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ABSTRACT 

 
In the present problem we study the deformation of a rotating generalized thermoelastic 

medium with two temperature under the influence of gravity subjected to different type of 

sources. The components of displacement, force stress, conductive temperature and 

temperature distribution are obtained in Laplace and Fourier domain by applying integral 

transforms for Green-Lindsay (G-L) theory of thermoelasticity. These components are then 

obtained in the physical domain by applying a numerical inversion method. Some particular 

cases are also discussed in context of the problem. The results are also presented graphically 

to show the effect of rotation and gravity. 

 

Keywords: Rotation, gravity, generalized thermoelasticity, laplace and fourier transforms, 

conductive temperature, temperature distribution. 

 

 

NOMENCLATURE 

 

µλ,             Lame’s constants 

ρ                   Density 

u
�

                    Displacement vector 

ijt                     Stress tensor 

10 , ττ             Thermal relaxation times 

( ) tαµλυ 23 +=  Linear thermal expansion 

g                        Acceleration due to gravity 
•K                   Coefficient of thermal conductivity 

EC                   Specific heat 

φ    Conductive temperature 
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η    A constant 

a    Two temperature parameter 

0T    Reference temperature 

 

 

1 INTRODUCTION 

 
Generalized thermoelasticity theories have been developed with the objective of removing the 

paradox of infinite speed of heat propagation inherent in the conventional coupled dynamical 

theory of thermoelasticity in which the parabolic type heat conduction equation is based on 

Fourier’s law of heat conduction. This newly emerged theory which admits finite speed of 

heat propagation is now referred to as the hyperbolic thermoelasticity theory, 

(Chandrasekharaiah 1998), since the heat equation for rigid conductor is hyperbolic-type 

differential equation. 

 

There are two important generalized theories of thermoelasticity. The first is due to Lord and 

Shulman (Lord and Shulman 1967). The second generalization to the coupled theory of 

thermoelasticity what is known as the theory of thermoelasticity with two relaxation times or 

the theory of temperature-rate-dependent thermoelasticity. Muller (Muller 1971), in a review 

of the thermodynamics of thermoelastic solid, proposed an entropy production inequality, 

with the help of which he consider restrictions on a class of constitutive equations. A 

generalization of this inequality was proposed by Green and Laws (Green and Laws 1972). 

Green and Lindsay (G-L) obtained another version of the constitutive equations (1972). These 

equations were also obtained independently and more explicitly by Suhubi (Suhubi 1975). 

This theory contains two constants that act as relaxation times and modify all the equations of 

the coupled theory, not only the heat equations.  The classical Fourier law violated if the 

medium under consideration has a centre of symmetry. 

 

Barber and Martin-Moran (Barber and Martin-Moran 1982) discussed Green's functions for 

transient thermoelastic contact problems for the half-plane. Barber (Barber 1984) studied 

thermoelastic displacements and stresses due to a heat source moving over the surface of a 

half plane. Sherief (Sherief 1986) obtained components of stress and temperature distributions 

in a thermoelastic medium due to a continuous source.  Dhaliwal et al. (Dhaliwal et al. 1997) 

investigated thermoelastic interactions caused by a continuous line heat source in a 

homogeneous isotropic unbounded solid. Chandrasekharaiah and Srinath (Chandrasekharaiah 

and Srinath 1998) studied thermoelastic interactions due to a continuous point heat source in a 

homogeneous and isotropic unbounded body. Sharma et al. (Sharma et al. 2000) investigated 

the disturbance due to a time-harmonic normal point load in a homogeneous isotropic 

thermoelastic half-space. Sharma and Chauhan (Sharma and Chauhan 2001) discussed 

mechanical and thermal sources in a generalised thermoelastic half-space. Sharma et al. 

(Sharma et al. 2004), investigated the steady-state response of an applied load moving with 

constant speed for infinite long time over the top surface of a homogeneous thermoelastic 

layer lying over an infinite half-space. Recently Deswal and Choudhary (Deswal and 

Choudhary 2008) studied a two-dimensional problem due to moving load in generalized 

thermoelastic solid with diffusion.  

 

Chen and Gurtin (Chen and Gurtin 1968) and Chen et al. (Chen et al. 1968; Chen et al. 1969) 

formulated a theory of heat conduction in deformable bodies, which depends upon two 

distinct temperatures, the conductive temperature φ  and the thermodynamic temperature T.  
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For time-dependent situations, the difference between these two temperatures is proportional 

to the heat supply, and in the absence of any heat supply, the two temperatures are identical    

Chen et al. (Chen et a/. 1968). For time-dependent problems, however, and for wave 

propagation problems in particular, the two temperatures are in general different regardless of 

the presence of a heat supply. 

 

Some researchers in past have investigated different problem of rotating media. Chand et al. 

(Chand et al. 1990) presented an investigation on the distribution of deformation, stresses and 

magnetic field in a uniformly rotating homogeneous isotropic, thermally and electrically 

conducting elastic half space. Many authors (Schoenberg and Censor 1973, Clarke and 

Burdness 1994, Destrade 2004) studied the effect of rotation on elastic waves. Roychoudhuri 

and Mukhopadhyay (Roychoudhuri and Mukhopadhyay 2000) studied the effect of rotation 

and relaxation times on plane waves in generalized thermo-visco-elasticity. Ting (Ting 2004) 

investigated the interfacial waves in a rotating anisotropic elastic half space. (Sharma and his 

co-workers 2006, 2007a, 2007b, 2008) discussed effect of rotation on different type of waves 

propagating in a thermoelastic medium. Othman and Song (Othman and Song 2008) 

presented the effect of rotation in magneto thermoelastic medium. Recently Ailawalia and 

Narah (Ailawalia and Narah 2008) discussed the effect of rotation due to moving load at the 

interface of elastic half space and generalized thermoelastic half space. 
  
In classical theory of elasticity the gravity effect is generally neglected. The effect of gravity 

in the problem of propagation of waves in solids, in particular on an elastic globe, was first 

studied by Bromwich (Bromwich 1898). Subsequently, investigation of the effect of gravity 

was considered by (Love 1911) who showed that the velocity of Rayleigh waves is increased 

to a significant extent by the gravitational field when wavelengths are large. (De and Sengupta 

1973; De and Sengupta 1974; De and Sengupta 1976) studied the effect of gravity on surface 

waves, on the propagation of waves in an elastic layer and Lamb’s problem on a plane. 

Sengupta and Acharya (Sengupta and Acharya 1979) studied the influence of gravity on the 

propagation of waves in a thermoelastic layer. Das, Acharya and Sengupta (Das, Acharya and 

Sengupta 1992) investigated surface waves under the influence of gravity in a non-

homogeneous elastic solid medium. Abd-Alla and Ahmed (Abd-Alla and Ahmed 1996)�
investigated Rayleigh waves in an orthotropic thermoelastic medium under gravity field and 

initial stress.�Abd-Alla and Ahmed �Abd-Alla and Ahmed 2003)�discussed wave propagation 

in�a non-homogeneous orthotropic elastic medium under the influence of gravity.  
 

In the present investigation we have obtained the expressions for displacement, force stress, 

conductive temperature and temperature distribution in a rotating generalized thermoelastic 

medium with two temperature under the influence of gravity by applying Laplace and Fourier 

transforms subjected to concentrated force, distributed force and moving force. Such types of 

problems in the rotating medium are very important in many dynamical systems. No attempt 

has been made so far to study the effect of rotation in generalized thermoelastic medium with 

two temperature under the influence of gravity. 

 

 

2 FORMULATION OF THE PROBLEM  

 
We consider a homogeneous generalized thermoelastic half-space with two temperature 

rotating uniformly with angular velocity ,n̂Ω=Ω
�

  where n̂  is a unit vector representing the 

direction of the axis of rotation. All quantities considered are functions of the time variable t   
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and of the coordinates x  and z . The displacement equation of motion in the rotating frame 

has two additional terms Schoenberg and Censor (Schoenberg and Censor 1973): centripetal  

acceleration, ( )u
��

×Ω×Ω due to time varying motion only and u
��

×Ω2  where ( )31 ,0, uuu =
�

 is 

the dynamic displacement vector and angular velocity is ( )0,,0 Ω=Ω
�

. These terms do not 

appear in non-rotating media.  

 

We consider a normal source acting at the plane surface of generalized thermoelastic half 

space with two temperature under the influence of gravity. A rectangular coordinate 

system ( )zyx ,,  having origin on the surface 0=z and −z axis pointing vertically into the 

medium is considered.   

 

 

3 BASIC EQUATIONS AND THEIR SOLUTIONS 
 

The field equations and constitutive relations in generalized thermoelastic body with two 

temperature are given by Youssef (Youssef 2006-c) 
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where 

   

( )φ21 ∇−= aT           (4) 

 

For a two dimensional problem ( −xz plane) all quantities depends only on space coordinates 

zx,  and time t . The field equations and constitutive relations in a rotating generalized linear 

thermoelasticity with two temperature under the influence of gravity and without body forces 

and heat sources are given by 
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Using equation (3) in equations (5) to (6) we obtain, 
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Introducing dimensionless variables defined by,  

 

ii x
c

x
0

*ω
=′ , ii u

T

c
u

0

*

0

υ

ωρ
=′ , tt *ω=′ , 0

*

0 τωτ =′ , ,1

*'

1 τωτ =
0T

T
T =′ , 

,,,
*

'

00

'

ωυ

φ
φ

Ω
=Ω=′=

T

t
t

T

ij

ij                                                                                 (9) 

 

where ,/ *2

0
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KcCEρω = .22
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in equations  (2), (7), and (8), we obtain the equations of motion in dimensionless form. 

 

We define displacement potentials q  and ψ  which are related to displacement components 

1u and 3u   as, 
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in the resulting dimensionless equations, and then apply the Laplace and Fourier transform 

defined by,   
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we get, (after suppressing the primes),               
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Eliminating ,~~
ψφ and  from equations (13) to (15) we obtain, 
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The solutions of equation (17) satisfying the radiation conditions that 0
~

,~,~ →φψq  as ∞→z  

are, 
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where 2

iq  are the roots of equation (17) and  *

ia , *

ib   are coupling constants defined by , 
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4 BOUNDARY CONDITIONS 

 

4.1 Mechanical Force 

 

The boundary conditions at the plane surface 0=z are, 
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Using equations (3), (9), and (10), in the boundary conditions (23), we obtain the boundary 

conditions in the dimensionless form. On suppressing the primes and applying the Laplace 

and Fourier transform defined by equations (11) and (12) on the dimensionless boundary 

conditions and using equations (19) to (21), in the resulting transformed boundary conditions, 

we get  the transformed expressions for displacement, force stress , conductive temperature 

and temperature distribution in a rotating generalized thermoelastic medium with two 

temperature under the influence of gravity as,  
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5 PARTICULAR CASES 

 

5.1 

 

Neglecting   angular velocity (i.e. 0=Ω
�

) in equations (24) to (29), we obtain transformed 

components of displacement, stress forces, conductive temperature and temperature 

distribution in a non-rotating generalized thermoelastic medium with two temperature under 

the influence of gravity. 

 

5.2    

 

Neglecting gravitational effect (i.e. 0=g  ) in equations (24) to (29), the expressions for 

displacements, force stresses, conductive temperature and temperature distribution reduces in 

a rotating generalized thermoelastic medium with two temperature. 

 

5.3 

 

Neglecting both angular velocity and gravitational effect (i.e. )0==Ω g , we get the 

expressions for displacement, force stresses, conductive temperature and temperature 

distribution in non-rotating generalized thermoelastic medium with two temperature as 

(Youssef, 2008 solved the problem subjected to ramp type heating and loading), 
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6 TYPES OF SOURCES 
 

6.1 Concentrated Source 
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For a concentrated source we take  
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6.2 Distributed Sources 

 

6.2.1 Uniformly Distributed Source 

 
The solution due to a uniformly distributed source in normal direction is obtained by setting 
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in equation (23) The Fourier transform with respect to the pair ( )ξ,x  for the case of a uniform 

strip load of unit amplitude and width 2a applied at the origin of the coordinate system 

( )0== yx  becomes 
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6.2.2 Linearly Distributed Source   

 
The solution due to a linearly distributed source in normal direction is obtained by 

substituting 

 

( )







�

�

>

≤−
=

,0

,1

axif

axif
a

x

xφ                                                     (41) 

 

in equation (23). The Fourier transform of ( )xφ  is 
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The expressions for the components of displacement, force stress, conductive temperature 

and temperature distribution are obtained as in equations  (24) to (29) and (31) to (36), by   
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replacing  ( )ξφ
~

as 
( )

��
	


�
�

ξ
ξsin2

 and 
( )[ ]

2

cos12

ξ

ξ−
, in the case of a uniformly distributed force 

and linearly distributed force in equations (30) and (37) for load in normal direction. 
 

6.3 Moving Source 

 

In case of a source moving along the −x axis with uniform velocity U at the plane surface 

,0=y we have 

 

( ) ( ) ( ),, UtxtHtxF −= δ  

 

where 

 

( ) .
1

,
~

Uip
pF

ξ
ξ

−
=                                                                (43) 

 

 

7 NUMERICAL RESULTS AND CONCLUSION 

 
With a view to illustrating the analytical procedure presented earlier, we now consider a 

numerical example for which computational results are given. The results depict the variations 

of temperature, displacement and stress fields in the context of G-L theory. For this purpose 

magnesium crystal like material is taken as the thermoelastic material for which, we take the 

following values of physical constant as Dhaliwal and Singh (Dhaliwal and Singh 1980) 

 

,10278.3 210 −×= Nmµ            ,1017.2 210 −×= Nmλ     ,2980

0 KT =    

 

,deg1004.1 113 −−×= JKgCE     ,1074.1 33 −×= Kgmρ     

 

,deg107.1 1112 −−−• ×= sWmK        .deg1068.2 126 −−×= Nmυ  

 

The computations are carried out on the surface 0.1=z at t =1.0. The graphically results for 

normal displacement 3u , normal force stress 33t , conductive temperature φ  and temperature 

distribution T are shown in figure (1) to (12) for .5.0=Ω   

 

(a) Generalized thermoelastic solid with rotation and under the influence of gravity      

(GTES) by solid line (
________

). 

 

(b) Generalized thermoelastic solid without rotation and under the influence of gravity 

(GTESWR) by dashed line (*
___

*
____

*). 

 

(c) Generalized thermoelastic solid with rotation and without gravity (GTESWG) by solid line 

with centered symbol (-------). 

 

(d) Generalized thermoelastic solid without rotation and without gravity (GTESWRWG) by 

dashed   line with centered symbol (*---*---*). 
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These graphical results represent the solutions obtained by using generalized theory with two 

relaxation times (G-L theory by taking .05.003.0 10 == ττ and ) for dimensionless two 

temperature parameter 015.0=a .  

 

 

8 INVERSION OF THE TRANSFORM  

 

The transformed displacements, microrotation and stresses are functions of z , the parameters 

of Laplace and Fourier transforms p and ξ  respectively and hence are of the form ( )pzf ,,
~

ξ . 

To get the function in the physical domain ( )tzxf ,, , first we first invert the Fourier transform 

and then Laplace transform by forming a computer generated program in FORTRAN earlier 

applied by Sharma and Kumar (Sharma and Kumar 1997). 

 

 

9 SPECIAL CASES OF THERMOELASTIC THEORY  

 

9.1  

 

If 0.1,01 == ητ , we obtain the corresponding expressions for components of displacement, 

stress, conductive temperature and temperature distribution for L-S theory. 

 

9.2  

 

For 0.1,01 => ητ , we obtain the corresponding expressions for components of displacement, 

stress, conductive temperature and temperature distribution for G-L theory. 

 

9.3 

 

If 0=a in equations (24) to (29) and (31) to (36), we obtain the corresponding expressions 

for components of displacement, stress, conductive temperature and temperature distribution 

in generalized thermoelasticity. 

 

 

10 DISCUSSIONS  

 

10.1 Concentrated Force 

 
Near the point of application of source, the value of normal displacement is negligible for a 

thermoelastic medium without rotation (GTESWR and GTESWRWG). The value at the same 

point for a thermoelastic medium under the effect of rotation is very large. Also, the values of 

normal displacement for GTES and GTESWG decrease sharply with increase in horizontal 

distance. These variations of normal are shown in figure 1.  As compared to the variations of 

normal displacement, the variations of normal force stress are more oscillatory in nature as 

shown in figure 2. The variations are similar for both GTES and GTESWG with difference in 

magnitude. 
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Figure 1: Variation of Normal displacement 

3u with horizontal distance x  for 

concentrated force (
__________

) GTES, 

(
*___*____*___*

) GTESWR, (--------) GTESWG 

and (*---*-----*) GTESWRWG. 

 

 
Figure 2: Variation of Normal force stress 

33t with horizontal distance x for 

concentrated force. (
__________

) GTES, 

(
*___*____*___*

) GTESWR, (--------) GTESWG 

and (*---*-----*) GTESWRWG. 

It is quite interesting to observe from figure 3 that contrary to the variations of normal 

displacement, the variations of conductive temperature for GTES and GTESWG increase 

sharply with oscillating behaviour. However, the variations for other medium (GTESWR and 

GTESWRWG) are oscillatory and decrease in magnitude with increase in distance x.  The 

variations of temperature distribution are opposite in nature to the variations of normal force 

stress to a large extent for a particular medium. These variations of temperature distribution 

may be observed form figure 4. 

  

 
Figure 3: Variation of Conductive 

temperature φ with horizontal distance x  for 

concentrated force. (
__________

) GTES, 

(
*___*____*___*

) GTESWR, (--------) GTESWG 

and (*---*-----*) GTESWRWG. 

 

 
Figure 4: Variation of Temperature 

distribution T with horizontal distance x for 

concentrated force . (
__________

) GTES, 

(
*___*____*___*

) GTESWR, (--------) GTESWG 

and (*---*-----*) GTESWRWG. 

10.2 Distributed Force 

 
The variations of all the quantities are similar in nature in case of concentrated force and 

distributed force (Linearly or uniformly) with difference in magnitude. The graphical results 

depicting the variations of normal displacement, normal force stress, conductive temperature 

and temperature distribution on application of uniformly distributed force are shown in 

figures 5 to 8 respectively. 
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Figure 5: Variation of Normal displacement 

3u with horizontal distance x for uniformly 

distributed force (
__________

) GTES, 

(
*___*____*___*

) GTESWR, (--------) GTESWG 

and (*---*-----*) GTESWRWG. 

 

 
Figure 6: Variation of Normal force stress 

33t with horizontal distance x  for uniformly 

distributed force . (
__________

) GTES, 

(
*___*____*___*

) GTESWR, (--------) GTESWG 

and (*---*-----*) GTESWRWG. 

 
Figure 7: Variation of Conductive 

temperature φ with horizontal distance x for 

uniformly distributed force. (
__________

) 

GTES, (
*___*____*___*

) GTESWR, (--------) 

GTESWG and (*---*-----*) GTESWRWG. 

 

 
Figure 8: Variation of Temperature 

distribution T with horizontal distance x  for 

uniformly distributed force. (
__________

) 

GTES, (
*___*____*___*

) GTESWR, (--------) 

GTESWG and (*---*-----*) GTESWRWG. 

10.3 Moving Source 

 
Similar to the discussions given above, the variations of all the quantities are similar in nature 

for GTES and GTESWG. The values of all these quantities for GTESWR lie in a very short 

range. However, these variations for GTESWRWG are highly oscillatory in nature in 

comparison to the variations obtained on application of concentrated force or distributed 

force. These variations are observed form figures 9 to 12 respectively for normal 

displacement, normal force stress, conductive temperature and temperature distribution. 
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Figure 9: Variation of Normal displacement 

3u with horizontal distance x  for moving 

source (
__________

) GTES, (
*___*____*___*

) 

GTESWR, (--------) GTESWG and (*---*----

-*) GTESWRWG. 

 

 
Figure 10: Variation of Normal force stress 

33t with horizontal distance x for moving 

source. (
__________

) GTES, (
*___*____*___*

) 

GTESWR, (--------) GTESWG and (*---*----

-*) GTESWRWG. 

 
Figure 11: Variation of Conductive 

temperature φ with horizontal distance x  for 

moving source. (
__________

) GTES, 

(
*___*____*___*

) GTESWR,  (--------) 

GTESWG and (*---*-----*) GTESWRWG. 

 

 
Figure 12: Variation of Temperature 

distribution T with horizontal distance x                 

for moving source. (
__________

) GTES, 

(
*___*____*___*

) GTESWR, (--------) GTESWG 

and (*---*-----*) GTESWRWG. 

 

11 CONCLUSION 

 
The equations of motion are not decoupled in the presence of rotation and/or gravity even 

after using the Helmholtz representation. When both the effects of rotation and gravity are 

neglected, the equations get decoupled. Also, the variations of all the quantities are similar in 

nature for GTES and GTESWG. Significant effect of rotation and gravity is observed on all 

the quantities. 
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