v_{opt} ; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; VG 68 should be selected.

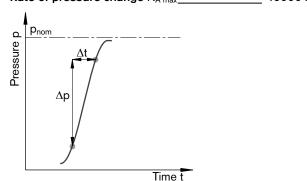
Important

The case drain temperature is influenced by pressure and input speed and is always higher than the reservoir temperature. However, at no point in the component may the temperature exceed 115 °C. The temperature difference specified on the left is to be taken into account when determining the viscosity in the bearing.

Please contact us if the above conditions cannot be met due to extreme operating parameters.

Filtration of the fluid

The finer the filtration the better the fluid cleanliness class and the longer the service life of the axial piston unit.


In order to guarantee the functional reliability of the axial piston unit it is necessary to carry out a gravimetric evaluation of the fluid to determine the particle contamination and the cleanliness class according to ISO 4406. A cleanliness class of at least 20/18/15 must be achieved.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness class of at least 19/17/14 according to ISO 4406 is necessary.

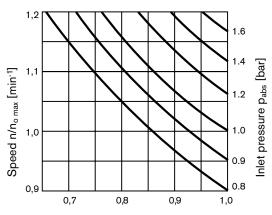
Please contact us if the above classes cannot be observed.

Operating pressure range

Pressure at service line port B

Pressure at suction port S (inlet)

Case drain pressure


Maximum permissible case drain pressure (at port L_1):

Maximum 0.5 bar higher than the inlet pressure at port S, however not higher than 2 bar absolute.

P_{L max abs} _______2 bar

Maximum permissible speed (limit speed)

Permissible speed by increasing inlet pressure p_{abs} at suction opening S or at $V_g \leq V_{g\ max}$.

Displacement V_g/V_g max [cm³]

Definition

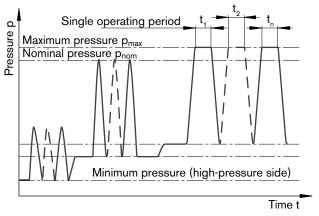
Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the operating pressure within the single operating period. The total of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure on the high-pressure side (B) that is required in order to prevent damage to the axial piston unit.

Minimum pressure (inlet) open circuit

Minimum pressure at suction port S (inlet) that is required to prevent damage to the axial piston unit. The minimum pressure depends on the speed and displacement of the axial piston unit.

Rate of pressure change R_A

Maximum permissible pressure build-up and pressure reduction speed with a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

Table of values (theoretical values, without efficiencies and tolerances: values rounded)

Size	NG		10	18	28	45	60 ¹⁾	63 ²⁾	85	100
Geometrical displacement per revolution	V _{g max}	cm ³	10.5	18	28	45	60	63	85	100
Speed ³⁾										
maximum at $V_{g max}$	n_{nom}	rpm	3600	3300	3000	2600 ⁴⁾	2600	2600	2500	2300
maximum at $V_g < V_{g max}$	n _{max perm}	rpm	4320	3960	3600	3120	3140	3140	3000	2500
Flow										
at n_{nom} and $V_{\text{g max}}$	q _{v max}	l/min	37	59	84	117	156	163	212	230
at $n_E = 1500$ rpm and $V_{g max}$	q _{vE max}	l/min	15	27	42	68	90	95	128	150
Power at $\Delta p = 250$ bar										
at n _{nom} , V _{g max}	P_{max}	kW	16	25	35	49	65	68	89	96
at $n_E = 1500$ rpm and $V_{g max}$	P _{E max}	kW	7	11	18	28	37	39	53	62
Torque										
at $V_{g max}$ and $\Delta p = 250$ bar	T_{max}	Nm	42	71	111	179	238	250	338	398
$\Delta p = 100 \text{ bar}$	Т	Nm	17	29	45	72	95	100	135	159
Rotary stiffness, S	С	Nm/rad	9200	11000	22300	37500	65500	65500	143000	143000
drive shaft R	С	Nm/rad	-	14800	26300	41000	69400	69400	_	_
U	С	Nm/rad	6800	8000	_	30000	49200	49200	102900	102900
W	С	Nm/rad	-	_	_	34400	54000	54000	117900	117900
P	С	Nm/rad	10700	13100	-	_	_	_	_	_
Moment of inertia rotary group	J _{TW}	kgm ²	0.0006	0.00093	0.0017	0.0033	0.0056	0.0056	0.012	0.012
Angular acceleration, maximum ⁵⁾	α	rad/s²	8000	6800	5500	4000	3300	3300	2700	2700
Filling capacity	V	L	0.2	0.25	0.3	0.5	0.8	0.8	1	1
Weight (without through drive) approx	. m	kg	8	11.5	14	18	22	22	34	34

- 1) Only series 52
- 2) Only series 53
- 3) The values are applicable:
 - for absolute pressure $p_{abs} = 1$ bar at the suction port S
 - for the optimum viscosity range of $v_{opt} = 16$ to 36 mm²/s
 - for mineral-based operating materials with a specific mass of 0.88 kg/l.
- 4) Please contact us regarding higher speeds
- 5) The scope of application lies between the minimum necessary and the maximum permissible drive speeds. Valid for external excitation (e.g. diesel engine 2- to 8-fold rotary frequency, cardan shaft 2-fold rotary frequency). The limiting value is only valid for a single pump.

The loading capacity of the connecting parts must be taken into account.

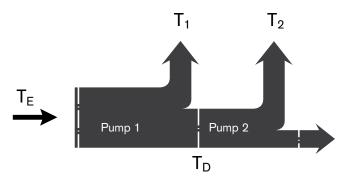
Note

Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. We recommend checking the loading with tests or calculations / simulations and comparison with the permissible values.

Determination of size

Flow
$$q_V = \frac{V_g \bullet n \bullet \eta_V}{1000} \qquad [I/min] \qquad V_g = Geometric displacement per revolution in cm^3 \\ \Delta p = Differential pressure in bar \\ Torque \qquad T = \frac{V_g \bullet \Delta p}{20 \bullet p \bullet h_{mh}} \qquad [Nm] \qquad n = Speed in rpm \\ \eta_V = Volumetric efficiency \\ Power \qquad P = \frac{2\pi \bullet T \bullet n}{60000} = \frac{q_V \bullet \Delta p}{600 \bullet \eta_t} \quad [kW] \qquad \eta_{mh} = Mechanical-hydraulic efficiency \\ \eta_t = Total efficiency \quad (h_t = h_V \bullet h_{mh})$$

Permissible radial and axial forces on the drive shaft

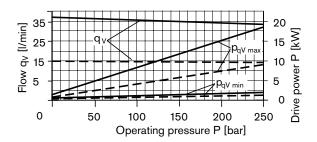

Size	NG	10	18	28	45	60/63	85	100
Radial force maximum at a/2	Fq max N	250	350	1200	1500	1700	2000	2000
Axial force maximum Fax	+ F _{ax max} N	400	700	1000	1500	2000	3000	3000

Permissible input and through-drive torques

Size	NG		10	18	28	45	60/63	85	100
Torque at $V_{g \text{ max}}$ and $\Delta p = 250 \text{ bar}^{1)}$	T_{max}	Nm	42	71	111	179	250	338	398
Input torque for drive shaft, maximum ²⁾									
S	$T_{E\;max}$	Nm	126	124	198	319	630	1157	1157
	Ø	in	3/4	3/4	7/8	1	1 1/4	1 1/2	1 1/2
R	T _{E max}	Nm	_	150	225	400	650	-	_
	Ø	in	_	3/4	7/8	1	1 1/4	-	_
U	T _{E max}	Nm	60	59	_	188	306	628	628
	Ø	in	5/8	5/8	-	7/8	1	1 1/4	1 1/4
W	T _{E max}	Nm	_	_	_	200	396	650	650
	Ø	in	_	- .	_	7/8	1	1 1/4	1 1/4
Р	T _{E max}	Nm	90	88	-	_	-	-	_
	Ø	mm	18	18	-	_	-	-	_
Maximum through-drive torque for drive	shaft				<u> </u>	<u> </u>	<u> </u>	<u> </u>	
S	$T_{D \; max}$	Nm	_	108	160	319	484	698	698
R	T _{D max}	Nm	_	120	176	365	484	-	_

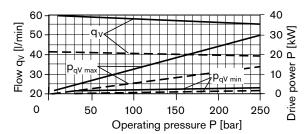
¹⁾ Without considering efficiency

Distribution of torques


²⁾ For drive shafts free of radial load

Drive power and flow

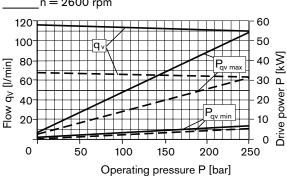
Operating material:


Hydraulic fluid ISO VG 46 DIN 51519, t = 50 °C

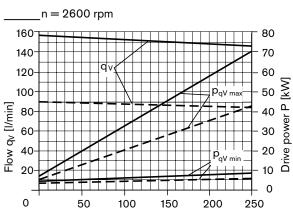
____ n = 1500 rpm n = 3600 rpm

Size 18

____ n = 1500 rpm n = 3300 rpm

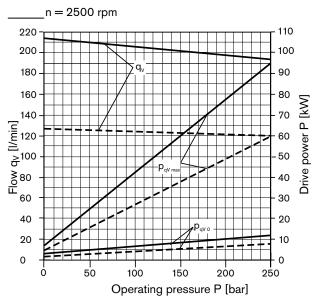

Size 28

____ n = 1500 rpm n = 3000 rpm


Size 45

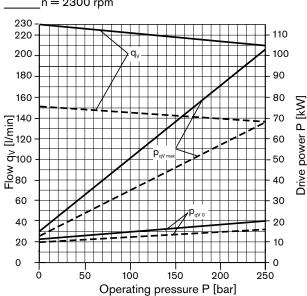
____ n = 1500 rpm n = 2600 rpm

Size 60/63


____ n = 1500 rpm

Operating pressure P [bar]

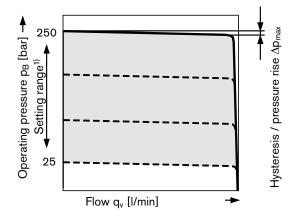
Size 85


____ n = 1500 rpm

Size 100

n = 1500 rpm

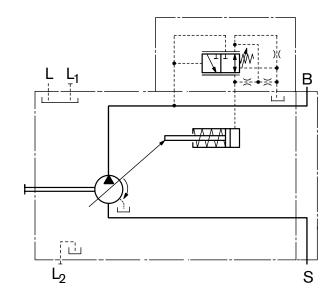
n = 2300 rpm



DR - Pressure control

The pressure control limits the maximum pressure at the pump output within the pump control range. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the operating pressure exceeds the target pressure set at the pressure valve, the pump will regulate towards a smaller displacement. The pressure can be set steplessly at the control valve.

Static characteristic


(at $n_1 = 1500 \text{ rpm}$; $t_{fluid} = 50 \text{ °C}$)

 In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded.

The range of possible settings at the valve are greater.

Circuit diagram

	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)

Controller data

Hysteresis and repeatability Δp _____ maximum 3 bar

Pressure rise, maximum

NG		10	18	28	45	60/63	85	100
Δp	bar	6	6	6	6	8	12	14

Control fluid consumption_____ maximum approx. 3 l/min

Flow losses at q_{Vmax} see page 9.

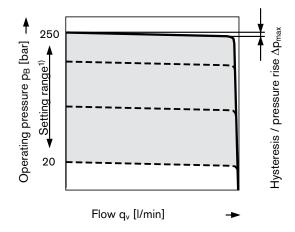
DRG - Pressure control remotely operated

The DRG control valve overrides the function of the DR pressure controller (see page 10).

A pressure relief valve can be externally piped to port X for remote setting of pressure below the setting of the DR control valve spool. This relief valve is not included in the delivery contents of the pump.

The differential pressure at the control valve is set as standard to 20 bar. The control fluid volume at port X is approx. 1.5 I/min. If another setting is required (range from 10 to 22 bar) please state this in clear text.

As a separate pressure relief valve we can recommend:

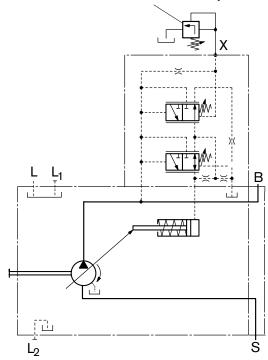

DBDH 6 (hydraulic) to RE 25402 or

DBETR-SO 381 with orifice dia. 0.8 mm in P (electric) to RE 29166.

The max. length of piping should not exceed 2 m.

Static characteristic

(at $n_1 = 1500 \text{ rpm}$; $t_{fluid} = 50 \text{ °C}$)



 In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded.

The range of possible settings at the valve is higher.

Circuit diagram

Not included in the delivery contents

Port for
Service line
Suction line
Case drain fluid (L _{1,2} plugged)
Pilot pressure

Controller data

Hysteresis and repeatability Δp _____ maximum 3 bar

Pressure rise, maximum

NG		10	18	28	45	60/63	85	100
Δp	bar	6	6	6	6	8	12	14

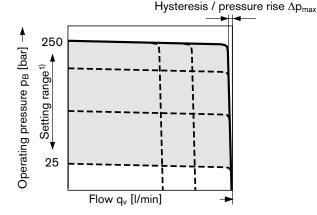
Control fluid consumption _____ maximum approx. 4.5 l/min

Flow losses at q_{Vmax} see page 9.

DRF (DFR) DRS (DFR1) - Pressure and flow control

In addition to the pressure control function (see page 10), a variable orifice (e.g. directional valve) is used to adjust the differential pressure upstream and downstream of the orifice. This is used to control the pump flow. The pump flow is equal to the actual required flow by the consumer, regardless of changing pressure levels.

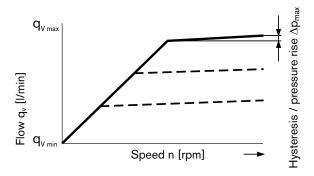
The pressure control overrides the flow control function.


Note

The DRS (DFR1) valve version has no connection between X and the reservoir. Unloading the LS-pilot line must be possible in the valve system.

Because of the flushing function sufficient unloading of the X-line must also be provided.

Static characteristic


Flow control at $n_1 = 1500 \text{ rpm}$; $t_{fluid} = 50 \text{ °C}$)

 In order to prevent damage to the pump and the system, this setting range is the permissible setting range and must not be exceeded.

The range of possible settings at the valve is higher.

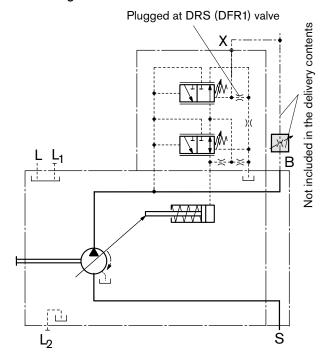
Static characteristic at variable speed

Possible connections at port B

(not included in the delivery contents)

LS mobile control blocks

Mobile control blocks M4 - 12 (RE 64276)


Mobile control blocks M4 - 15 (RE 64283)

LUDV mobile control blocks

Mobile control blocks M6 - 15 (RE 64284)

Mobile control blocks M7 - 22 (RE 64295)

Circuit diagram

	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
Χ	Pilot pressure

Differential pressure Δp

Standard setting: 14 to 22 bar.

If another setting is required, please state in clear text. Relieving the load on port X to the reservoir results in a zero stroke ("standby") pressure which lies about 1 to 2 bar higher than the differential pressure Δp). No account is taken of system influences.

Controller data

Data pressure control DR, see page 10.

Maximum flow deviation measured with drive speed n = 1500 rpm.

NG		10	18	28	45	60/63	85	100
$\Delta q_{v\;max}$	l/min	0.5	0.9	1.0	1.8	2.5	3.1	3.1

Control fluid consumption

DRF (DFR) _____maximum approx. 3 to 4.5 l/min DRS (DFR1) _____ maximum approx. 3 l/min

Volume flow loss at q_{Vmax}, see page 9.

LA... - Pressure, flow and power control

Pressure control equipped as DR(G), see page 10 (11). Flow control equipped as DRF, DRS, see page 12.

In order to achieve a constant drive torque with varying operating pressures, the swivel angle and with it the output flow from the axial piston pump is varied so that the product of flow and pressure remains constant.

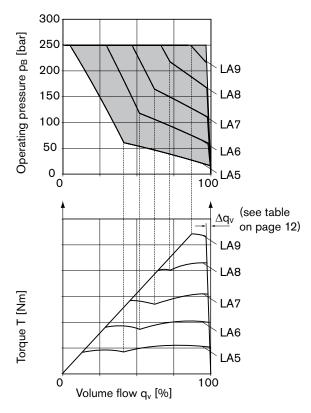
Flow control is possible below the power control curve.

When ordering please state the power characteristics to be set ex works in clear text, e.g. 20 kW at 1500 rpm.

Controller data

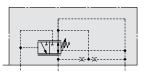
For pressure controller DR data, see page 10. For flow control FR data, see page 12.

Controller data

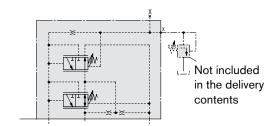

Maximum control fluid consumption, see page 12 Volume flow loss at q_{Vmax} , see page 9.

Start of control											
[bar]	18	28	45	63	85	100					
10 to 35	3.8 - 12.1	6 - 19	10 - 30	15 - 43	20 - 57	24 - 68	LA5				
36 to 70	12.2 - 23.3	19.1 - 36	30.1 - 59	43.1 - 83	57.1 - 112	68.1 - 132	LA6				
71 to 105	23.4 - 33.7	36.1 - 52	59.1 - 84	83.1 - 119	112.1 - 160	132.1 - 189	LA7				
106 to 140	33.8 - 45	52.1 - 70	84.1 - 112	119.1 - 157	160.1 - 212	189.1 - 249	LA8				
141 to 230	45.1 - 74.8	70.1 - 117	112.1 - 189	157.1 - 264	212.1 - 357	249.1 - 419	LA9				

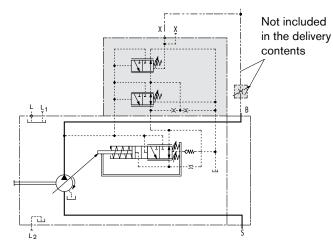
Conversion of the torque values in power [kW]:


$$P = \frac{T}{6.4} \text{ [kW] (at 1500 rpm)} \qquad \text{or} \qquad P = \frac{2\pi \cdot T \cdot n}{60000} \text{ [kW] (for speeds, see table on page 7)}$$

Static curves and torque characteristic



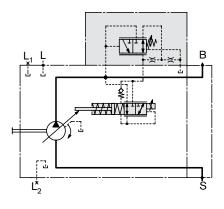
	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
X	Control pressure


Circuit diagram (LAXD) with pressure cut-off

Circuit diagram (LAXDG) with pressure cut-off, remotely operated

Circuit diagram (LAXDS) with pressure and flow control

EP - Electro-proportional control

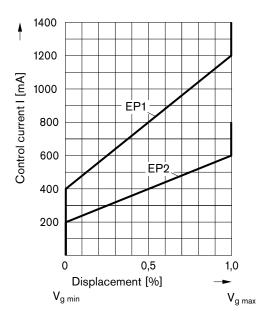

Electro-proportional control makes a stepless and reproducible setting of the pump displacement possible directly via the swashplate. The control force of the control piston is applied by a proportional solenoid. The control is proportional to the current (for start of control, see table right).

In a depressurized state, the pump is swiveled to its initial position ($V_{g\,max}$) by an adjusting spring. If the operating pressure exceeds 14 bar, the pump will swivel from $V_{g\,max}$ to $V_{g\,min}$ without control by the solenoid (control current < start of control). A PWM signal is used to control the solenoid.

EP.D: The pressure control regulates the pump displacement back to $V_{\text{q min}}$ after the set target pressure has been reached.

A minimum operating pressure of 14 bar is needed for control. The necessary control fluid is taken from the high pressure.

Circuit diagram EP.D


	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
X	Control pressure

Technical data, solenoid	EP1	EP2
Voltage	12 V (±20 %)	24 V (±20 %)
Control current		
Start of control at $V_{g min}$	400 mA	200 mA
End of control at V _{g max}	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 to	100 to
	200 Hz	200 Hz
Actuated time	100 %	100 %
For protection rating, please roon page 49	efer to "Socket	version"

Operating temperature range at valve -20 °C to +115 °C

Characteristic EP1/2

Hysteresis < 5 %

Note

The spring return at the controller is not a safety device

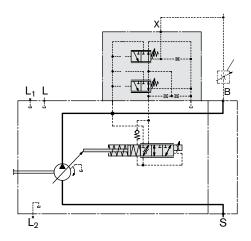
Dirt contamination (contaminated hydraulic fluid, wear or residual dirt from system components) could cause the controller to block in an undefined position. The volume flow of the axial piston unit will then no longer follow the commands of the operator.

Check whether remedial measures for your application are needed on your machine in order to put the driven consumer in a safe state (e.g. immediate stop).

EK - Electro-proportional control with controller cut-off

The variant EK... is based completely on the variant EP... (see page 14).

In addition to the electro-proportional control function, a controller cut-off is integrated in the electric characteristic. The pump then swivels to $V_{q \text{ max}}$ if the control signal is lost (e.g. cable break) and then works with the DRF settings (see page 12). The controller cut-off is only intended for short-term use and not for permanent use if the control signal is lost. If the control signal is lost, the pump swivel times will be reduced by the EK valve.


A PWM signal is used to control the solenoid.

A minimum operating pressure of 14 bar is needed for control. The necessary control fluid is taken from the high pressure.

The $V_{g max}$ position is maintained by the force of the adjusting spring. To overcome the force of this spring, the solenoid must be subjected to excessive current (I_{res}).

Observe the instructions regarding the project design on page 2

Circuit diagram EK.DF

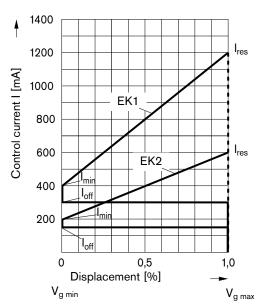
	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
X	Control pressure

Note

The spring return at the controller is not a safety device

Dirt contamination (contaminated hydraulic fluid, wear or residual dirt from system components) could cause the controller to block in an undefined position. The volume flow of the axial piston unit will then no longer follow the commands of the operator.

Check whether remedial measures for your application are needed on your machine in order to put the driven consumer in a safe state (e.g. immediate stop).


EK1	EK2
12 V (±20 %)	24 V (±20 %)
400 mA	200 mA
1200 mA	600 mA
1.54 A	0.77 A
5.5 Ω	22.7 Ω
100 to	100 to
200 Hz	200 Hz
100 %	100 %
	12 V (±20 %) 400 mA 1200 mA 1.54 A 5.5 Ω 100 to 200 Hz

on page 49

Operating temperature range at valve -20 °C to +115 °C

Characteristic EK

Hysteresis < 5 %

	EK1.	EK2.
I _{min} [mA]	400	200
I _{max} [mA]	1200	600
I _{off} [mA]	< 300	< 150
I _{res} [mA]	> 1200	>600

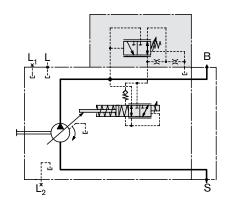
For changes in current, ramp times of > 200 ms must be observed.

EP(K).DF / EP(K).DS - EP(K) with pressure and flow control

A hydraulic pressure flow control is superimposed on the electro-proportional control.

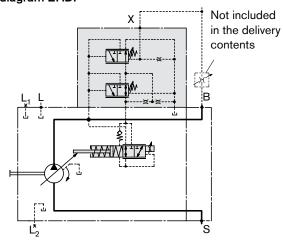
The pressure control regulates the pump displacement back to $V_{\text{q min}}$ after the set target pressure has been reached.

This function is super-imposed on the EP or EK control, i.e. the control-current dependent function is executed below the target pressure.

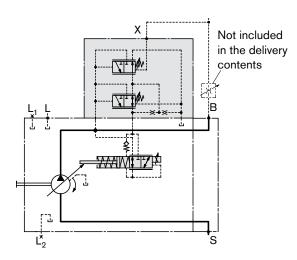

Setting range from 20 to 250 bar. For the pressure flow control, see page 12.

Pressure control has priority over electro-proportional control and flow control.

With flow control, the pump flow can be influenced in addition to pressure control. The pump flow is thus equal to the actual amount of hydraulic fluid required by the consumer. This is achieved using the differential pressure at the consumer (e.g. orifice).


The EP.DS or EK.DS version has no connection between X and the reservoir (load sensing). Please refer to the notes on page 12.

Circuit diagram EP.D


	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)

Circuit diagram EP.DF

	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
X	Control pressure

Circuit diagram EP.DS

	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
Х	Control pressure

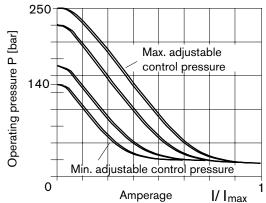
EP(K).ED - EP(K) with electro-hydraulic pressure control

The ED valve is set to a certain pressure by a specified variable solenoid current.

When a change is made at the consumer (load pressure), the position of the control piston will shift.

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.

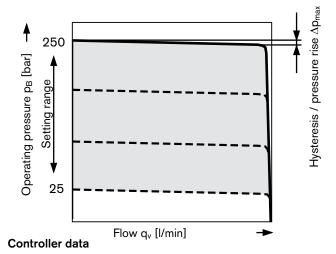
The pump thus only delivers as much hydraulic fluid as the consumers can take. The pressure can be set steplessly by the solenoid current.


As the solenoid current signal drops towards zero, the pressure will be limited to p_{max} by an adjustable hydraulic pressure cut-off (negative characteristic, e.g. for fan drives). A PWM signal is used to control the solenoid.

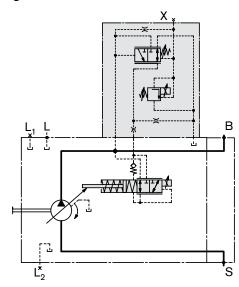
For further information and technical data of the solenoids for ED(ER) control please refer to pages 18 and 19.

Static current-pressure characteristic ED

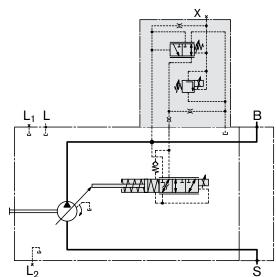
(negative characteristic)


(measured with pump in zero stroke)

Hysteresis static current-pressure characteristic < 3 bar.


Static flow-pressure characteristic

(at n= 1500 rpm; $t_{fluid} = 50 \, ^{\circ}\text{C}$)


Standby standard setting: 20 bar. Other values on request. Hysteresis / pressure rise Δp 4 bar

Circuit diagram EP.ED

	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
Х	Control pressure

Circuit diagram EK.ED

	Port for
В	Service line
S	Suction line
L, L _{1,2}	Case drain fluid (L _{1,2} plugged)
Χ	Control pressure

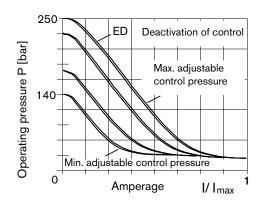
ED - Electro-hydraulic pressure control

The ED valve is set to a certain pressure by a specified variable solenoid current.

When a change is made at the consumer (load pressure), the position of the control piston will shift.

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.

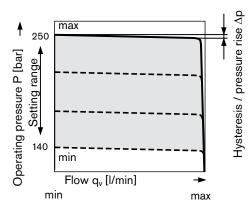
The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.


As the solenoid current signal drops towards zero, the pressure will be limited to p_{max} by an adjustable hydraulic pressure cut-off (secure fail safe function in case of a loss of power, e.g. for fan drives).

The response time characteristic of the ED-control was optimized for the use as a fan drive system.

When ordering, state the type of application in clear text.

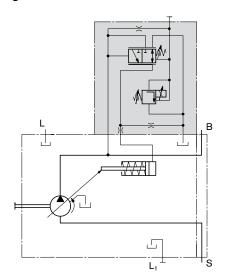
Static current-pressure characteristic ED


(measured at pump in zero stroke - negative characteristic)

Hysteresis static current-pressure characteristic < 3 bar

Static flow-pressure characteristic

(at n= 1500 rpm; $t_{fluid} = 50 \, ^{\circ}\text{C}$)



Controller data

Standby standard setting 20 bar, other values on request.

Hysteresis and pressure rise _____ $\Delta p < 4$ bar. Control flow consumption_____ 3 to 4.5 l/min.

Circuit diagram ED..

	Port for
В	Service line
S	Suction line
L, L ₁	Case drain (L ₁ plugged)

Technical data, solenoid	ED71	ED72			
Voltage	12 V (±20 %)	24 V (±20 %)			
Control current					
Control begin at q _{v min}	100 mA	50 mA			
End of control at q _{v max}	1200 mA	600 mA			
Limiting current	1.54 A	0.77 A			
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω			
Dither frequency	100 to	100 to			
	200 Hz	200 Hz			
Actuated time	100 %	100 %			
For protection rating, please refer to "Socket version"					
on page 52					

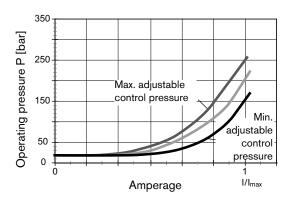
Operating temperature range at valve -20 °C to +115 °C

ER - Electro-hydraulic pressure control

The ER valve is set to a certain pressure by a specified variable solenoid current.

When a change is made at the consumer (load pressure), the position of the control piston will shift.

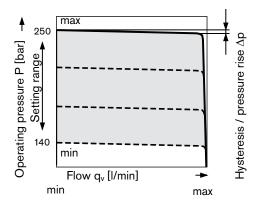
This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.


The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.

As the solenoid current signal drops towards zero, the pressure will be limited to p_{min} (stand by).

Observe the project planning notes on page 2.

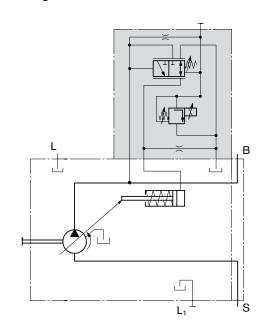
Static current-pressure characteristic ER


(measured with pump in zero stroke - positive characteristic)

Hysteresis static current-pressure characteristic < 3 bar Influence of pressure setting on stand by \pm 2 bar

Static flow-pressure characteristic

(at n= 1500 rpm; $t_{fluid} = 50$ °C)



Controller data

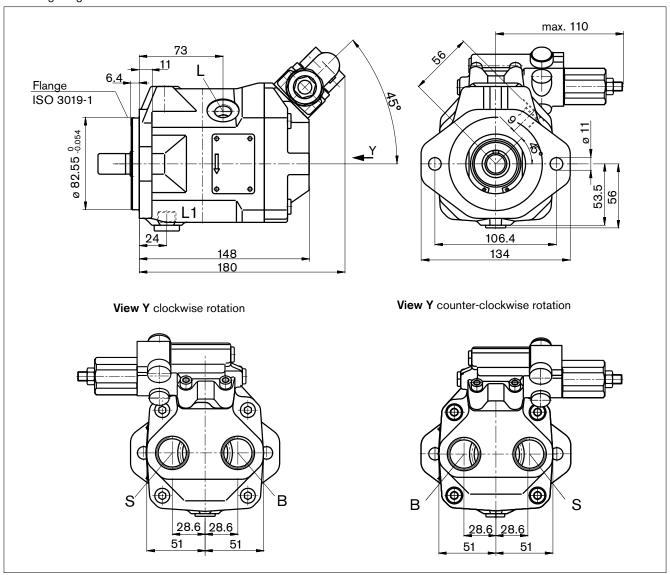
Standby standard setting 14 bar, other values on request.

Hysteresis and pressure rise _____ $\Delta p < 4$ bar. Control flow consumption_____ 3 to 4.5 l/min.

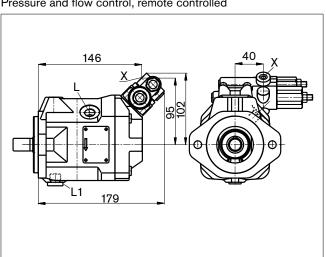
Circuit diagram ER..

	Port for
В	Service line
S	Suction line
L, L ₁	Case drain (L ₁ plugged)

Technical data, solenoid	ED71	ED72
Voltage	12 V (±20 %)	24 V (±20 %)
Control current		
Control begin at q _{v min}	100 mA	50 mA
End of control at q _{v max}	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 to	100 to
	200 Hz	200 Hz
Actuated time	100 %	100 %
For protection rating, please re	efer to "Socket	version" on page

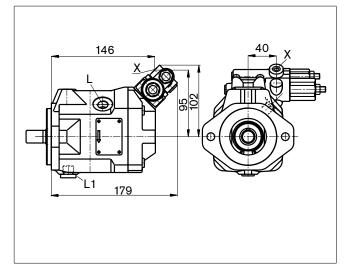

Operating temperature range at valve -20 °C to +115 °C

Dimensions, size 10


DR - Hydraulic pressure controller

Centering flange SAE version

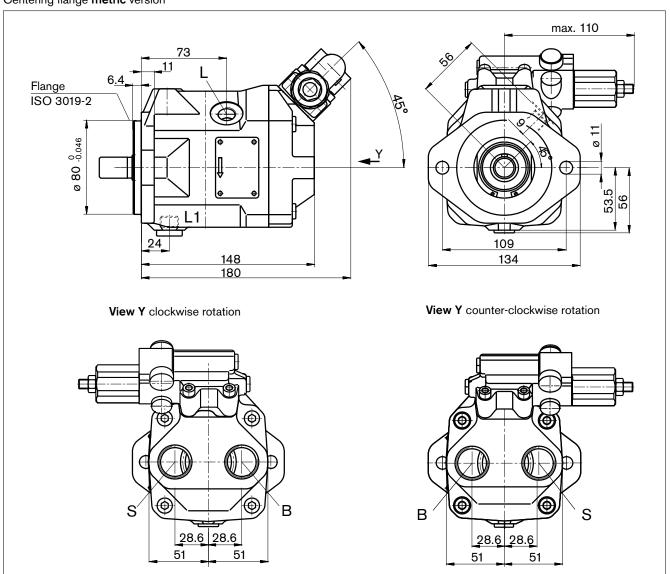
Before finalizing your design request a certified installation drawing. Dimensions in mm.



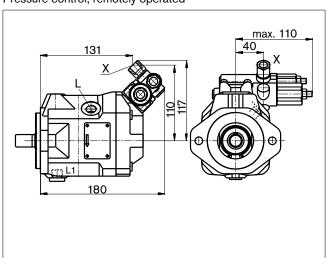
DRGPressure and flow control, remote controlled

DFR / DFR1

Pressure and flow control

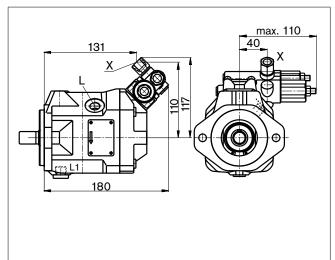

For details of connection options and drive shafts, please refer to page 22

Before finalizing your design request a certified installation drawing. Dimensions in mm.


Dimensions, size 10

DR - Hydraulic pressure controller

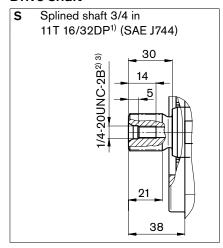
Centering flange metric version

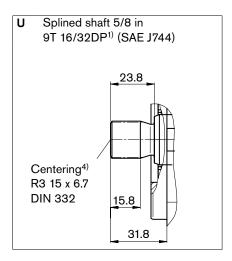


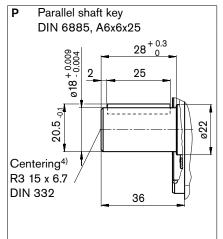
DRGPressure control, remotely operated

DFR / DFR1

Pressure and flow control




For details of connection options and drive shafts, please refer to page 22

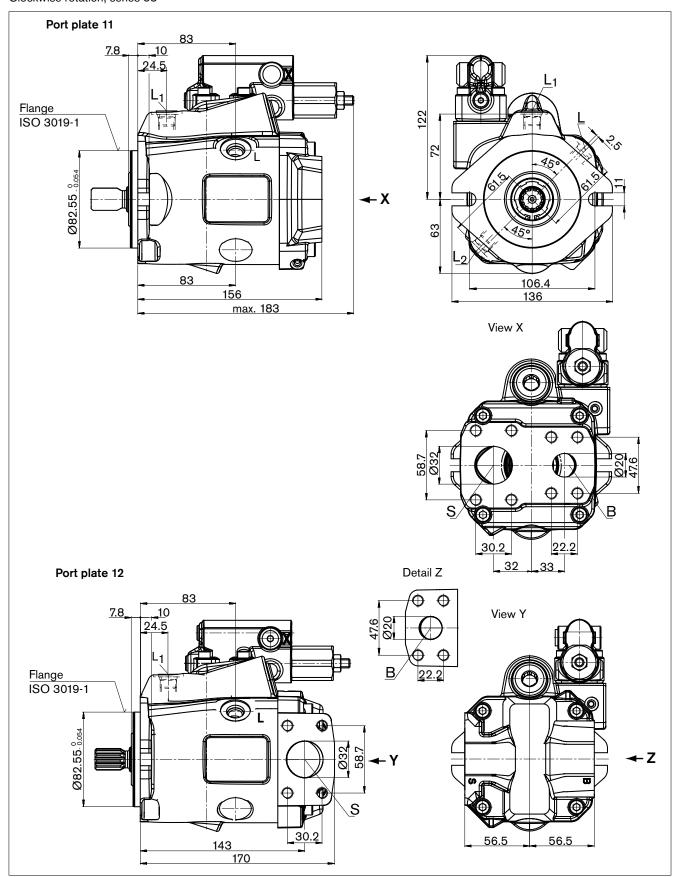

Before finalizing your design request a certified installation drawing. Dimensions in mm.

Dimensions, size 10

Drive shaft

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁵⁾	State
В	Service line	DIN 3852	M27 x 2; 16 deep	315	0
S	Suction line	DIN 3852	M27 x 2; 16 deep	5	0
L (metric)	Case drain fluid	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	2	O ⁷⁾
L ₁ (metric)	Case drain fluid	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	2	X ⁷⁾
L (SAE)	Case drain fluid	ISO 11926 ⁶⁾	9/16-18UNF-2B; 10 deep	2	O ⁷⁾
L ₁ (SAE)	Case drain fluid	ISO 11926 ⁶⁾	9/16-18UNF-2B; 10 deep	2	X ⁷⁾
X with adapter	Pilot pressure	DIN 3852	M14 x 1.5; 11.5 deep	315	0
X without adapter	Pilot pressure	ISO 11926 ⁵⁾	7/16-20UNF-2B; 11.5 deep	315	0

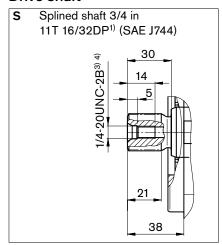

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Thread according to ASME B1.1
- 3) For the maximum tightening torques the general instructions on page 56 must be observed.
- 4) Coupling axially secured, e.g. with a clamp coupling or radially mounted clamping screw
- 5) Depending on the application, momentary pressure spikes can occur. Consider this when selecting measuring equipment and fittings.
- 6) The spot face can be deeper than as specified in the standard.
- 7) Depending on the installation position, L or L₁ must be connected (please refer to pages 54 and 55)
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

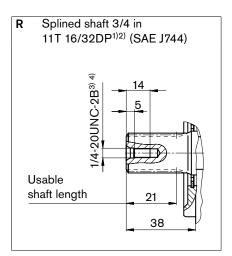
Dimensions, size 181)

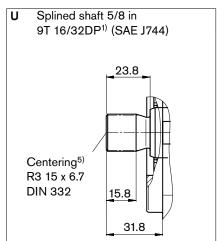
DR - Hydraulic pressure controller

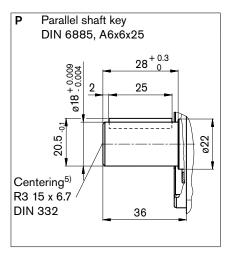
Clockwise rotation, series 53

Before finalizing your design request a certified installation drawing. Dimensions in mm.



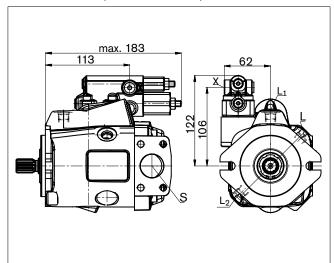

1) Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 24


Before finalizing your design request a certified installation drawing. Dimensions in mm.


Dimensions, size 18

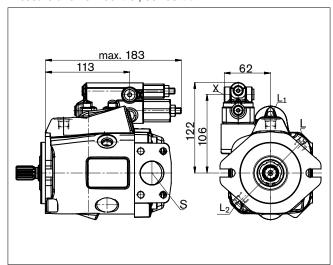
Drive shaft

Ports

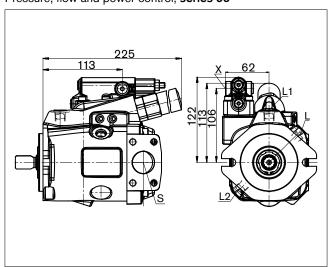

1 0113					
Designation	Port for	Standard	Size ⁴⁾	Maximum pressure [bar] ⁶⁾	State
В	Service line,	SAE J518 ⁷⁾	3/4 in	315	0
	fixing thread	DIN 13	M10 x 1.5; 17 deep		
S	Suction line,	SAE J518 ⁷⁾	1 1/4 in	5	0
	fixing thread	DIN 13	M10 x 1.5; 17 deep		
L	Case drain fluid	ISO 11926 ⁸⁾	3/4-16UNF-2B; 12 deep	2	O ₉₎
L ₁ , L ₂	Case drain fluid	ISO 11926 ⁸⁾	3/4-16UNF-2B; 12 deep	2	X ₉₎
X	Pilot pressure	ISO 11926 ⁸⁾	7/16-20UNF-2A; 11.5 deep	315	0

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 56 must be observed
- 5) Coupling axially secured, e.g. with a clamp coupling or radially mounted clamping screw
- 6) Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings
- 7) Metric fixing thread is a deviation from standard
- 8) The spot face can be deeper than as specified in the standard
- 9) Depending on the installation position, L, L₁ or L₂ must be connected (please refer to installation instructions on pages 54, 55)
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions, size 18

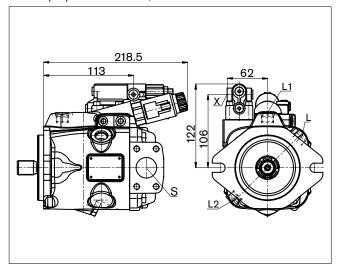

DRG

Pressure controller, remote controlled, series 53

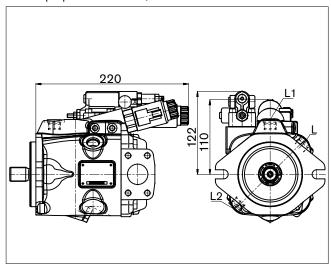


DRF/DRS

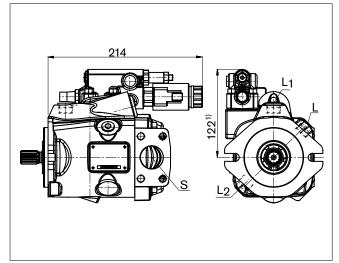
Pressure and flow control, series 53


LA.D.
Pressure, flow and power control, series 53

Before finalizing your design, please request approved installation drawing. Dimensions in mm.


EP.D. / EK.D.

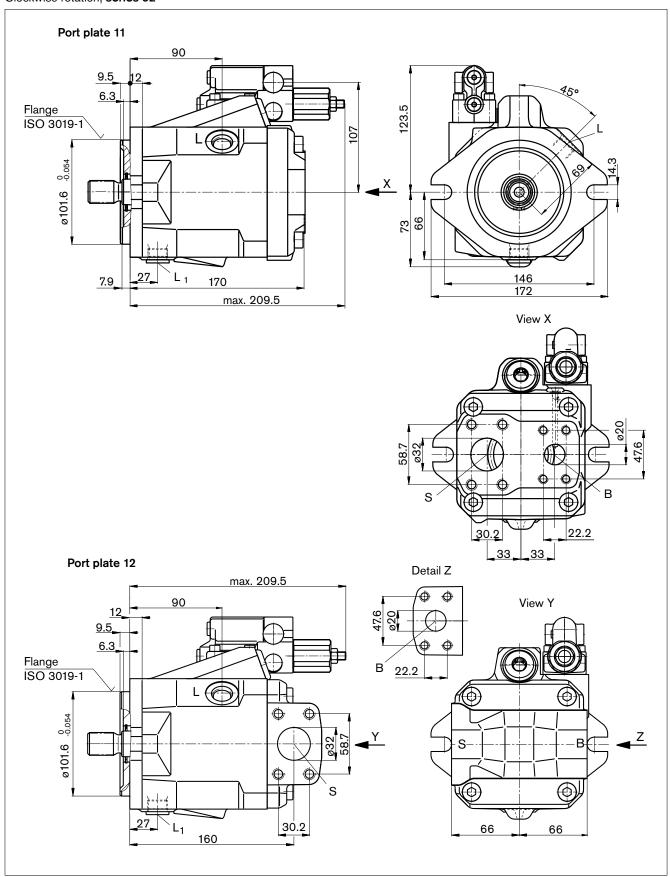
Electro-proportional control, series 53


EP.ED / EK.ED

Electro-proportional control, series 53

ED7. / ER7.

Electro-hydraulic pressure control, series 53

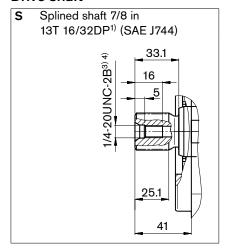

1) ER7.: 157 mm if using an intermediate plate pressure controller.

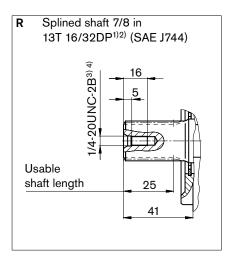
Dimensions, size 281)2)

Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller

Clockwise rotation, series 52


- 1) Dimensions of service line ports turned through 180° for counter-clockwise rotation (please refer to page 28)
- 2) Primary dimensions for pump apply for series 52 and 53


Before finalizing your design request a certified installation drawing. Dimensions in mm.

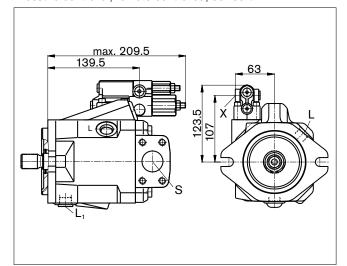
Dimensions, size 28

RE 92703/08.11 | A10VO Series 52/53

Drive shaft

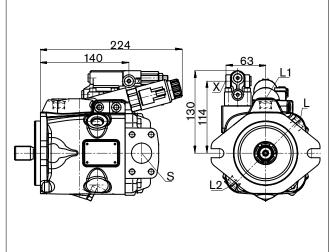
Ports

Designation	Port for	Standard	Size ⁴⁾	Maximum pressure [bar] ⁵⁾	State
В	Service line, fixing thread	SAE J518 ⁶⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	315	0
S	Suction line, fixing thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M10 x 1.5; 17 deep	5	0
L	Case drain fluid	ISO 11926 ⁷⁾	3/4-16UNF-2B; 12 deep	2	O ₉₎
L ₁ , L ₂ ⁸⁾	Case drain fluid	ISO 11926 ⁷⁾	3/4-16UNF-2B; 12 deep	2	X ₉₎
X	Control pressure	ISO 11926 ⁷⁾	7/16-20UNF-2B; 11.5 deep	315	0

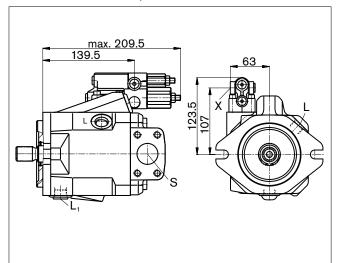

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 56 must be observed.
- 5) Depending on the application, momentary pressure spikes can occur. Consider this when selecting measuring equipment and
- 6) Metric fixing thread is a deviation from standard.
- 7) The spot face can be deeper than as specified in the standard.
- 8) Only series 53
- 9) Depending on the installation position, L, L₁ or L₂ must be connected (please refer to installation instructions on pages 54, 55)
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalizing your design, please request approved installation drawing. Dimensions in mm.

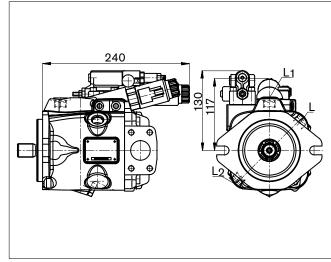
Dimensions, size 28


DRG

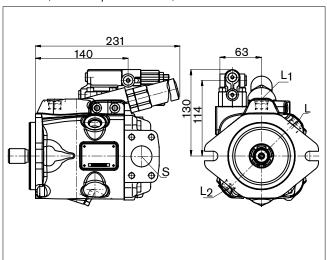
Pressure controller, remote controlled, series 52


EP.D. / EK.D.

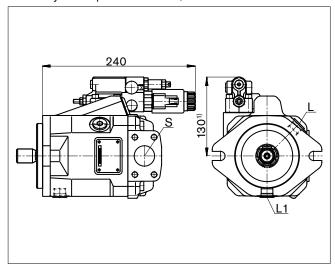
Electro-proportional control, series 53


DFR / DFR1

Pressure and flow control, series 52


EP.ED / EK.ED

Electro-proportional control, series 53


LA.D.

Pressure, flow and power control, series 53

ED7. / ER7.

Electro-hydraulic pressure control, series 52

1) ER7.: 159 mm if using an intermediate plate pressure controller. For details of connection options and drive shafts, please refer to page 27

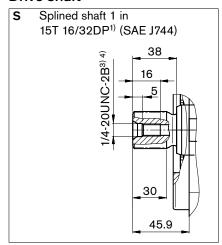
turned through 180° for counter-clock-

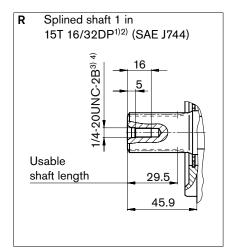
wise rotation

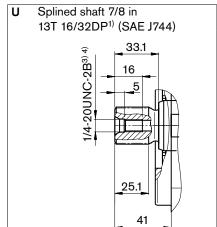
Dimensions, size 451)

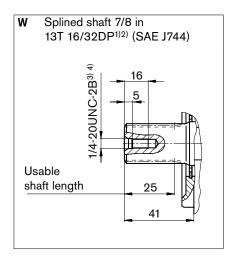
Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller Clockwise rotation, series 52 Port plate 11 99 12 6.3 30, 131.5 Flange ISO 3019-1 Х Ø101.6 189 146 max. 220.5 172 Port plate 12 max. 220.5 150.5 99 12 9.5 View X 6.3 _ 30. Flange ISO 3019-1 S 0-0.054 igotharpoonsø38 69.9 Ø101.6 35,2 35.7 300 <u>178²⁾</u> 300 211²⁾ 38 38 Detail Z Port plate 13 View Y counter-clockwise rotation²⁾ 52.4 Ø25 ф 72 26.2 90 90 90 Dimensions of service line ports


¹⁾ Primary dimensions for pump apply for series 52 and 53

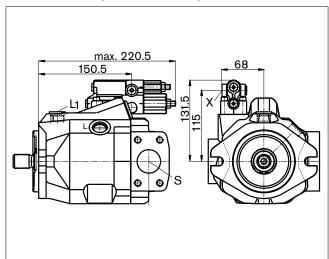

²⁾ For dimensions of service line ports S and B for port plate 13, please refer to port plate 12, footnote ²⁾. For details of connection options and drive shafts, please refer to page 30


Before finalizing your design request a certified installation drawing. Dimensions in mm.


Dimensions, size 45

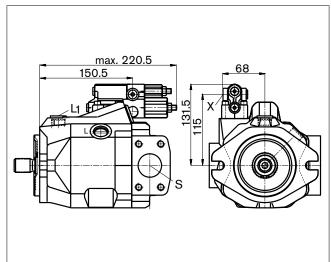
Drive shaft

Ports

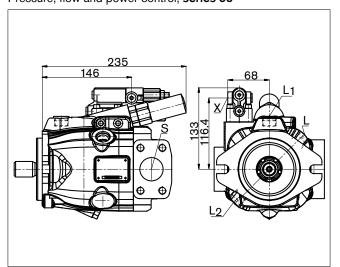

1 0113					
Designation	Port for	Standard	Size ⁴⁾	Maximum pressure [bar] ⁵⁾	State
В	Service line,	SAE J518 ⁶⁾	1 in	315	0
	fixing thread	DIN 13	M10 x 1.5; 17 deep		
S	Suction line,	SAE J518 ⁶⁾	1 1/2 in	5	0
	fixing thread	DIN 13	M12 x 1.75; 20 deep		
L	Case drain fluid	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	O ₉₎
L _{1,} L ₂ ⁸⁾	Case drain fluid	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	X ₉₎
X	Control pressure	ISO 11926 ⁷⁾	7/16-20UNF-2A; 11.5 deep	315	0

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 56 must be observed.
- 5) Depending on the application, momentary pressure spikes can occur. Consider this when selecting measuring equipment and fittings.
- 6) Metric fixing thread is a deviation from standard.
- 7) The spot face can be deeper than as specified in the standard.
- 8) Only for series 53
- 9) Depending on the installation position, L, L₁ or L₂ must be connected (please refer to installation instructions on pages 54, 55)
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions, size 45

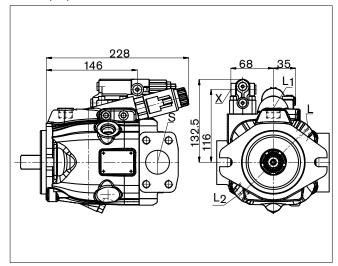

DRG

Pressure controller, remote controlled, series 52

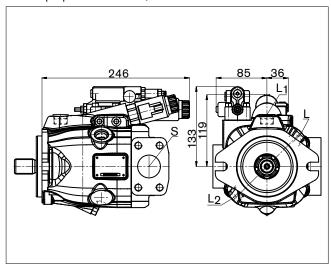


DFR / DFR1

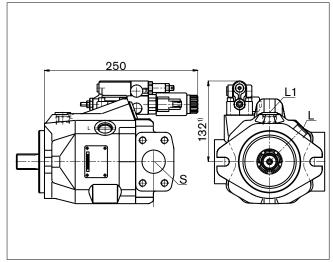
Pressure and flow control, series 52


LA.D.
Pressure, flow and power control, series 53

Before finalizing your design, please request approved installation drawing. Dimensions in mm.


EP.D. / EK.D.

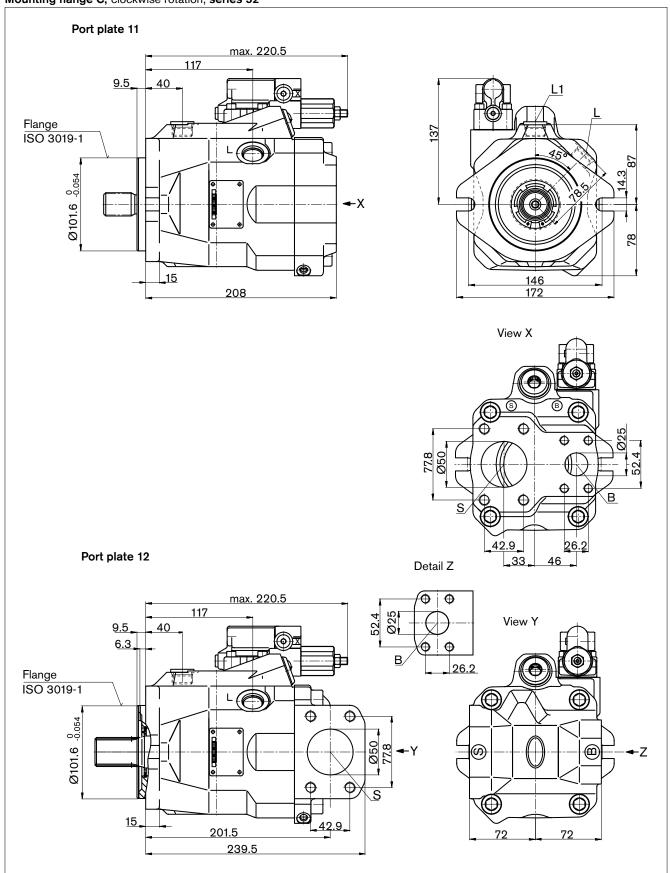
Electro-proportional control, series 53


EP.ED / EK.ED

Electro-proportional control, series 53

ED7. / ER7.

Electro-hydraulic pressure control, series 52

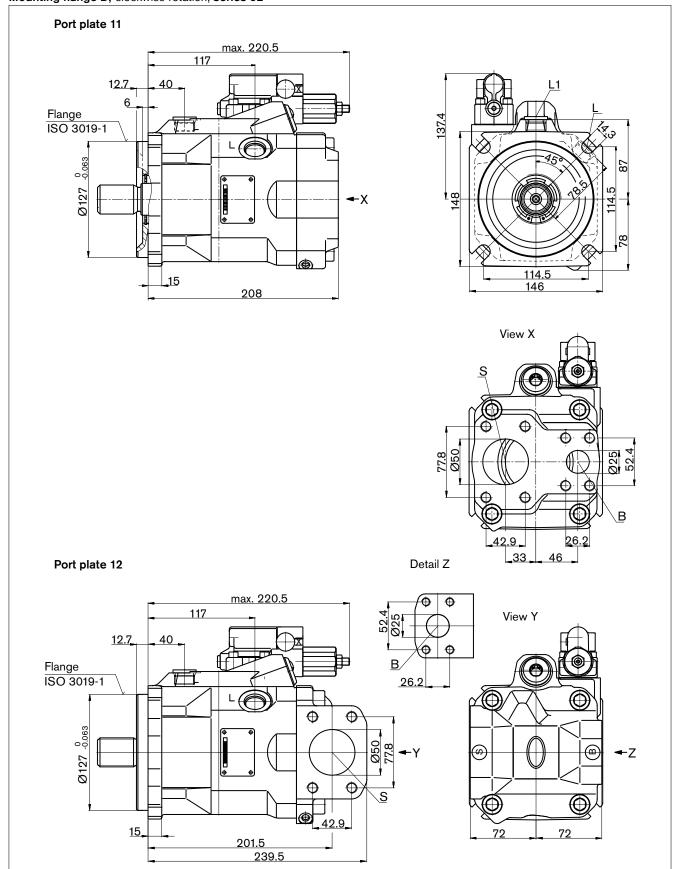

1) ER7.: 167 mm if using an intermediate plate pressure controller.

Dimensions, size 601)

Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller

Mounting flange C, clockwise rotation, series 52

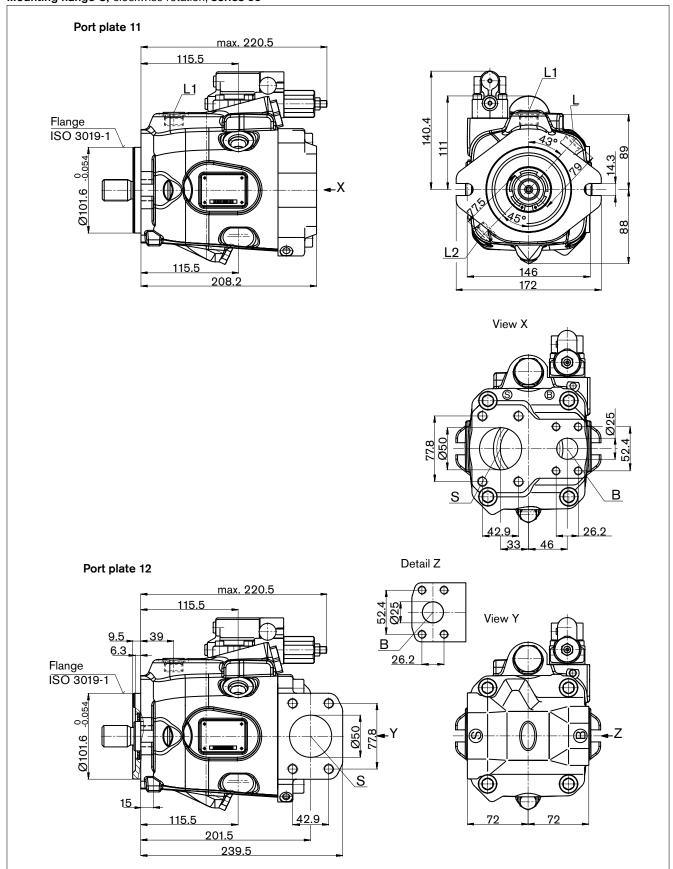

1) Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 34

Dimensions, size 601)

Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller

Mounting flange D, clockwise rotation, series 52

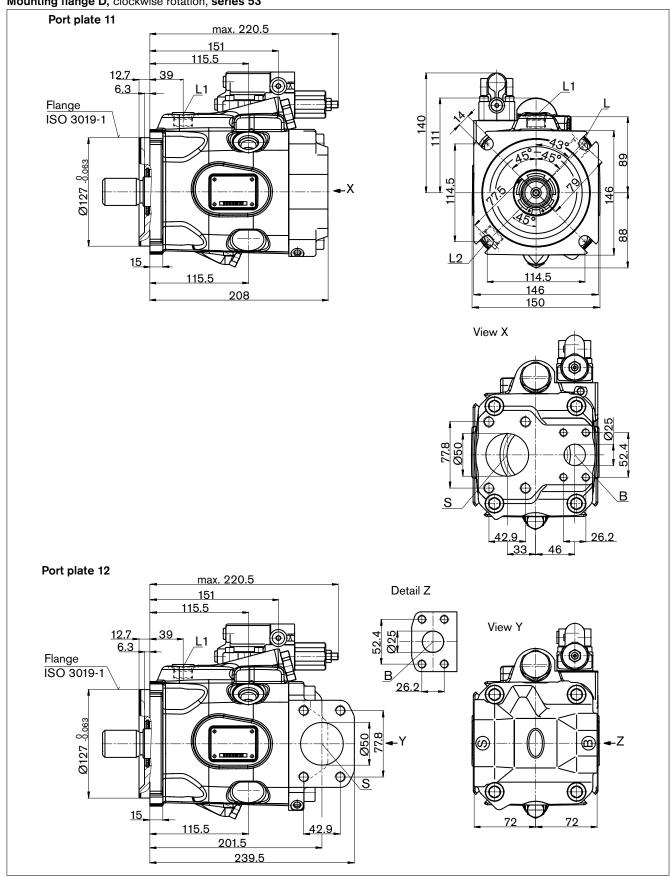

1) Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 34

Before finalizing your design request a certified installation drawing. Dimensions in mm.

Dimensions, size 631)

DR - Hydraulic pressure controller

Mounting flange C, clockwise rotation, series 53

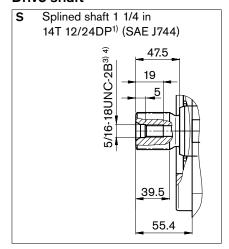

1) Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 34

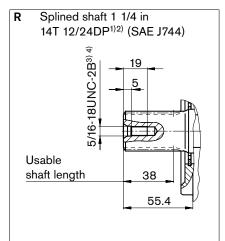
Before finalizing your design request a certified installation drawing. Dimensions in mm.

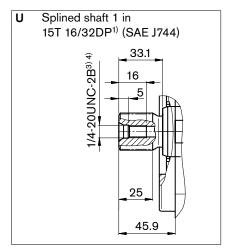
Dimensions, size 631)

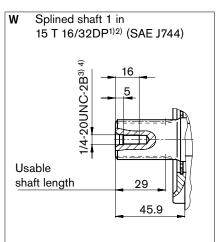
DR - Hydraulic pressure controller

Mounting flange D, clockwise rotation, series 53



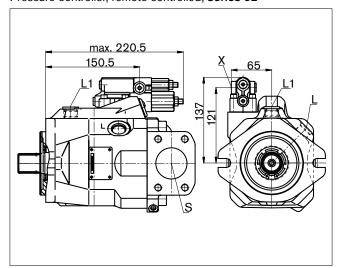

¹⁾ Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 34


Dimensions, size 60 / 63


Before finalizing your design request a certified installation drawing. Dimensions in mm.

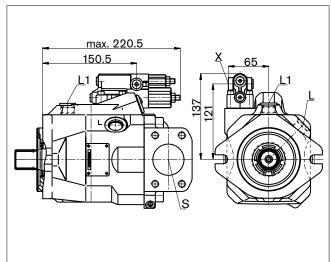
Drive shaft

Ports

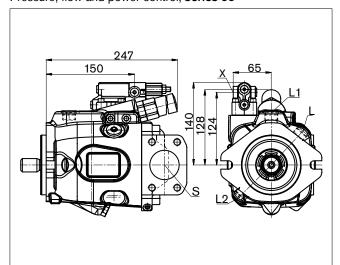

1 0113					
Designation	Port for	Standard	Size ⁴⁾	Maximum pressure [bar] ⁵⁾	State
В	Service line,	SAE J518 ⁶⁾	1 in	315	0
	fixing thread	DIN 13	M10 x 1.5; 17 deep		
S	Suction line,	SAE J518 ⁶⁾	2 in	5	0
	fixing thread	DIN 13	M12 x 1.75; 20 deep		
L	Case drain fluid	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	O ₉₎
L ₁ , L ₂ ⁸⁾	Case drain fluid	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	X ₉₎
X	Control pressure	ISO 11926 ⁷⁾	7/16-20UNF-2A; 11.5 deep	315	0

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 56 must be observed.
- 5) Depending on the application, momentary pressure spikes can occur. Consider this when selecting measuring equipment and fittings.
- 6) Metric fixing thread is a deviation from standard.
- 7) The spot face can be deeper than as specified in the standard.
- 8) Only for series 53
- 9) Depending on the installation position, L, L₁ or L₂ must be connected (please refer to installation instructions on pages 54, 55)
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions, size 60 / 63

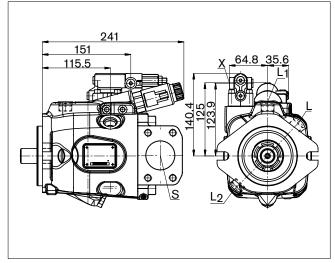

DRG

Pressure controller, remote controlled, series 52

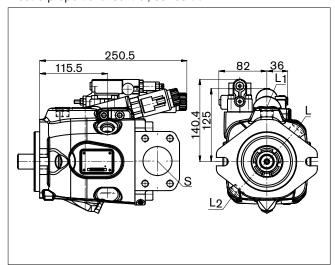


DFR / DFR1 (DRF/DRS)

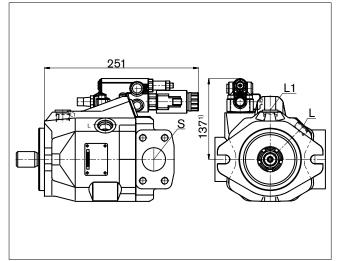
Pressure and flow control, series 52 (series 53)


LA.D.Pressure, flow and power control, **series 53**

Before finalizing your design, please request approved installation drawing. Dimensions in mm.


EP.D. / EK.D.

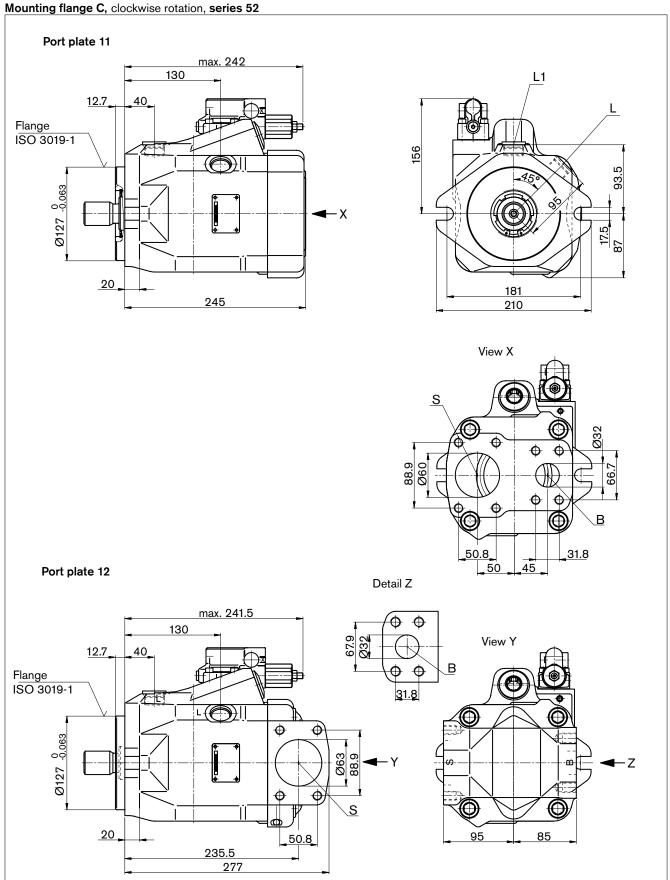
Electro-proportional control, series 53


EP.ED / EK.ED

Electro-proportional control, series 53

ED7. / ER7.

Electro-hydraulic pressure control, series 52

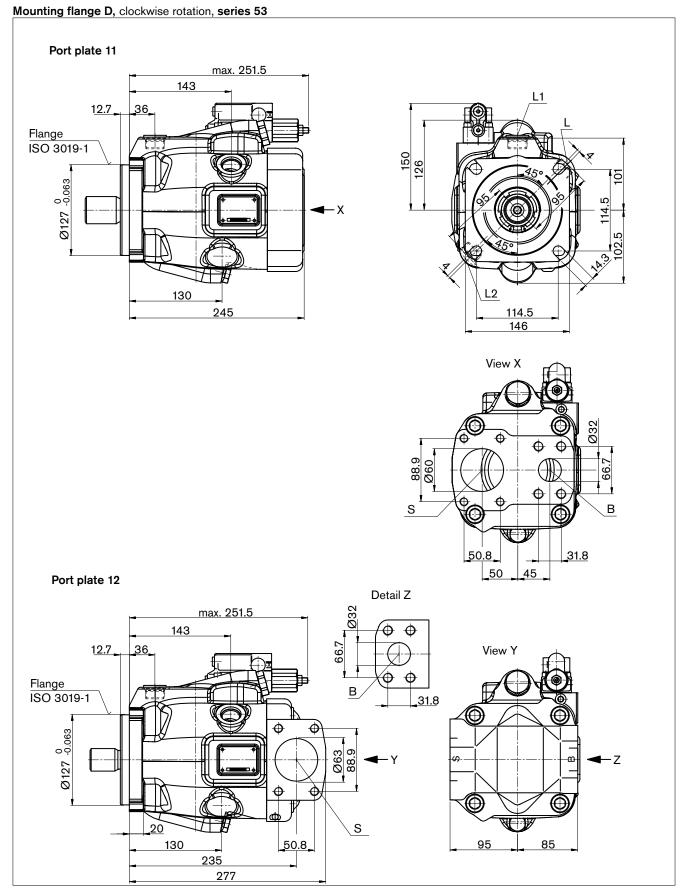


1) ER7.: 172 mm if using an intermediate plate pressure controller.

Dimensions, size 851)

Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller

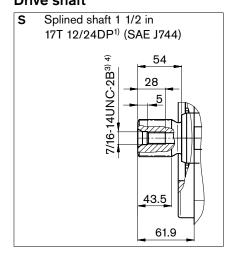


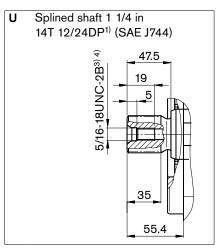
¹⁾ Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 40

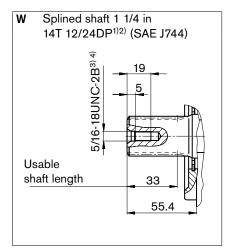
Dimensions, size 851)

Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller




¹⁾ Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 40

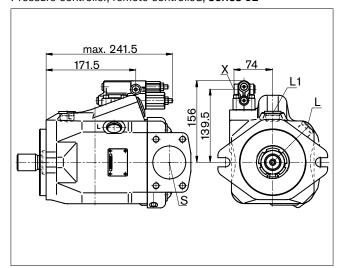

Before finalizing your design request a certified installation drawing. Dimensions in mm.

Dimensions, size 85

Drive shaft

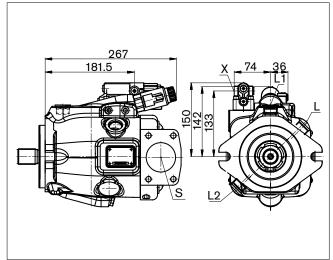
Ports

Designation	Port for	Standard	Size ⁴⁾	Maximum pressure [bar] ⁵⁾	State
В	Service line, fixing thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	315	0
S	Suction line, fixing thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 x 1.75; 17 deep	5	0
L	Case drain fluid	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	O ₉₎
L ₁ , L ₂ ⁸⁾	Case drain fluid	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	X ₉₎
X	Control pressure	ISO 11926 ⁷⁾	7/16-20UNF-2A; 11.5 deep	315	0

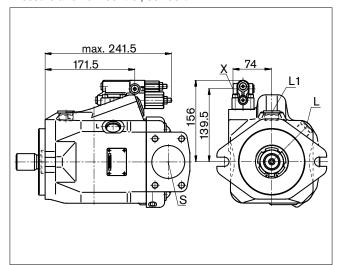

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 56 must be observed.
- 5) Depending on the application, momentary pressure spikes can occur. Consider this when selecting measuring equipment and fittings.
- 6) Metric fixing thread is a deviation from standard.
- 7) The spot face can be deeper than as specified in the standard.
- 8) Only for series 53
- 9) Depending on the installation position, L, L₁ or L₂ must be connected (please refer to installation instructions on pages 54, 55)
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Dimensions, size 85, mounting flange C

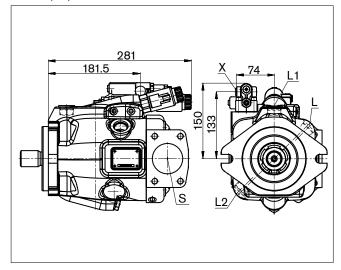
Before finalizing your design, please request approved installation drawing. Dimensions in mm.


DRG

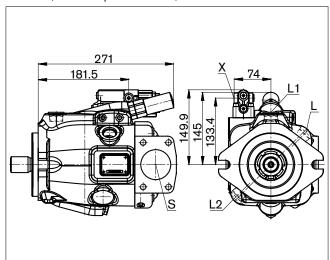
Pressure controller, remote controlled, series 52


EP.D. / EK.D.

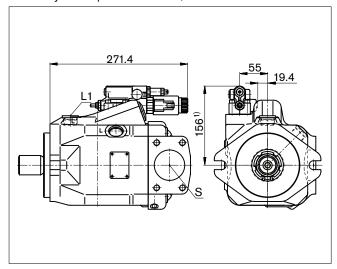
Electro-proportional control, series 53


DFR / DFR1

Pressure and flow control, series 52


EP.ED / EK.ED

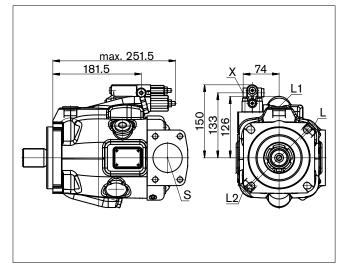
Electro-proportional control, series 53


LA.D.

Pressure, flow and power control, series 53

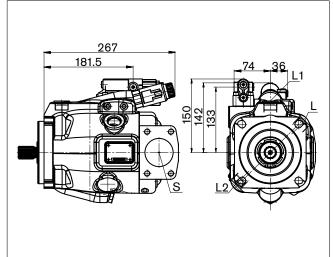
ED../ ER..

Electro-hydraulic pressure control, series 52

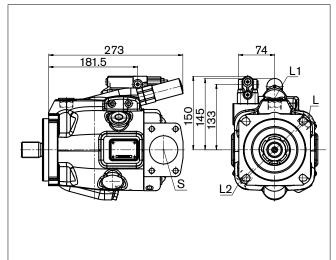

1) ER7.: 191 mm if using an intermediate plate pressure controller.

Dimensions, size 85, mounting flange D

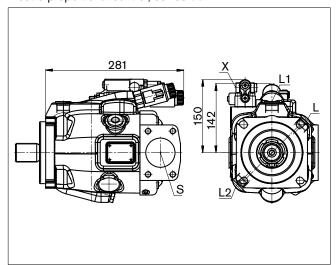
Before finalizing your design, please request approved installation drawing. Dimensions in mm.


DRF/DRS

Pressure and flow control, series 53


EP.D. / EK.D.

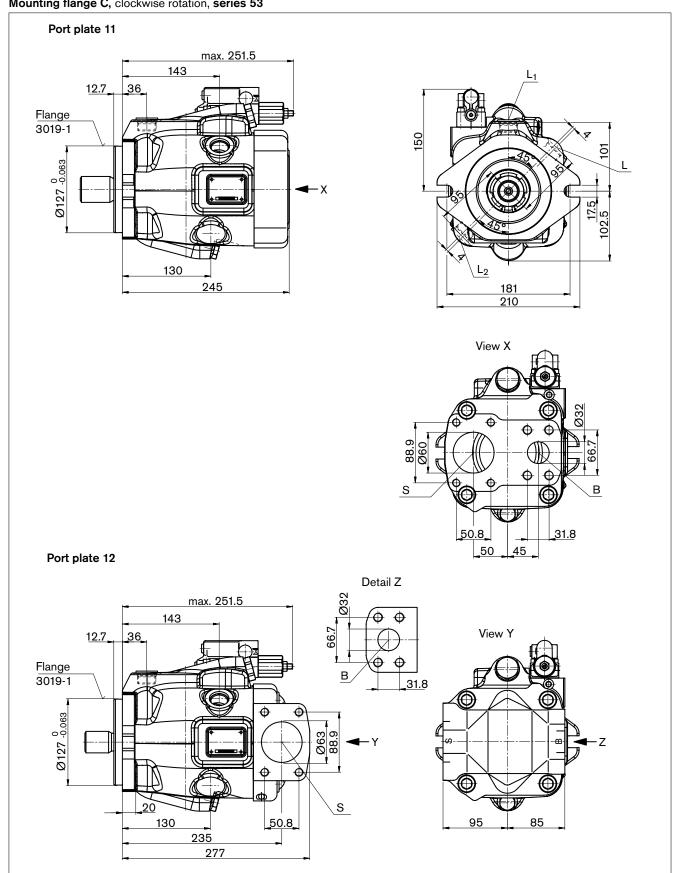
Electro-proportional control, series 53


LA.D.

Pressure, flow and power control, series 53

EP.ED / EK.ED

Electro-proportional control, series 53

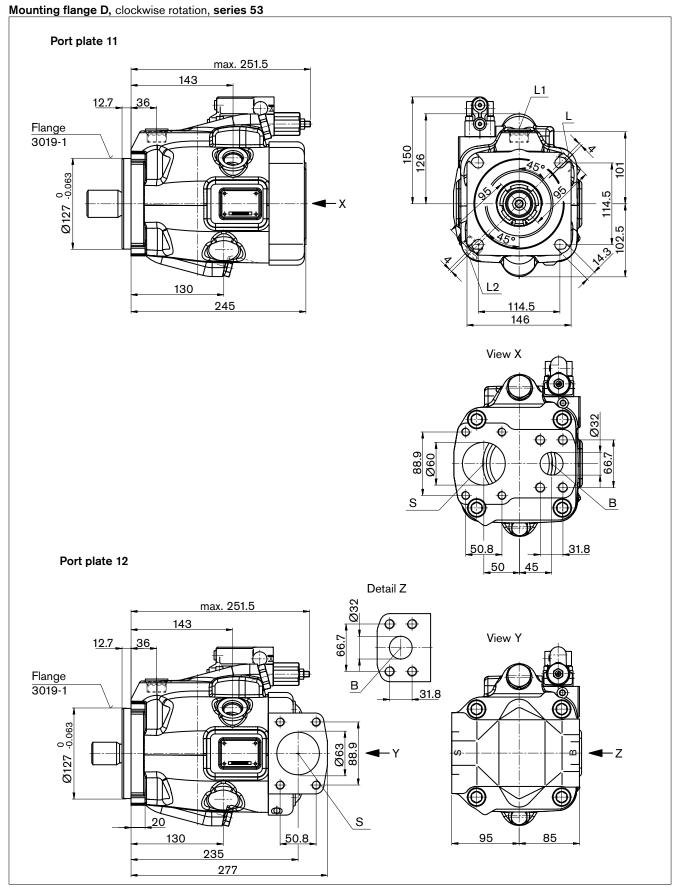


Dimensions, size 1001)

Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller

Mounting flange C, clockwise rotation, series 53

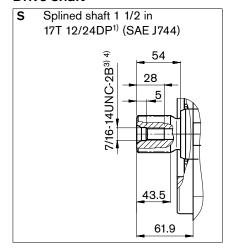


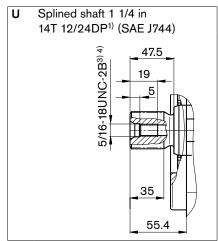
1) Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 44

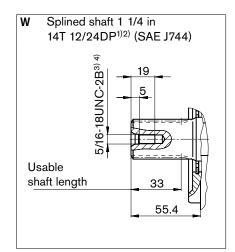
Dimensions, size 1001)

Before finalizing your design request a certified installation drawing. Dimensions in mm.

DR - Hydraulic pressure controller




¹⁾ Dimensions of service line ports turned through 180° for counter-clockwise rotation For details of connection options and drive shafts, please refer to page 44

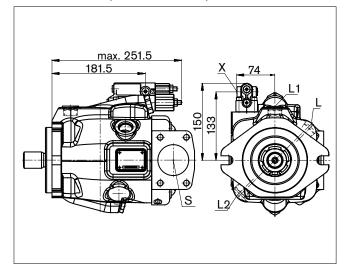

Before finalizing your design request a certified installation drawing. Dimensions in mm.

Dimensions, size 100

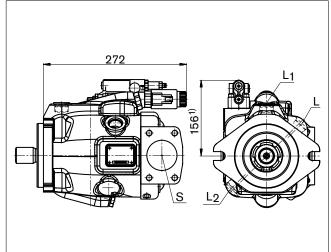
Drive shaft

Ports

Designation	Port for	Standard	Size ⁴⁾	Maximum pressure [bar] ⁵⁾	State
В	Service line, fixing thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	315	0
S	Suction line, fixing thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 x 1.75; 17 deep	5	0
L	Case drain fluid	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	O ₈₎
L ₁ , L ₂	Case drain fluid	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	X ₈₎
X	Control pressure	ISO 11926 ⁷⁾	7/16-20UNF-2A; 11.5 deep	315	0

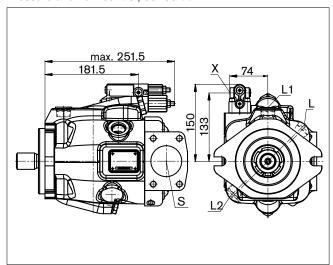

- 1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) For the maximum tightening torques the general instructions on page 56 must be observed.
- 5) Depending on the application, momentary pressure spikes can occur. Consider this when selecting measuring equipment and fittings.
- 6) Metric fixing thread is a deviation from standard.
- 7) The spot face can be deeper than as specified in the standard.
- 8) Depending on the installation position, L, L₁ or L₂ must be connected (please refer to installation instructions on pages 54, 55)
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Before finalizing your design, please request approved installation drawing. Dimensions in mm.

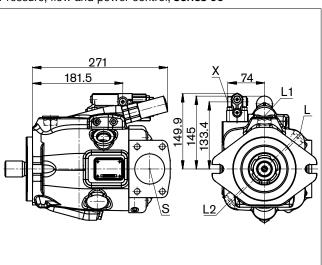

Dimensions, size 100

DRG

Pressure controller, remote controlled, series 53



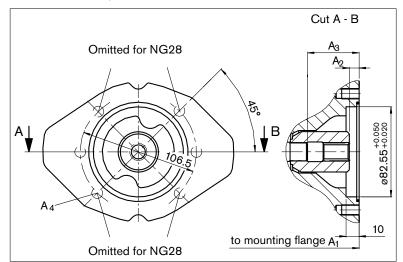
ED../ ER.. Electro-hydraulic pressure control, series 53



DRF/DRS

Pressure and flow control, series 53

LA.D.Pressure, flow and power control, **series 53**

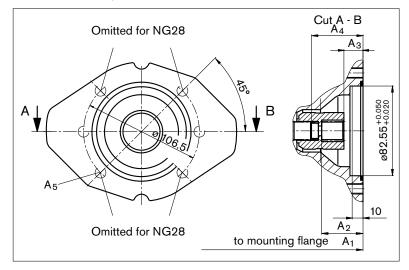


1) ER7.: 191 mm if using an intermediate plate pressure controller.

Dimensions through drive

K01 flange SAE J744 - 82-2 (A)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

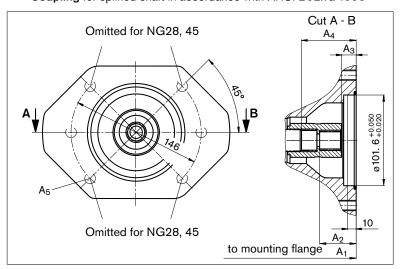

Before finalizing your design, please request approved installation drawing. Dimensions in mm.

5/8 in 9T 16/32 DP¹⁾ (SAE J744 - 16-4 (A))

NG	A ₁	A_2	A_3	A ₄ ²⁾
18	182	9.3	43.3	M10 x 1.5, 14.5 deep
28	204	9.9	47	M10 x 1.5, 16 deep
45	229	10.7	53	M10 x 1.5, 16 deep
60/ 63	255	9.5	59	M10 x 1.5, 16 deep
85	302	13.4	68	M10 x 1.5, 20 deep
100	302	13.4	68	M10 x 1.5, 20 deep

K52 flange SAE J744 - 82-2 (A)

Coupling for splined shaft in accordance with ANSI B92.1a-1996



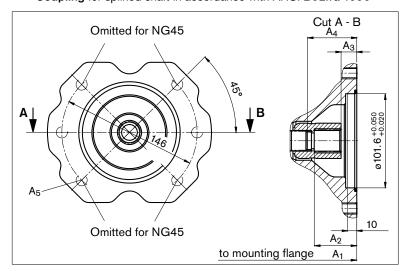
3/4 in 11T 16/32 DP1) (SAE J744 - 19-4 (A-B))

NG	A ₁	A ₂	A ₃	A ₄	A ₅ ²⁾
18	182		9.3	43.3	M10 x 1.5, 14.5 deep
28	204	39.3	18.8	47	M10 x 1.5, 16 deep
45	229	39.4	18.9	53	M10 x 1.5, 16 deep
60/ 63	255	39.4	18.9	61	M10 x 1.5, 16 deep
85	302	44.1	23.6	65	M10 x 1.5, 20 deep
100	302	44.1	23.6	65	M10 x 1.5, 20 deep

K68 flange SAE J744 - 101-2 (B)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

7/8 in 13T 16/32 DP1) (SAE J744 - 22-4 (B))


NG	A ₁	A_2	A ₃	A_4	A ₅ ²⁾
28	204	42.3	17.8	47	M12 x 1.75, 18 deep
45	229	42.4	17.9	53	M12 x 1.75, 18 deep
60/ 63	255	42.4	17.9	59	M12 x 1.75, 18 deep
85	302	46.5	22	69	M12 x 1.75, 20 deep
100	302	46.5	22	69	M12 x 1.75, 20 deep

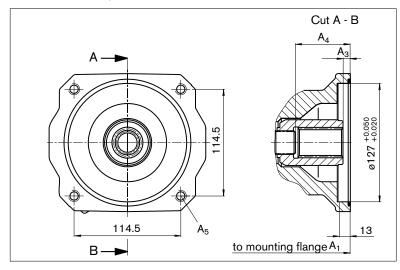
- 1) 30° pressure angle, flat base, flank centering, tolerance class 5
- 2) Thread according to DIN 13, observe the general instructions on page 56 for the maximum tightening torques.

Dimensions through drive

K04 flange SAE J744 - 101-2 (B)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

Before finalizing your design, please request approved installation drawing. Dimensions in mm.

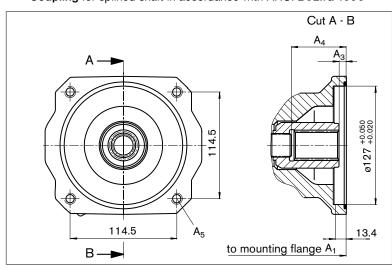

1 in 15T 16/32 DP1)

(SAE J744 - 25-4 (B-B))

NG	A ₁	A ₂	A_3	A_4	A ₅ ²⁾
45	229	47.9	18.9	53.4	M12 x 1.75, 18 deep
60/ 63	255	47.4	18.4	58.9	M12 x 1.75, 18 deep
85	302	51.2	22.2	69	M12 x 1.75, 20 deep
100	302	51.2	22.2	69	M12 x 1.75, 20 deep

K15 flange SAE J744 - 127-4 (C)

Coupling for splined shaft in accordance with ANSI B92.1a-1996



1 1/4 in 14T 12/24 DP1) (SAE J744 - 32-4 (C))

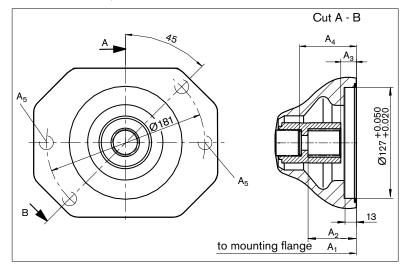
NG	A ₁	A_2	A ₃	A ₄ ²⁾
60/ 63	255	8	59	M12 x 1.75, 16 deep
85	301.5	13	67.9	M12 x 1.75, through
100	301.5	13	67.9	M12 x 1.75, through

K16 flange SAE J744 - 127-4 (C)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

1 1/2 in 17T 12/24 DP1) (SAE J744 - 32-4 (C))

NG	A ₁	A_2	A_3	A ₄ ²⁾
85	301.5	13	67.9	M12 x 1.75, through
100	301.5	13	67.9	M12 x 1.75, through

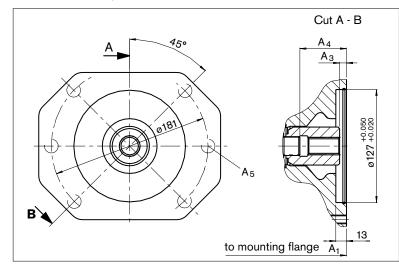

^{1) 30°} pressure angle, flat base, flank centering, tolerance class 5

²⁾ Thread according to DIN 13, observe the general instructions on page 56 for the maximum tightening torques.

Dimensions through drive

K07 flange SAE J744 - 127-2 (C)

Coupling for splined shaft in accordance with ANSI B92.1a-1996


Before finalizing your design, please request approved installation drawing. Dimensions in mm.

1 1/4 in 14T 12/24 DP1) (SAE J744 - 32-4 (C))

NG	A ₁	A_2	A ₃	A ₄ ²⁾
85	301.5	13	67.9	M12 x 1.75, through
100	301.5	13	67.9	M12 x 1.75, through

K24 flange SAE J744 - 127-2 (C)

Coupling for splined shaft in accordance with ANSI B92.1a-1996

1 1/2 in 17T 12/24 DP1) (SAE J744 - 38-4 (C-C))

NG	A ₁	A_2	A_3	A ₄ ²⁾
85	302	8	68	M16 x 2, 24 deep
100	302	8	68	M16 x 2, 24 deep

 $_{1)}$ 30° pressure angle, flat base, flank centering, tolerance class 5

²⁾ Thread according to DIN 13, observe the general instructions on page 56 for the maximum tightening torques.

Summary mounting options

Through-drive ¹⁾			Mounting option – 2nd pump						
Flange	Flange Coupling Short for splined des.				•	Through drive avail- able for NG			
82-2 (A)	5/8 in	K01	10 (U)	18 (U)	F (5 to 22)	18 to 100			
	3/4 in	K52	10 (S) 18 (U) 18 (S, R)	18 (S, R)	-	18 to 100			
101-2 (B)	7/8 in	K68	28 (S, R) 45 (U, W) ¹⁾	28 (S, R) 45 (U, W)	N/G (26 to 49)	28 to 100			
	1 in	K04	45 (S, R) 60, 63 (U, W) ²⁾	45 (S, R) -	-	45 to 100			
127-4 (C)	1 1/4 in	K15	60, 63 (S, R)	_	_	63 to 100			
	1 1/2 in	K16	85 (S) 100 (S)	_	-	85 to 100			
127-2 (C)	1 1/4 in	K07	85 (U, W) 100 (U, W)	71 (S, R)	-	85 to 100			
	1 1/2 in	K24	85 (S) 100 (S)	_	-	85 to 100			

¹⁾ Not for NG28 with K68

²⁾ Not for NG28 with K04

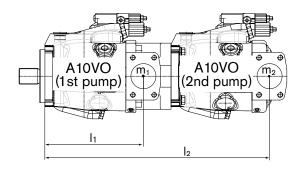
Combination pumps A10VO + A10VO

Before finalizing your design, please request approved installation drawing. Dimensions in mm.

When using combination pumps it is possible to have multiple, mutually independent circuits without the need for a splitter gearbox.

When ordering combination pumps the model codes for the first and the second pump must be joined by a "+".

Order example:


A10VO85DRS/53R-VSC12K04+ A10VO45DRF/53R-VSC11N00

The tandem pump comprising two identical sizes is permissible without additional supports taking into account a maximum dynamic mass acceleration of 10 g (= 98.1 m/s²).

For combination pumps comprising more than two pumps, the mounting flange must be calculated for the permissible moment of inertia

Permissible moment of inertia

NG			10	18	28	45	60/63	85	100
Permissible moment of inertia									
static	T_{m}	Nm	_	_	890	900	1370	3080	3080
dynamic at 10 g (98.1 m/s²)	T _m	Nm	_	_	89	90	137	308	308
Mass with through-drive plate	m	kg	_	_	17	24	28	45	45
Mass without through drive (e.g. 2nd pump)	m	kg	8	11.5	14	18	22	34	34
Distance center of gravity	I	mm	_	82	81	95	100	122	122

$$m_1, m_2, m_3$$
 Mass of pumps [kg]
$$I_1, I_2, I_3$$
 Distance center of gravity [mm]
$$T_m = (m_1 \cdot I_1 + m_2 \cdot I_2 + m_3 \cdot I_3) \cdot \underbrace{1}_{102}$$
 [Nm]

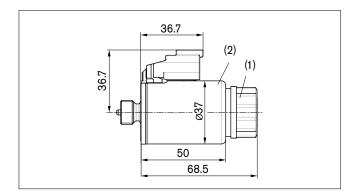
Connector for solenoids

DEUTSCH DT04-2P-EP04, 2-pin

Molded, without bidirectional suppressor diode	P
Protection according to DIN/EN 60529	IP67
Protection according to DIN 40050-9	IP69K

Circuit symbol

Without bidirectional suppressor diode



Mating connector

DEUTSCH DT06-2S-EP04 Bosch Rexroth Mat. No. R902601804

Consisting of:	DT designation
- 1 case	DT06-2S-EP04
- 1 wedge	W2S
- 2 sockets	0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Before finalizing your design, please request approved installation drawing. Dimensions in mm.

Changing connector position

If necessary, you can change the position of the connector by turning the solenoid.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one revolution counter-clockwise.
- 2. Turn the solenoid body (2) to the desired position.
- 3. Retighten the mounting nut of the solenoid. Tightening torque: 5+1 Nm (size WAF 26, 12kt DIN 3124).

On delivery, the position of the connector may differ from that shown in the brochure or drawing.

Electronic controls

Control	Electronics function	Electronics		Further information
Electric pressure control	Controlled power outlet	RA	analog	RE 95230
		RC2-2/21 ¹⁾	Digital	RE 95201

¹⁾ Power outlets for 2 valves, can be actuated separately

²⁾ only 24V nominal voltage

Notes

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit empty via the hydraulic lines.

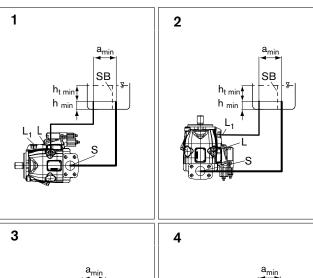
Especially with the installation position "drive shaft upwards" or "drive shaft downward", attention must be paid to a complete filling and air bleeding since there is a risk, for example, of dry running.

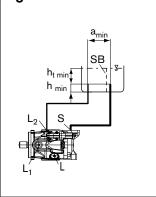
The case drain fluid in the case interior must be directed to the reservoir via the highest case drain port (L_1, L_2, L_3) .

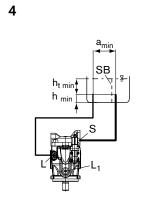
For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction line and case drain line must flow into the reservoir below the minimum fluid level. The permissible suction height $h_{\rm S}$ is a result of the overall pressure loss, but may not be greater than $h_{\rm S\ max}=800$ mm. The minimum suction pressure at port S must also not fall below 0.8 bar absolute during operation.


Installation position


See the following examples 1 to 12. Additional installation positions are available upon request.


Recommended installation positions: 1 and 3.

Below-reservoir installation (standard)

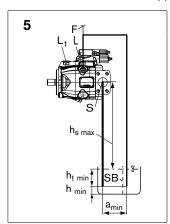
Below-reservoir installation means the axial piston unit is installed outside of the reservoir below the minimum fluid level.

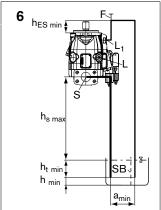
Installation position	Air bleed	Filling
1	L	S + L
2	L ₁	S + L ₁
3 ¹⁾	L ₂	S + L ₂
4	L	S + L

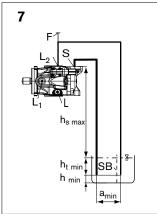
Key, see page 53

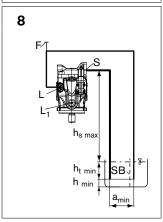
1) Only series 53

Installation instructions

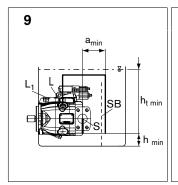

Above-reservoir installation

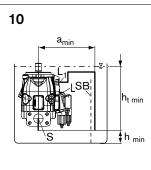

Above-reservoir installation means the axial piston unit is installed above the minimum fluid level of the reservoir.

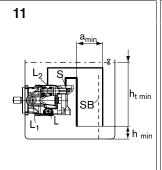

To prevent the axial piston unit from draining, a height difference $h_{\text{ES min}}$ of at least 25 mm is required in installation position 6.

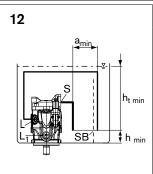

Observe the maximum permissible suction height $h_{S max} = 800$ mm.

A check valve in the case drain line is only permissible in individual cases. Consult us for approval.


Installation position	Air bleed	Filling
5	F	L, L ₁ (F)
6	F	L ₁ (F)
71)	F	S + L ₂ (F)
8	F	S + L (F)


1) Only series 53


Inside-reservoir installation


Inside-reservoir installation means the pump is installed within the minimum reservoir fluid level.

Axial piston units with electrical components (e.g. electric control, sensors) may not be installed in a reservoir below the fluid level.

Installation position	Air bleed	Filling
9	L ₁	L, L ₁
10	L ₁	L, L ₁
11 ¹⁾	L ₂	S
12	L	S + L

S Suction port

F Filling / air bleeding

L, L₁ Case drain port

SB Baffle (baffle plate)

h_{t min} Minimum necessary immersion depth (200 mm)

h_{min} Minimum necessary spacing to reservoir base

(100 mm)

h_{ES min} Minimum necessary height needed to protect the axial piston unit from draining (25 mm).

h_{S max} Maximum permissible suction height (800 mm)

a_{min} When designing the reservoir, ensure adequate distance between the suction line and the case drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

General instructions

- The A10VO pump is designed to be used in open circuit.
- Project planning, installation and commissioning of the axial piston unit require the involvement of qualified personnel.
- Before operating the axial piston unit, please read the appropriate instruction manual thoroughly and completely. If necessary, request these from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids.
 Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristics may shift.
- Service line ports:
 - The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports are only designed to accommodate hydraulic lines.
- Pressure cut-off and pressure control do not provide security against pressure overload. A separate pressure relief valve is to be provided in the hydraulic system.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to DIN EN ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instruction regarding the tightening torques of the used fittings.

Fixing screws:

For fixing screws with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque individually according to VDI 2230.

- Female threads in axial piston unit:

The maximum permissible tightening torques $M_{G max}$ are maximum values for the female threads and must not be exceeded. For values, see the following table.

- Threaded plugs:

For the metal threaded plugs supplied with the axial piston unit, the required tightening torques of the threaded plugs M_V apply. For values, see the following table.

Ports Standard	Thread size	Maximum permissible tightening torque for female threads M _{G max}	Required tightening torque for threaded plugs M _V	Size of hexagon socket of threaded plugs
DIN 3852	M14 x 1.5	80 Nm	45 Nm	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M27 x 2	330 Nm	170 Nm	12 mm
ISO 11926	7/16-20UNF-2B	40 Nm	18 Nm	3/16 in
	9/16-18UNF-2B	80 Nm	35 Nm	1/4 in
	3/4-16UNF-2B	160 Nm	70 Nm	5/16 in
	7/8-14UNF-2B	240 Nm	110 Nm	3/8 in
	1 1/16-12UN-2B	360 Nm	170 Nm	9/16 in

Bosch Rexroth AG
Axial piston units
An den Kelterwiesen 14
72160 Horb a. N., Germany
Tel.: +49-7451-92-0
Fax: +49-7451-82-21

info.brm-ak@boschrexroth.de www.boschrexroth.com/axial-piston-pumps © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.