# The following slides are not contractual in nature and are for information purposes only as of June 2015.

LOCKHEED MARTIN

## **Corrective Action**

### Root Cause Analysis and Corrective Action

LOCKHEED MARTIN

### **Overview Webinar 6: Root Cause Analysis and Corrective Action**

- What is Root Cause Analysis (RCA)?
- Why is RCA important?
- When is RCA required?
- Overview of the Corrective Action Process
- Root Cause Analysis Tools:
  - ≻ The 5-Whys
  - Ishikawa Cause & Effect (Fishbone) Diagrams
  - Cause Mapping
  - Failure Modes & Effects Analysis
  - Design of Experiments



**Root Cause Analysis (RCA):** The *process* of identifying all the causes (root causes and contributing causes) that have or may have generated an undesirable condition, situation, nonconformity, or failure.

» IAQG – Root Cause Analysis and Problem Solving April 2014.



### Why Root Cause Analysis (RCA)?

- Helps prevent problems from repeating or occurring.
- Focus on Continuous Improvement throughout the Enterprise.
- Drives Breakthrough Performance.
- Focus on improving processes that actually effect organization performance metrics.

### When is RCA required?

- Undesirable condition, defect, or failure is detected
- Safety
- Product strength, performance, reliability
- High impact on Operations
- Repetitive Problems
- Customer Request
- Significant Quality Management System (QMS) issues

#### » IAQG – Root Cause Analysis and Problem Solving, April 2014

### **The Corrective Action (CA) Process**

- **Objective:** Identify the cause(s) of problems and initiate actions to prevent recurrence.
  - Extent of corrective actions shall be proportional to the effects of the related problems.
  - Corrective action is applicable to the enterprise and not limited to the manufacturing environment.
  - Problems may originate and/or be identified within a product, process, and/or capability in any business area, function, or program.





Identify Problem



Investigate Problem



Analyze Problem and Identify Cause(s)



Generate and Implement Solutions



Verify Results and Document



Monitor and Meausure

### **The Corrective Action Process**

- Increased focus on Problem Definition
- Requirement for Evidence-Based Causes
- Requirement to always look for Multiple Causes
- A Corrective Action end state that includes
  - Verified successful mistake proofed solutions
  - Goal of 0% Chance of Recurrence





Investigate Problem



Analyze Problem and Identify Cause(s)



Generate and Implement Solutions



Verify Results and Document



Monitor and Meausure

# **Overview of the Corrective Action Process**

- Step 1: Identify the Problem
- Step 2: Define the Problem
- Step 3: Investigate the Problem (Complete Containment Actions)
- Step 4: Analyze the Problem & Identify Root Cause (s)
- Step 5: Generate, Select and Implement Solutions (CA)
- Step 6: Verify the Results and Document
- Step 7: Monitor and Measure Corrective Actions

#### **Corrective Action Process Flow:**



#### Inputs:

Nonconforming Products or Services

Noncompliant Processes or Capabilities

Audit Findings

**Customer Complaints** 

Management Directives

Program Monitoring or Review



#### Outputs:

Implemented/Verified CA Plan Improved Capabilities/Products Costs Reduced Schedule Improved **Quality Improved** Customer Satisfaction **Record of Corrective** Action and Verification

### **Corrective Action Process**

- 7 tools to determine root cause:
  - The 5 Why's
  - Cause & Effect Diagram (Fishbone)
  - Cause Mapping
  - FMEA: Failure Modes & Effects Analysis
  - Fault Tree Analysis
  - DOE: Design Of Experiments
  - Statistical Process Control
- Perform a Cause/Failure Analysis to determine the cause(s) of the problem. The appropriate root cause analysis tool will be used.
- The RCA tools are utilized and retained/attached as objective evidence to support root cause validation.

#### **Severity/Impact Based RCA Approach**



Severity < Significance of Impact >

3. Using the color of the RCA Level as a guide, assess the requirements for that RCA tool

#### What RCA Tool Should I Use?

| RCA<br>Level | Impact                                | RCA Requirements                                                                                                                                     | Recommended<br>RCA Lead                                                                                               | Typical<br>Analysis<br>Span* | Output Templates                                                                                                                                                                                                                                                                  |
|--------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5            | High-High                             | <ul> <li>Apollo RCA using<br/>RealityCharting Tool</li> </ul>                                                                                        | <ul> <li>Experienced and<br/>Certified Apollo RCA<br/>Facilitator</li> </ul>                                          | 2 – 6 Weeks                  | <ol> <li>Summary including Problem Statement</li> <li>RCA Findings and Conclusions</li> <li>RCA Corrective Action Solutions and<br/>Measurement Strategy</li> <li>Illustration of Apollo RCA Template</li> <li>OR</li> </ol>                                                      |
| 4            | High-Medium<br>Medium-High            | <ul> <li>RCA using Think<br/>Reliability Tool</li> <li>Apollo RCA using<br/>RealityCharting Tool</li> </ul>                                          | <ul> <li>Experienced and<br/>Certified Apollo or Think<br/>Reliability RCA<br/>Facilitator</li> </ul>                 | 1– 4 Weeks                   | <ol> <li>Summary including Problem Statement</li> <li>RCA Findings and Conclusions</li> <li>RCA Corrective Action Solutions and<br/>Measurement Strategy</li> <li>Applicable Illustration of RCA Template</li> <li>OR</li> <li>Applicable Illustration of RCA Template</li> </ol> |
| 3            | High-Low<br>Medium-Medium<br>Low-High | <ul> <li>FMEA - Failure Modes<br/>Effects Analysis</li> <li>Apollo Methodology</li> <li>Apollo RealityCharting</li> <li>Think Reliability</li> </ul> | <ul> <li>FMEA Trained<br/>Employee</li> <li>Apollo or Think<br/>Reliability RCA Trained<br/>Facilitator or</li> </ul> | 1 day – 3 weeks              | <ol> <li>Summary including Problem Statement</li> <li>RCA Findings and Conclusions</li> <li>RCA Corrective Action Solutions and<br/>Measurement Strategy</li> <li>Applicable Illustration of RCA Template</li> </ol>                                                              |
| 2            | Low-Medium<br>Medium-Low              | <ul> <li>5 Whys</li> <li>Fishbone Diagram</li> <li>FMEA - Failure Modes<br/>Effects Analysis</li> </ul>                                              | <ul> <li>Trained Employee</li> <li>Green Belt / Black Belt</li> </ul>                                                 | 1 day – 2 weeks              | <ol> <li>Summary including Problem Statement</li> <li>Applicable Illustration of RCA Template</li> </ol>                                                                                                                                                                          |
| 1            | Low-Low                               | <ul><li>5 Whys</li><li>Fishbone Diagram</li></ul>                                                                                                    | All Trained Employees                                                                                                 | 1 – 8 hours                  | <ol> <li>Summary including Problem Statement</li> <li>Applicable Illustration of RCA Template</li> </ol>                                                                                                                                                                          |

\* Analysis Span Time for completion of an effective RCA is dependent upon:1) Scope of problem; 2) Quality of preparation; and 3) Resources allocated to RCA and problem resolution

### Selecting a RCA Leader



- Problem Complexity
- Data type and availability
- Type analyses required
- Individual or team based approach RCA
- Severity of issue/impact to business
- Internal/external engagement



### **Root Cause Analysis Tools**

≻The 5-Whys

- Cause & Effect (Fishbone/Ishikawa Diagrams)
- ➤Cause Mapping
- Failure Modes & Effects Analysis
- Design of Experiments

#### 17

### The 5 Why's

- What is a 5 Why?
  - A question based technique used to explore cause-and-effect relationships
  - Determine root cause of a problem
  - Ask Why? As many times as needed!
- Advantages
  - Easy to use and teach
  - Identifies more than one cause
  - Useful for minor problems
  - Used to generate causes for use in other RCA methods Why?
- Limitations
  - Linear thinking ignores additional causes
  - Not appropriate for formal investigations
  - Perpetuates the myth of single root cause
  - Does not provide guidance for solutions
- Supporting Tools
  - 5 Why Template this is a text only approach





### **5 Whys Template**

#### Instructions: Start with your focused problem and then ask WHY five times.



### A New Look at 5 Why Templates



THE SINGLE CAUSE TEMPLATE

| PROBLEM STATEMENT: |  |
|--------------------|--|
|                    |  |
| WHY?               |  |
| WHY?               |  |
| WHY?               |  |
| WHY?               |  |
|                    |  |

This example is a typical format for narrow problem statements where one cause-path exists. For problem statements with multiple causes, use the template below.

MULTIPLE CAUSES TEMPLATE





#### **Proposed Operating Instruction for alternate 5 Why Template**



5 Why Operating Instruction

#### What is A Cause and Effect Diagram?

• A tool used to illustrate the relationship between an effect and the causes that influence the effect

#### When to Use It?

- Identify causes of a problem (Effect)
- Can be used to prevent future problems



#### **Advantages**

- -Encourages brainstorming
- -Can be used when time is very limited
- -Helps organize many potential causes

#### Limitations

- -Categories may cause investigations to stop at "categorical causes"
- -Creates the illusion of equal weight among causes
- -No guidance for prioritizing causes or developing solutions
- -Usually stops at 1 or 2 levels of causes (stops too soon)



- For every Effect there are likely to be several Major Causes
- Major Causes include: People, Measurements, Machines, Methods, Materials, Environment
- Any major category that helps people think creatively can be used



- Methods = work instructions, procedures, test methods
- Material = components and raw materials
- Measurements = standards, calibration, gages, data collection
- People = training and staffing
- Machines = tools, equipment, fixtures
- Environment = temperature, humidity, lighting, noise

#### Goal is to discover all possible Causes related to the Effect!



#### How to Construct a Cause & Effect Diagram:

- Brainstorm include Subject Matter Experts (SME)
- Add the problem to the EFFECT box.
- Add the Major Cause categories
- Place the potential causes in the Major Cause category.
- For each Cause ask, "Why does it happen?"
- List the responses as branches off the Major cause.





How to Interpret?

- Look for causes that appear frequently.
- Reach a team consensus.
- Determine the relative frequencies of the different causes.





### Example C&E Diagram - Canopy Leakage



### What is a Cause Map?



>A visual explanation of why an incident occurred

- Connects single cause-and-effect relationships to a system of causes
- >A Cause Map can be basic or very detailed



Cause-and-Effect Relationship

"Building Block"

## **Cause Mapping for Root Cause**

**Step 1: Problem Statement** 

- Identify/Outline the Problem (What, When, Where, Goal)
- The Outline explains why time is spent on an issue

Step 2: Analysis

- Identify/Breakdown the Causes
- This step is where the Cause Map is built

**Step 3: Solutions** 

- Identify Possibilities
- Select the most appropriate Solution
- Implement specific Corrective Action
- Verify/Validate Effectiveness
- Document with Objective Evidence



State the Problem

Ask Why Questions - "Why did this effect happen?"

Record Response = Cause (or causes)



### **Cause Map Example**







### **Cause Mapping**

#### When to Use It:

- Use to develop an effective solutions to prevent recurrence of undesired effects
- Use when you want to fully understand causes of success
- Use to reveal the entire system of causes
- Use it when you need to dive deeper into a problem

#### Advantages:

- Reveals the entire system of causes and effects
- Focuses on cause-effect relationships
- Emphasizes effective solutions to prevent recurrence
- Mitigates the hazards of using categories or checklists alone to drive analysis
- Focuses attention on events and conditions rather than people

#### Limitations:

- Does not prioritize causes or solutions
- Has a learning curve for facilitators and team members
- Lengthier process than other tools
- Does not lend itself to proactive problem solving





### Failure Mode & Effects Analysis (FMEA)

#### What is FMEA?

A systematic method for identifying, analyzing, prioritizing, and documenting potential failure modes and their effects on a system, product, or process and the possible causes of failure.

#### Where Is FMEA Used?

Used extensively in safety oriented and aerospace businesses.

#### Why FMEA?

- Reduce development cost by early risk identification
- Documented evaluation of risk
- Minimize product failures
- Track process improvements
- Develop efficient test plans



#### **Failure Modes and Effects Analysis (FMEA)**

- When to Use FMEA:
  - Identify and eliminate known or potential failures or errors from a product or a process
    - Engineering mitigate risk in product design
    - Manufacturing reduce and eliminate product defects
    - Transactional reduce and eliminate process errors
  - Use when identification of the root cause may be complex

#### Advantages

- Provides quantitative rankings with defined scale for prioritizing based on severity, occurrence, and detection of current controls
- Analyzes potential causes
- Can be used proactively (risk management)
- Can be used to assess current mitigation plans
- Provides a structure for developing and prioritizing solutions

#### Limitations

- Does not delineate causal relationships
- Does not require supporting causes with evidence
- Addresses specific failure modes individually without taking a systems view

Failure Mode & Effects Analysis (FMEA)

4

**Types of FMEAs** 

Process: Used to analyze processes and identify potential failure modes

Design/Product: Used to analyze products and identify potential failure modes early in the development cycle

Defect: Used to analyze and prioritize defects to prevent recurrences in products and processes

### Failure Mode & Effects Analysis (FMEA) Tool



### **Design of Experiments (DOE)**



#### Why Use DOE?

Can be used to help improve the capability of a process by identifying the process and product variables that effect the mean and the variance of the quality characteristics of a product.

➤Can be used as a powerful tool to achieve manufacturing cost savings by minimizing process variation, reducing rework and reducing scrap

➤Use DOE when more than one input factor is suspected of influencing an output.

### **Design of Experiments (DOE)**



#### When Can I Use DOE?

- When you want to find the input settings that optimize the output of a process
- When you want a mathematical model relating the outputs and / or variance of a process to the inputs
- When you want to identify the most important input factors that influence the mean output or the variance of the output
- When you want to determine the cause of a product failure

### **Design of Experiments (DOE)**



#### Where Can I Use DOE?

- Any process with measurable quantitative or qualitative inputs and quantitative outputs is a potential application for DOE
- In engineering design, to find component values and tolerances that optimize the response
- In production, to optimize the yield of a machine or assembly process
- In testing, to ensure the fullest coverage of possible inputs with a minimum number of tests

DOE Applications Are Limited Only By The Imagination

### **Summary**

- Root Cause Analysis is not easy!
- Be diligent in the pursuit of Root Cause
- Address the Cause not the Symptom
- The RCA Tools presented today will help ensure:
   Thorough Investigations
  - Identification of Root Cause
  - Effective Corrective Actions

#### Root Cause + Effective Corrective Action = Problem Elimination!

### **Summary**

- Root Cause Analysis is the process of applying the cause and effect principle to solve problems. A root cause analysis program should be a systems approach to finding effective solutions to prevent problems from occurring or recurring.
- RCA Tools provide a means to conduct systematic analysis of a problem to identify cause and effect relationships and identify appropriate solutions to eliminate nonconformances
- Corrective Action: Action(s) taken to eliminate the cause of nonconformances in order to prevent recurrence
- Root Cause Analysis helps ensure:
  - Continuous improvement
  - Efficient use of resources
  - · Focus on actions that are most impactful

#### Root Cause + Effective Corrective Action = Problem Elimination!

# Root Cause Analysis References

- IAQG Root Cause Analysis and Problem Solving (aligned with IAQG 9136 draft) www.iaqg.org/scmh
- The Memory Jogger 2 Tools for Continuous Improvement and Effective Planning
- The Lean Six Sigma Pocket Tool Book
- Think Reliability www.thinkreliability.com

