Unit 1: Getting Ready for Chemistry

If you can do all the things listed below, you are ready for the Unit 1 test.

1. I can list five important lab safety rules.	5 important lab safety rules are:
	1. wear appropriate personal protection equipment (PPE)
	2. follow directions
	3. no food or drink in the lab
	4. no non-experiment related electronics in the lab
	5. no horseplay
2. I can identify the most common laboratory tools such as: beaker, graduated cylinder, Erlenmeyer flask, scoop, beaker tongs, test tube, test tube rack, test tube holder, crucible tongs, Bunsen burner, striker, stirring rod, funnel, dropper pipette (aka eye dropper)	Draw and label as many of the common laboratory tools as you can!
3. I can determine the independent and dependent variable in a lab experiment.	A farmer wants to know what the effect the amount of fertilizer has on the amount of fruit an apple tree produces. What is the independent variable? amount of fertilizer What is the dependent variable? amount of fruit apple tree produces
4. I can determine the number of significant figures in a measurement.	How many significant figures are there in 30.50 cm? 4 How many significant figures are there in 400.0 sec? 4
5. I can determine the answer to a math problem to the correct number of significant figures.	To the correct number of significant figures, what is the answer to 5.93 mL + 4.6 mL? 10.5 mL To the correct number of significant figures, what is the answer to 5.93 cm * 4.6 cm? 27 cm²

6. I can read the meniscus on a graduated cylinder to the correct number of significant figures.	80 mL MENISCUS 70 mL GRADUATED CYLINDER The volume is 75.7 mL.		
7. I can use dimensional analysis to solve math problems.	To the correct number of significant figures, determine how many meters there are in 15.4 ft. 4.69 m To the correct number of significant figures, determine how many minutes there are in 2.7 years. 1.4 x 10⁶ min		
8. I can convert numbers into scientific notation from standard notation.	Convert 87,394,000,000,000 to scientific notation. 8.7394 x 10¹³ Convert 0.0000040934 to scientific notation. 4.0934 x 10⁻⁶		
9. I can convert numbers into standard notation from scientific notation.	Convert 5.8 x 10 ⁹ to standard notation. 5,800,000,000 Convert 4.3 x 10 ⁻⁵ to standard notation. 0.000 043		
<u>10. I can use my calculator</u> to input numbers in scientific notation using the "2 nd function & EE keys.	Enter the number 5.67 x 10 ⁵² on your calculator and show Mrs. S. She'll initial this box, if you've done it correctly! calculator display should read 5.67E52		
11. I can convert between different metric units by using "King Henry died by drinking chocolate milk".	9.3 km = ? m 9300 m 39,983 mL = ?kL 0.39983 kL		
12. I can convert between different metric units by using Reference Table C and dimensional analysis.	1.5 x 10^{-3} km = ? µm 1.5 x 10^{6} µm 4.67 x 10^{13} pm = ?dm 467 dm		

13. I can determine which equation to use from Reference Table T by looking at the given information.	Which equation would you use to solve the following problem? (Don't solve it. Just tell me WHICH equation to use.) Problem: How many grams of LiBr (gram-formula mass = 87 g/mol) would 3.5 moles of LiBr be? moles = given mass/gfm		
14. I can solve for "x" when it's in the denominator of a fraction.	What is the volume, in cm ³ , of 54.6 g of beryllium (density = 1.85 g/cm ³) 29.5 cm³		
15. I can convert ^O C to degrees kelvin and degrees kelvin to ^O C.	What kelvin temperature is equal to 200 ^o C? 473K What Celsius temperature is equal to 200K? - 73^oC		
16. Given the symbol I can write the name for any element in Group 1, Group 2, Group 13, Group 14, Group 15, Group 16, Group 17 or Group 18 without using a Periodic Table.	Al aluminum Ca calcium Ne neon Ne neon Nnitrogen		
17. Given the symbol or the name, I can determine the Group for any element in Group 1, Group 2, Group 13, Group 14, Group 15, Group 16, Group 17 or Group 18 without using a Periodic Table.	AlGroup 13 CaGroup 2 NeGroup 18 NGroup 15 NaGroup 1 SGroup 16 BrGroup 17 Ge Group 14		
18. I can define gram- formula mass (AKA molar mass).	<u>Definition:</u> gram formula mass is the mass of one mole of substance		

	· · · · · · · · · · · · · · · · · · ·		
	How many moles of atoms are in N_2 ?		
	2		
19.Given the chemical	What is the total # of moles of atoms in $Pb(C_2H_3O_2)_2$?		
symbol/formula, I can determine	15		
how many atoms are present.			
· · · · · · · · · · · · · · · · · · ·	How many moles of C atoms are in $Pb(C_2H_3O_2)_2$?		
	4		
	What is the gfm for N_2 ?		
20. I can determine the	28 g/mol		
gram-formula mass for any			
element or compound.	What is the gfm for $Pb(C_2H_3O_2)_2$?		
	325 g/mol		
	Definition:		
21. I can define a mole as it	A mole is a unit to measure the amount of substance. One mole of substance is equal to its gfm. It is also equal to $6.02 \times 10_{23}$ particles. If the substance is		
pertains to chemistry.			
	a gas at STP, one mole will occupy 22.4 L of volume.		
22. I can find the number of	94.3 g is how many moles of NaCl?		
moles of substance if I am given			
the mass and formula for the	1.61 moles		
substance.			
	What is the percent by mass of Mg in $Mg(NO_3)_2$?		
23. I can determine the			
percent composition of an	18.8%		
element in a compound.			
24. I can convert between	How many moles of carbon atoms are there in 4.8 x 10^{24} atoms of C?		
moles and numbers of particles			
using Avogadro's number?			
	How many L does 4.60 moles of O ₂ occupy (assuming STP)?		
25. I can convert between	103 L		
moles and L (assuming STP).	103 L		

Unit 2: Introduction to Matter

If you can do all the things listed below, you are ready for the Unit 2 test.

1. I can still do everything					
from Unit 1.					
	Definitions: atom – smallest particle of matter that retains the properties of an element				
	element –a substance that cannot be broken down into a simpler substance				
2. I can define the following: atom, element, compound, mixture	compound – two or more elements che	emically combined in a fixed ratio			
	mixture – two or more substances physically combined in a variable ratio				
	2 Atoms of 1 Element	2 Molecules of 1 Compound			
	\bigcirc \bigcirc				
	Mixture of 2 elements	Mixture of 2 compounds			
3. I can draw particle diagrams to represent an atom, an element, a molecule, a compound, a mixture					
	Mixture of an eleme	ent and a compound			

	Put each of the following examples into the correct column.		
	Examples: C ₁₂ H ₂₂ O ₁₁ , NaCl, Fe, salt water, air, CO ₂ , H ₂ , Ar, soda		
4. I can classify substances as a pure substance (element or compound) or as a mixture.	Element Fe H ₂ Ar	<u>Compound</u> C ₁₂ H ₂₂ O ₁₁ NaCl CO ₂	<u>Mixture</u> salt water air soda
5. I can define homogeneous mixture and heterogeneous mixture in terms of particle distribution.	uniform distribution of	- two or more substances p	
6. I can give an example of homogeneous and heterogeneous mixtures.	Two examples of homogeneous mixtures: a. brass b. a pitcher of Kool-Aid Two examples of heterogeneous mixtures: a. snickers bar b. soil		
7. I can classify a property as physical or chemical.	Write "P" for physical or "C" for chemical on the line provided. Pcopper (II) sulfate is blue. C_copper reacts with oxygen. P_copper can be made into wire. P_copper has a density of 8.96 g/cm ³ . P_copper melts at 1358K. C_copper reacts with nitric acid. P_copper doesn't dissolve in water.		

	Write "P" for physical or "C" for chemical on the line provided.		
8. I can classify a change as	Pcopper (II) sulfate dissolves in water.		
	<u><u>C</u> copper reacts with oxygen to form solid copper (I) oxide.</u>		
	Psolid copper is melted.		
physical or chemical.	Pa chunk of copper is pounded flat.		
	Pcopper and zinc are mixed to form brass.		
	<u>P</u> a large piece of copper is chopped in half.		
	<u>C</u> copper reacts with bromine to form copper (II) bromide.		
9. In a particle diagram, I can distinguish between a physical change and a chemical change.	Substance A Circle the particle diagram that best represents Substance A after a physical change has occurred.		
10. I can define: solute, solvent, solution, and solubility.	Definitions: solute - the substance in a mixture that gets dissolved solvent - the substance in a mixture that does the dissolving solution - a homogenous mixture solubility - the amount of solute that will dissolve in a given amount of solvent at a given temperature		
11. I can describe the trend in solubility for solids as the temperature changes.	As the temperature increases, the solubility of a solid <u>increases</u> .		

12. I can describe the trend in solubility for gases as the temperature changes.	As the temperature increases, the solubility of a gas <u>decreases</u> .		
	Write "S" for soluble and "NS" for not soluble . Use Reference Table F to determine the solubility of the following compounds:		
13. I can use Reference Table F to determine if a substance will	<u>S</u> potassium chlorate NS silver bromide		
be soluble in water.	<u>S</u> lithium carbonate		
	<u>NS</u> calcium carbonate		
14. I can use Table G to determine how much solute to add at a given temperature to make a	How many grams of KClO ₃ must be dissolved in 100 grams of water at 20 ^o C to make a saturated solution? 56 g		
saturated solution.	50 g		
15. I can use Table G to	If 20.0 g of $NaNO_3$ are dissolved in 100.0 g of water at 25.0 ^O C, will the		
determine if a solution is saturated, unsaturated, or	resulting solution be saturated, unsaturated, or supersaturated?		
supersatured.	unsaturated		
16. I can define: dilute, concentrated, concentration, and electrolyte.	Definitions: dilute – a solution in which a small quantity of solute is dissolved in a large quantity of solvent concentrated – a solution in which a large quantity of solute is dissolved in a small quantity of solvent concentration – the amount of solute dissolved in a given amount of solvent electrolyte – a substance that can conduct electricity when dissolved in water Which solution is most concentrated?		
17. I can interpret Table G to determine which solution is the most concentrated or the most dilute.	 Which solution is most concentrated? A 125.0 g of KI dissolved in 100.0 g of water at 10°C B) 70.0 g of NH₄Cl dissolved in 100.0 g of water at 70°C C) 120.0 g of KNO₃ dissolved in 100.0 g of water at 70°C D) 30.0 g of SO₂ dissolved in 100.0 g of water at 90°C 		
18. I can use Reference Table T to calculate the concentration of a solution in ppm.	What is the concentration, in ppm, of a 2600 g of solution containing 0.015 g of CO ₂ ? 5.7 ppm		
19. I can use Reference Table T to calculate the concentration of a solution in molarity.	What is the molarity of 3.5 moles of NaBr dissolved in 500 mL of water? 7M		

20. I can determine how matter will be separated using filtration.	When a mixture of sand, salt, sugar, and water is filtered, what passes through the filter? salt, sugar, and water		
21. I can describe how matter can be separated using distillation.	Which physical property makes it possible to separate the components of crude oil by means of distillation? difference in boiling points		
23. I can state which separation process (decanting, filtering, distilling, chromatography, or evaporating) is best for a given situation.	To separate a mixture of salt and water, the best method of separation would be evaporation. To separate a mixture of ethanol and water, the best method of separation would be distillation. To separate a mixture of food coloring dyes, the best method of separation would be chromatography. To separate a mixture of food coloring dyes, the best method of separation would be decanting.		
24. I can define allotrope.	Defintion: allotrope – different forms of the same element that possess different molecular structures		
25. I can state the differences between two allotropes of the same element.	Two allotropes of the same element have different molecular structures and therefore have different <u>physical</u> and <u>chemical</u> properties.		

Unit 3: Matter & Energy

If you can do all the things listed below, you are ready for the Unit 3 test.

1. I can still do everything			
from Unit 1.			
2. I can still do everything			
from Unit 2.			
	<u>Defintions:</u> kinetic energy – energy a s	substance has due to its m	notion
	potential energy – energy a substance has that is stored in chemical bonds and static interactions		
3. I can define kinetic energy,	temperature – a measure	of the average kinetic ene	ergy of a substance
potential energy, temperature, heat, endothermic, and exothermic.	heat – energy the moves between two substances due to differences in temperature between the substances		
	endothermic – chemical r energy to occur	eaction or physical change	e that requires the input of
	exothermic – chemical rea occurs	iction of physical change t	that releases energy as it
	Draw a particle diagram to	represent atoms of Li in e	each phase.
	Solid	Liquid	Gas
4. I can use particle diagrams to show the arrangement and spacing of atoms/molecules in		Liquiu	
different phases.	8888		

		Solid	Liquid	Gas
5. I can compare solids, liquids, and gases in terms of their relative kinetic energy, type of molecular motion, ability to	Relative Kinetic Energy	low	moderate	high
	Type of Molecular Motion	vibrations, only	vibration and rotation	vibration, rotation, and translation
completely fill a container, ability to change shape.	Ability to Completely Fill Any Container	no	no	yes
	Ability to Change Shape	no	yes	yes
6. I can state the change of phase occurring in fusion, solidification, condensation, vaporization, melting, boiling, sublimation, deposition, and freezing.	During fusion a substance changes from solid to liquid During solidification a substance changes from liquid to solid During condensation a substance changes from gas to liquid During condensation a substance changes from liquid During vaporization a substance changes from liquid During waporization a substance changes from liquid During melting a substance changes from solid During melting a substance changes from liquid During boiling a substance changes from liquid During boiling a substance changes from solid During boiling a substance changes from solid During boiling a substance changes from solid During sublimation a substance changes from solid During freezing a substance changes from solid During deposition a substance changes from solid During freezing a substance changes from solid During freezing a substance changes from liquid to solid			
7. I can indicate if a phase change is exothermic or endothermic.	endothermic. fusion/melting	EXO EXO EXO ENDO ENDO	-	is exothermic or

	Which heat equation should be used in each of the following:
15. I can use Reference Table T to determine which "heat" equation is needed for a given problem.	a. How much heat is needed to vaporize 100.0 g of water at 100 ⁰ C? Q = mH_V
	b. How much heat is needed to raise the temperature of 100.0 g of water by 35 ⁰ C?
P	Q=mC∆T
	c. How much heat is needed to melt 100.0 g of ice at 0 ^o C?
	Q = mH _f
	Definitions: specific heat capacity – the amount of heat required to increase the
	temperature of one gram of substance by 1 ^o C (or K)
16. I can define specific heat capacity, heat of fusion, heat of	heat of fusion - the amount of heat required to melt one gram of substance at its melting point
vaporization.	heat of vaporization - the amount of heat required to vaporize one gram of substance at its boiling point
	How many grams of water can be heated by 15.0 ⁰ C using 13,500 J of heat?
17 Lean use the "heat"	215 g
17. I can use the "heat" equations to solve for any variable, if I am given the other variables.	It takes 5210 J of heat to melt 50.0 g of ethanol at its melting point. What is the heat of fusion of ethanol?
	104 J/g
	The five parts of the Kinetic Molecular Theory are: a. Gases consist of tiny particles.
	b. The size of the particles is so small compared to the space between the particles that the volume of the actual gas particles is negligible.
18. I can state the 5 parts of the Kinetic Molecular Theory.	c. Gas particles are in constant, random, straight-line motion, colliding with the walls of the container. These collisions create pressure.
	d. Gas particles have no intermolecular forces (IMF).
	e. The average kinetic energy of gas particles is directly proportional to their Kelvin temperature.

19. I can define an ideal gas.	Definition: ideal gas –any gas that conforms to all of the parts of the KMT. Ideal gases are theoretical although some gases are close. Hydrogen and helium are the closest to ideal gases at all temperatures and pressures.
20. I can state the conditions of pressure and temperature under which a gas will act "ideally".	A gas will act most "ideally" under the conditions of <u>low</u> pressure and <u>high</u> temperature.
21. I can state the two elements that act ideally most of the time.	The two elements that act ideally most of the time are <u>hydrogen</u> & <u>helium</u> .
22. I can explain how pressure is created by a gas.	What causes gas molecules to create pressure? Collisions with the walls of the container.
23. I can state the relationship between pressure and volume for gases (assuming constant temperature).	At constant temperature, as the pressure on a gas increases, the volumedecreases
24. I can state the relationship between temperature and volume for gases (assuming constant pressure).	At constant pressure, as the temperature on a gas increases, the volumeincreases
25. I can state the relationship between temperature and pressure for gases (assuming constant volume).	In a fixed container (AKA "has constant volume), as the temperature on a gas increases, the pressure <u>increases</u> .
26. I can state Avogadro's Hypothesis.	Avogadro's Hypothesis says <u>two samples of an ideal gas, if they have the same</u> <u>temperature, pressure, and volume, will contain the same number of</u> <u>molecules.</u>
27. I can remember to convert ^O C to K when using the Combined Gas Law to determine changes in V, P, or T of a gas.	A gas originally occupies 2.3L at 56 ^o C and 101.3 kPa. What will its volume be at 100 ^o C and 105.7 kPa? 2.5 L

	Definition: boiling point – the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid
28. I can define boiling point and vapor pressure.	vapor pressure – the pressure exerted by a vapor in equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system
29. I can state the condition	The normal boiling point of a substance occurs at a pressure of
of pressure that is used for "normal" boiling points.	atm/ <u>101.3</u> kPa.
30. I can state the relationship between atmospheric pressure and boiling point.	As the atmospheric pressure increases, the boiling point <u>increases</u> .

Unit 4: Atomic Theory

If you can do all the things listed below, you are ready for the Unit 4 test.

1. I can still do everything from Unit 1.		
2. I can still do everything from Unit 2.		
3. I can still do everything from Unit 3.		
	Dalton's Model: hard sphere model	
4. I can describe John Dalton's contribution to our understanding of the atom.	What it looked like:	
	Thomson's Experiment: cathode ray experiment	
5. I can describe JJ Thomson's contribution to our understanding of the atom.	Thomson's Model: plum pudding model What it looked like:	
	Rutherford's Experiment: gold foil experiment	electrons
6. I can describe Ernest Rutherford's contribution to our understanding of the atom.	Rutherford's Model: nuclear model; empty space model What it looked like:	small, positively charged nucleus
	Bohr's Model: planetary model; electron shell model	
7. I can describe Niels Bohr's contribution to our understanding of the atom.	What it looked like:	

8. I can describe James Chadwick's contribution to our understanding of the atom.	What subatomic particle did Chadwick discover? neutron			
	What does the modern model of the atom look like?			
9. I can describe how Schrodinger, Heisenberg, Pauli, Dirac, and others contributed to our understanding of the atom.	Where, in an atom, are electrons likely to be found according to the modern model? orbitals			
10. I can state the chronological order of atomic models.	From oldest to newe	pudding> empty s	pace> electron she	ll> modern model
		Particle #1	Particle #2	Particle #3
11. I can state the three	Name	proton	neutron	electron
subatomic particles, their location in an atom, their charges, and their	Charge	+1	0	-1
masses (in amu).	Mass	1 amu	1 amu	0.0005 amu
	Location in Atom	nucleus	nucleus	orbital
12. I can explain why atoms are electrically neutral.	Atoms are electrically neutral because the number of <u>protons</u> is equal to the number of <u>electrons</u> .			
13. I can define mass number and atomic number.	Definitions: mass number – the total number of protons and neutrons in an atoms atomic number – the number of protons in an atom; defines which element			
number and atomic number.	the atom is			
	In an atom of ²¹² Po 84	, how many proton	s are present?	84
14. Given the mass number, I can determine the number of protons, neutron, and electrons in an atom.	84 In an atom of 212 _{Po} 84	, how many electro	ns are present?	84
	In an atom of ²¹² Po 84	, how many neutro	ns are present?	128

	How many protons are in an atom of selenium? 34			
15. I can use the Periodic Table to determine the atomic number of an element.	How many protons are in an atom of silicon? 14			
16. I can define isotope.	Definition: isotope – each of two or more forms of an element that have the same number of protons, but a different number of neutrons giving each different form a different mass			
	Write the four different methods of isotopic notation for an atom of bromine that has 45 neutrons.			
17. I can represent an atom in any of the four methods of isotopic notation.	Method 1Method 2Method 3Method 4Br-80Bromine-8080Br80Br35			
18. I can calculate average atomic mass given the masses of the naturally occurring isotopes and the percent abundances.	Element Q has two isotopes. If 77% of the element has an isotopic mass of 83.7 amu and 23% of the element has an isotopic mass of 89.3 amu, what is the average atomic mass of the element? 84.998 amu			
19. I can define ion, cation, and anion.	Definitions: ion – an atom that has lost or gained electrons cation – a positively charged ion that results from the loss of electrons anion – a negatively charged ion that results from the gaining of electrons			
20. Given the mass number and the charge, I can determine the number of protons, neutrons, and electrons in an ion.	How many protons are in ${}^{19}F^{1-}$? 9 How many neutrons are in ${}^{19}F^{1-}$? 9 How many electrons are in ${}^{19}F^{1-}$? 9 10 9 10			

	Definitions:
	principal energy level (PEL)- main energy level or shell of an atom
21. I can define principal energy level, orbital, ground state, excited state, electron configuration, and bright line spectrum.	orbital – most probable electron location in the modern mechanical model
	ground state – lowest energy state of an electron; electron configurations on the PT are shown in the ground state
	excited state – any energy state of an electron that is higher than ground state
	electron configurationthe ground state arrangement of electrons in PEL
	bright line spectrum – characteristic colors of light that are given off by an atom when an excited electron releases energy and returns to the ground state
	PEL1 holds a maximum of <u>2</u> electrons.
22. I can state the maximum	PEL2 holds a maximum of <u>8</u> electrons.
number of electrons that will fit into each of the first four principal	PEL3 holds a maximum of <u>18</u> electrons.
energy levels.	PEL4 holds a maximum of <u>32</u> electrons.
23. I can state the relationship between distance	As the distance between the nucleus and the electron increases, the energy of
from the nucleus and energy of an electron.	the electron <u>increases</u> .
24. I can state the relationship between the number of the principal energy level and the distance to the atom's nucleus.	As the number of the PEL increases, the distance to the nucleus <u>increases</u> .
25. I can explain, in terms of subatomic particles and energy states, how a bright line spectrum is created.	A brightline spectrum is created when electrons in a high energy state release energy and return to a lower energy state

	Bright-Line Spectra
	Element D
	Element E
	Element G
26. I can identify the elements shown in a bright line	Mixture
spectrum.	750 nm 360 nm
	Which element(s) is/are present in the mixture?
	D & E
	Definition: valence electron – the electrons in the outermost s & p suborbitals; the
27. I can define valence electrons.	farthest number to the right on the electron configuration on the PT
	How many valence electrons does an atom of rubidium have in the ground state?
28. I can locate and interpret	1
an element's electron configuration on the Periodic	How many principal energy levels contain electrons in an atom of iodine in the
Table.	ground state? 6
	Which electron configuration represents an atom of potassium in the excited state?
29. I can identify an electron	A) 2-8-7-1
configuration that shows an atom in the excited state.	B) 2-8-8-1
in the excited state.	C) 2-8-7-2
	D) 2-8-8-2
30. I can draw Lewis electron	
	Draw the Lewis electron dot diagram for the following atoms:
dot diagrams for a given element.	Draw the Lewis electron dot diagram for the following atoms:LiBeBCNO:F::Ne:
dot diagrams for a given element.	Li Be B C N O: F: Ne: Definition:
dot diagrams for a given element.	Li Be B C N O: F: : Ne:
	Li Be B C N O: F: Ne: Definition:
31. I can define and state the importance of "octet of valence	Li Be B C N O: F: Ne: Definition: octet of valence electrons – having 8 valence electrons; a full valence shell The importance of having a complete "octet of valence electrons" is it makes
31. I can define and state the	Li Be B C N O: F: Ne: Definition: octet of valence electrons – having 8 valence electrons; a full valence shell
31. I can define and state the importance of "octet of valence	Li Be B C N O: F: Ne: Definition: octet of valence electrons – having 8 valence electrons; a full valence shell The importance of having a complete "octet of valence electrons" is it makes

Unit 5: Nuclear Chemistry

If you can do all the things listed below, you are ready for the Unit 5 test.

1. I can still do everything							
from Unit 1.							
2. I can still do everything							
from Unit 2.							
3. I can still do everything							
from Unit 3.							
4. I can still do everything							
from Unit 4.							
	Туре	Symbol	Mass #	Charge	Penetrating	Shielding	Bio
	- luka				Power	Required	Hazard
	alpha	α	4	2	very low	paper, clothing	none unless inhaled
5. I can compare types of radiation in terms of symbol, mass	beta	β-	0	-1	low	metal foil	eyes & skin
number, charge, penetrating power, shielding required, and biological hazard.	gamma	γ	0	0	very high	concrete & lead	whole body
J	neutron	1 0n	1	0	very high	water; lead	whole body
	positron	β+	0	+1	low	metal foil	eyes & skin
6. I can identify the three types of nuclear reactions.	The three types of nuclear reactions are: a. fission b. fusion c. transmutation						
7. I can define transmutation, fission, and fusion.	Definitions: transmutation – process of changing one element into another; may be natural or artificial fission – process of splitting apart a large atom (usually U of Pu) into two roughly equal size pieces by hitting it with a neutron fusion – process of putting small nuclei (usually H) together to form a larger nucleus (He)						

8. I can state two synonyms	Two synonyms for spontaneous decay are: <u>natural decay</u>			
for spontaneous decay.	and <u>natural transmutation</u> .			
9. I can show how mass number and electrical charge must be conserved in any nuclear reaction.	Complete the following nuclear equation: $ {}^{42}_{19}\mathrm{K} \rightarrow {}^{42}_{20}\mathrm{Ca} + \underbrace{\begin{subarray}{c} 0 \\ \hline \begin{subarray}{c} & & \\ \hline \end{subarray}}_{\mathbf{C}} \end{subarray} $			
10. I can explain what makes a nucleus stable or unstable.	The stability of the nucleus is dependent on the <u>proton</u> to <u></u>			
11. I can explain the difference between natural transmutation and artificial transmutation.	The difference between natural transmutation and artificial transmutation is that in natural transmutation an <u>unstable</u> <u>nucleus</u> breaks apart on its own and in artificial transmutation a <u>stable</u> <u>nucleus</u> is made <u>unstable</u> by hitting it with a high energy particle (such as a proton, neutron, or gamma radiation).			
12. I can identify a natural decay reaction from a list of reactions.	Which equation represents a natural decay? A) ${}^{9}_{4}\text{Be} + {}^{1}_{1}\text{H} \rightarrow {}^{6}_{3}\text{Li} + {}^{4}_{2}\text{He}$ B) ${}^{27}_{13}\text{Al} + {}^{4}_{2}\text{He} \rightarrow {}^{30}_{15}\text{P} + {}^{1}_{0}\text{n}$ C) ${}^{14}_{7}\text{N} + {}^{4}_{2}\text{He} \rightarrow {}^{17}_{8}\text{O} + {}^{1}_{1}\text{H}$ D) ${}^{235}_{92}\text{U} \rightarrow {}^{231}_{90}\text{Th} + {}^{4}_{2}\text{He}$			
13. I can identify an artificial transmutation reaction from a list of reactions.	Which equation represents artificial transmutation? (A) $_{7}^{16}N \rightarrow _{8}^{16}O + _{-1}^{0}e$ (B) $_{7}^{14}N + _{2}^{4}He \rightarrow _{8}^{17}O + _{1}^{1}H$ (C) $_{19}^{37}K \rightarrow _{18}^{37}Ar + _{+1}^{0}e$ (D) $_{19}^{42}K \rightarrow _{20}^{42}Ca + _{+1}^{0}e$			
14. I can identify a fission reaction from a list of reactions.	Which equation represents fission? (A) $_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{142}Ba + {}_{36}^{91}Kr + 3{}_{0}^{1}n$ (B) ${}_{88}^{226}Ra \rightarrow {}_{86}^{222}Rn + {}_{2}^{4}He$ (C) ${}_{3}^{6}Li + {}_{0}^{1}n \rightarrow {}_{1}^{3}H + {}_{2}^{4}He$ (D) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$			
15. I can identify a fusion reaction from a list of reactions.	Which equation represents fusion? A) ${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{142}Ba + {}_{36}^{91}Kr + 3 {}_{0}^{1}n$ B) ${}_{88}^{226}Ra \rightarrow {}_{86}^{222}Rn + {}_{2}^{4}He$ C) ${}_{6}^{6}Li + {}_{0}^{1}n \rightarrow {}_{1}^{3}H + {}_{2}^{4}He$ D) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$			

16. I can state the conditions	The temperature and pressure conditions needed for fusion to happen are:
of temperature and pressure that	
are needed for a fusion reaction to	high temperature andhigh pressure
happen.	
17. I can explain why all nuclear reactions release LOTS more energy than chemical reactions do.	Nuclear reactions release LOTS more energy than chemical reactions do because some of the mass is converted to energy
18. Given a list of reactions, I can differentiate a "nuclear" reaction from a "chemical" reaction.	Which of the following equations represent NUCLEAR reactions? A) $H_2O(g) \rightarrow H_2O(\ell)$ B) $C(s) + O_2(g) \rightarrow CO_2(g)$ (C) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$ (D) ${}_{92}^{235}U + {}_{0}^{1}n \rightarrow {}_{56}^{142}Ba + {}_{36}^{91}Kr + 3 {}_{0}^{1}n$
19. I can define half-life.	Definition: half-life – the amount of time required for one-half of a radioactive isotope to decay
	Based on Reference Table N, what fraction of a radioactive sample of Au-198 will remain unchanged after 10.78 days?
20. Given the length of the	1/16
20. Given the length of the half-life and the amount of time	1/16
	1/16 What was the original mass of a radioactive sample of K-37 if the sample
half-life and the amount of time	
half-life and the amount of time that has passed, I can determine	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds)
half-life and the amount of time that has passed, I can determine	What was the original mass of a radioactive sample of K-37 if the sample
half-life and the amount of time that has passed, I can determine the amount of radioactive sample.	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take?
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take?
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed.	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days?
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I can determine the length of the	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days? 3.82 days
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I can determine the length of the half-life.	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days? 3.82 days Compared to K-37, the isotope K-42 has
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I can determine the length of the half-life. 23. Using Table N, I can	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days? 3.82 days Compared to K-37, the isotope K-42 has A) shorter half-life and the same decay mode
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I can determine the length of the half-life. 23. Using Table N, I can determine the length of half-life	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days? 3.82 days Compared to K-37, the isotope K-42 has
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I can determine the length of the half-life. 23. Using Table N, I can determine the length of half-life and/or decay mode for a specific	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days? 3.82 days Compared to K-37, the isotope K-42 has A) shorter half-life and the same decay mode
half-life and the amount of time that has passed, I can determine the amount of radioactive sample. 21. Given the length of the half-life and the amount of radioactive sample, I can determine the amount of time that has passed. 22. Given the amount of time that has passed and the amount of radioactive sample, I can determine the length of the half-life. 23. Using Table N, I can determine the length of half-life	What was the original mass of a radioactive sample of K-37 if the sample decayed to 25.0 g after 4.92 seconds? The half-life of K-37 is 1.23 seconds) 400 g A 100.0 g sample of Co-60 decays until only 12.5 g of it remains. Given that the half-life of Co-60 is 5.271 years, how long did the decay take? 15.813 years What is the half-life of a radioisotope if 25.0 g of an original 200.0 g sample remains unchanged after 11.46 days? 3.82 days Compared to K-37, the isotope K-42 has A) shorter half-life and the same decay mode B) shorter half-life and a different decay mode

24. I can state 5 beneficial uses for radioactive isotopes.	Five beneficial uses for radioactive isotopes are: a. radioactive dating b. tracing chemical and biological processes c. industrial measurement d. nuclear power e. detection and treatment of disease
25. I can state the scientific use of 4 specific radioactive isotopes.	C-14 is used for
26. I can state three risks associated with radioactivity and radioactive isotopes.	Three risks associated with radioactivity and radioactive isotopes are: a. biological exposure b. long-term storage and disposal c. nuclear accidents

Unit 6: Periodic Table

If you can do all the things listed below, you are ready for the Unit 6 test.

1. I can still do everything from Unit 1.	
2. I can still do everything from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
	Classify each of the following elements as metals (M), nonmetals (NM), or
	metalloids (MTLD).
6. I can classify elements	NMBMKMLiNMCNMAr
as metals, nonmetals, or	
metalloids based on their	_MTLD_SbNMHM_FeMAuNMS
placement on the Periodic	NM F MTLD Si M Fr NM He NM Rn
Table.	<u>_NM</u> F <u>MTLD</u> Si <u></u> Fr <u>NM</u> He <u>NM</u> Rn
	<u>MTLD</u> Ge <u>M</u> Al <u>MTLD</u> As <u>M</u> Bi <u>NM</u> I
	Group 1 is called thealkali metals
7. I can state the group	Group 2 is called thealkaline earth metals
names for elements in groups 1,	
2, 17, and 18.	Group 17 is called the <u>halogens</u> .
	Group 18 is called the <u>noble gases</u> .
8. I can explain why	Elements in the same group have similar chemical properties because they have
elements in the same group	similar electron configurations; same number of valence electrons
have similar chemical	
properties.	
9. I can explain why the	Elements in Group 18 don't usually react with other elements because they have
elements in Group 18 don't	a stable octet of valence electrons
usually react with other	
elements.	
10. I can state the	STP stands for <u>standard temperature and pressure</u> .
meaning of "STP" and the	
Reference Table on which it can	The values can be found on Reference Table <u>B</u> .
be found.	
11. I can state the	The two elements that are liquids at STP are:
names/symbols for the two	
elements on the Periodic Table	mercuryandbromine
that are liquids at STP.	

	The 11 elements that are gases at	STP are:
	hudrogon	holium
	hydrogen	, helium ,
	fluorine	, chlorine ,
12. I can state the	nitrogen	<u>,</u> Oxygen <u>,</u>
names/symbols of the 11 elements that are gases at STP.	radon	vonon
that are gases at STP.	radon,	xenon,
	krypton	, argon ,
	and <u>neon</u>	
13. I can state how the	The elements on the Periodic Tabl	e are arranged by increasing
elements on the Periodic Table are		
arranged.	atomicnumber	
	The seven diatomic elements are:	
14. I can list the 7 diatomic	R. TA(111AT ("1	
elements.	BrINCl#0F ("lucky 7")	
	Definitions:	
		of an element to attract electrons towards
	itself in a chemical bond	
	first ionization energy – the amo u	nt of energy required to remove the most
	loosely held electron from an ato	
		<u> </u>
	atomic radius – 1/2 the internucle	ar distance between two of the same atom
15. I can define		
electronegativity, first ionization		
energy, atomic radius, ionic radius,	ionic radius – radius of an ion (sor	ry, I just don't want to make it more
metallic character, and) Radius of Metals Ions < Radius of Metal
activity/reactivity.	atom (b/c ion loses e) while radius (b/c ion gains e)	of nonmetal ion> radius of nonmetal atom
	metallic character – how easy it is	for an element to lose its valence electrons
	activity/reactivity - how likely it is	that an element will lose/gain electrons
		that an element will lose gain electrons

	As one reads dow	n a group from top	to bottom, electronegativity
		h	
	decreases	because	the valence electrons are farther
16. I can state the periodic	from the nu	cleus and are less	tightly held.
trend for electronegativity and			ft to right, electronegativity
explain why it occurs.	increases	because each	n element is getting closer to
			<u> </u>
	having a sta	ble octet of valence	e electrons
	As one reads dow	n a group from tor	to bottom, first ionization energy
			to bottom, mist forization energy
	decreases	because <u>t</u>	he valence electrons are farther
17. I can state the periodic	from the nuc	leus and are less ti	ghtly held.
trend for first ionization energy			ft to right, , first ionization energy
and explain why it occurs.			
	increases	because <u>each e</u>	lement is getting closer to
	having a sta	ble octet of valence	e electrons .
	As one reads dow	n a group from top	to bottom, atomic radius
	increases	hecause	there are more PEL.
		because	
18. I can state the periodic trend for atomic radius and explain			
why it occurs.	As one reads acro	ss a period from le	ft to right, atomic radius
	decreases	because th	e valence electrons are added to the
		·· · · · · · · · · · <u></u>	
			clear charge attracting the electrons>
	As one reads dow	n a group from top	to bottom, metallic character
	increases	because th	ne valence electrons are farther
19. I can state the periodic		leus and are less ti	
trend for metallic character and explain why it occurs.	As one reads acro	ss a period from le	ft to right, metallic character
	decreases	because _	elements become less likely
	to loco volono	a alastrons and ma	ve likely to gain them
		e electrons and mo	pre likely to gain them
20. I can state the trend for	As one reads dow	n a group from top	to bottom, the melting points and boiling
melting points and boiling point			
for METALS as one reads down a	points for METALS	<u>decreases</u>	_·
group. 21. I can state the trend for	As one reads dow	n a group from tor	to bottom, the melting points and boiling
melting points and boiling point			to soluting the metting points and boiling
for NONMETALS as one reads	points for NONME	TALS <u>increases</u>	<u> </u>
down a group.			

		1	
22. I can state the trend for	As one reads down a group from top to	bottom, the activity/reactivity of	
activity/reactivity for METALS as	METALS <u>increases</u> .		
one reads down a group.			
23. I can state the trend for	As one reads down a group from top to	bottom, the activity/reactivity of	
activity/reactivity for NONMETALS	NONMETALS <u>decreases</u> .		
as one reads down a group.			
	Metals tend to lose electrons (get oxid	ized). This loss of electrons causes	
24. I can explain how loss or	cations to be <u>smaller</u> than the	e original atom.	
gaining of electrons affects the			
radius of an element.	Nonmetals tend to gain electrons (get	reduced). This gain of electrons causes	
	anions to be larger than t	he original atom.	
	Ten properties of metals are:		
	a. tend to lose electrons	b. form positively charged ions	
		1 7 0	
	c. shiny	d. conduct heat	
	c. sinny		
25. I can list 10 properties of	a conduct alactricity	f. malleable	
metals.	e. conduct electricity	i. malleable	
	g. ductile	h. high tensile strength	
	i. high density	j. high mp and bp	
	Eight properties of non metals are:		
	a. tend to gain electrons	b. form negatively charged ions	
	c. dull	d. nonconductors of heat & electricity	
26. I can list 8 properties of			
nonmetals.	e. low densities	f. brittle	
	g. low tensile strength	h. low mp and bp	
	5. Iow tensile sciengti		

Unit 7: Acids & Bases

If you can do all the things listed below, you are ready for the Unit 7 test.

1. I can still do everything from Unit 1.			
2. I can still do everything			
from Unit 2.			
3. I can still do everything from Unit 3.			
4. I can still do everything			
from Unit 4.			
5. I can still do everything			
from Unit 5.			
6. I can still do everything from Unit 6.			
		Auchautica	"Alternate Method" (AKA
		Arrhenius	Bronsted-Lowry)
7. I can use two different systems to define acids and bases.	acid	any substance that yields H ₃ O ⁺ ions as the only positive ion in solution	any substance that donates protons
	base	any substance that yields hydroxide as the only negative ion in solution	any substance that can accept a proton
	Definitior pH – mea	hs: sure of the acidity or alkalinity of a	a solution
	[] - con	centration	
8. I can define pH, [], hydronium ion, hydroxide ion, and electrolyte.	hydroniur in acids	m ion – H₃O⁺ AKA hydrogen ion, H	+; found in higher concentrations
	hydroxide ion – OH ⁻ ion; found in higher concentration in bases		
	electrolyt	e – any substance that conducts el	ectricity when dissolved in water

9. I can state another name for the hydronium ion.	The hydronium ion is also known as the	<u>hydrogen ion, H</u> ⁺ .
	If the $[H_3O^+]$ is 1 x 10 ⁻⁸ , the pH of the s	olution will be <u>8</u> .
10. Given the hydronium ion	If the $[H_3O^+]$ is 1 x 10 ⁻¹ , the pH of the s	olution will be1
concentration, I can determine the pH.	If the $[H_3O^+]$ is 1 x 10 ⁻¹⁴ , the pH of the	solution will be <u>14</u> .
	If the $[H_3O^+]$ is 1 x 10 ⁻⁷ , the pH of the s	olution will be <u>7</u> .
	If the pH of a solution is 4.5, the solution	n is <u>acidic</u> .
11. Based on pH, I can	If the pH of a solution is 7.0, the solution	n is <u>neutral</u> .
determine if a solution is acidic, basic, or neutral.	If the pH of a solution is 11, the solutior	is <u>basic</u> .
	If the pH of a solution is 5.7, the solution	n is <u>acidic</u> .
13. I can state the	As the H ⁺ concentration decreases , the	pH <u>increases</u> .
relationship between H ⁺ concentration and pH.	As the H ⁺ concentration increases, the I	oH <u>decreases</u> .
	If the H ⁺ concentration is increased by a	a factor of 10,
	the pH will decrease by <u>1</u>	
14. I can determine the		
change in pH when the H ⁺ concentration of a solution is		a factor of 100,
change in pH when the H ⁺	If the H ⁺ concentration is increased by a the pH will decrease by2	a factor of 100,
change in pH when the H ⁺ concentration of a solution is	If the H ⁺ concentration is increased by a the pH will decrease by2	a factor of 100, a factor of 1000,
change in pH when the H ⁺ concentration of a solution is	If the H ⁺ concentration is increased by a the pH will decrease by2 If the H ⁺ concentration is decreased by the pH will increase by3 List the chemical names of three comm	a factor of 100, a factor of 1000, on acids and three common bases.
change in pH when the H ⁺ concentration of a solution is changed.	If the H ⁺ concentration is increased by a the pH will decrease by2 If the H ⁺ concentration is decreased by the pH will increase by3	a factor of 100, · a factor of 1000, ·
change in pH when the H ⁺ concentration of a solution is	If the H ⁺ concentration is increased by a the pH will decrease by2 If the H ⁺ concentration is decreased by the pH will increase by3 List the chemical names of three common Acids hydrochloric acid	a factor of 100, a factor of 1000, on acids and three common bases. Bases sodium hydroxide
change in pH when the H ⁺ concentration of a solution is changed. 15. I can give examples of	If the H ⁺ concentration is increased by a the pH will decrease by2 If the H ⁺ concentration is decreased by the pH will increase by3 List the chemical names of three common Acids	a factor of 100, a factor of 1000, on acids and three common bases. Bases

	List the chemical formulas of three com	nmon acids and three common bases.
	Acids	Bases
	HC1	NaOH
16. I can give examples of chemical formulas of common		
acids and bases.	H ₂ SO ₄	КОН
	H ₃ PO ₄	NH ₃
	1131 04	1113
	Definition:	
	neutralization – double replacement re	eaction between an acid and a base
17. I can define	producing water and a salt	
neutralization.		
	Which of the following equations is a ne	eutralization reaction?
18. I can identify a	A) $6Na + B_2O_3> 3Na_2O + 2 B_2O_3$	3
neutralization reaction from a list	B)Mg(OH) ₂ + 2HBr> MgBr ₂	2 + 2HOH
of reactions.	C) $2H_2 + O_2> 2H_2O$	
	D) $2KClO_3> 2KCl + 3O_2$	
19. I can state the name of the laboratory equipment that is	Which piece of laboratory equipment is	s used to carry out a titration? burette
used to carry out a titration.		Surette
22.1	Why do scientists do titrations?	
20. I can state the purpose of titration.	To determine the concentration of an unknown acid or base	
	If it requires 56.95 mL of 0.0043 M HN	-
21. I can solve for any	what is the concentration of the LiOH?	2
variable in the titration equation		
from Reference Table T.	0.00071 M	
22. I can state the three		
types of substances that are		alts are three classes of
electrolytes.	compounds that are electrolytes. Which indicator is red in a solution that	has a nH of 3 62
		. nas a pri or 5.0!
23. Given the pH, I can	A) bromcresol green	
determine the color of acid-base	B) bromthymol blue	
indicators.		
	(C))itmus	
	D) thymol blue	

Unit 8: Redox & Electrochemistry

If you can do all the things listed below, you are ready for the Unit 8 test.

1. I can still do everything from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
	Definitions: oxidation – loss of electrons
	oxidation – loss of electrons
	reduction – gain of electrons
	Ban el cical elle
8. I can define oxidation,	
reduction, oxidation number, and	oxidation number – the oxidation state; an indicator of the oxidation of an
redox reaction	element
	redox reaction – any reaction in which a reduction and oxidation occurs
9. I can assign oxidation	Assign oxidation number to each of the elements below.
numbers to any element.	O2LiSi0
	Assign oxidation numbers to each element in the compounds below.
	Assign oxidation numbers to each element in the compounds below.
10. I can assign oxidation numbers to the elements in a	MnCl ₃ : Mn +3 Cl -1
compound.	
	H ₂ SO ₄ : H <u>+1</u> S <u>+6</u> O <u>-2</u>
	Assign oxidation numbers to each element in the polyatomic ions below.
	Assign oxidation numbers to each element in the polyatomic ions below.
11. I can assign oxidation	PO ³ -· P +5 0 2
numbers to the elements in a	PO ₄ ³⁻ : P <u>+5</u> 0 <u>-2</u>
polyatomic ion.	
	ClO ₃ ⁻ : Cl+5O2

	Which half-reaction equation represents the reduction of a potassium ion?
	(A) $K^+ + e^ K$ (B) $K + e^ K^+$ (C) $K^+ - K + e^-$ (D) $K - K^+ + e^-$
12. I can distinguish between an oxidation half-reaction and a	Given the reaction:
reduction half-reaction.	$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$
	Which half-reaction correctly shows the oxidation that occurs?
	(A) $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
	B) $Fe(s) + 2e^- \rightarrow Fe^{2+}(aq)$
	C) $Cu^{2+}(aq) \rightarrow Cu(s) + 2e^{-1}$
	D) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
13. I can state the Law of Conservation of Charge.	The law of Conservation of Charge states in any chemical reaction charge must be conserved
	The two half-reactions that come from the following equation are:
	Li(s) + Ag+(aq)> Li+(aq) + Ag(s)
14. I can break a redox	oxidation half-reaction
reaction into its two half-reactions.	Li(s)> Li+(aq) + e ⁻
	reduction half-reaction
	Ag ⁺ (aq) + e ⁻ > Ag

	Given the reaction:
	$\underline{\qquad}Cl_2(g) + \underline{\qquad}Fe^{2+}(aq) > \underline{\qquad}Fe(s) + \underline{\qquad}Cl^-(aq)$
	When the equation is correctly balanced using smallest whole numbers, the coefficient of Cl ⁻ will be
	A) 1 (B) 2 C) 6 D) 7
	Which simple oxidation-reduction reaction is <i>not</i> correctly balanced?
	A) $\operatorname{Sn}(s) + \operatorname{Cu}^{2+}(aq) \rightarrow \operatorname{Cu}(s) + \operatorname{Sn}^{2+}(aq)$
15. I can balance a redox	B) Ni(s) + Sn ²⁺ (aq) \rightarrow Sn(s) + Ni ²⁺ (aq)
reaction.	$\bigcirc 2 I^{-}(aq) + Fe^{3+}(aq) \rightarrow Fe^{2+}(aq) + I_2(s)$
	D) 2 I ^{-(aq)} + Hg ^{2+(aq)} \rightarrow Hg(ℓ) + I ₂ (s)
	Given the balanced equation:
	3 Fe ³⁺ (aq) + Al(s) \rightarrow 3 Fe ²⁺ (aq) + Al ³⁺ (aq)
	What is the total number of moles of electrons lost by 2 moles of Al(s)?
	A) 1 mole B) 6 moles
	C) 3 moles D) 9 moles
	Which balanced equation represents a redox reaction?
	A) $AgNO_3(aq) + NaCI(aq) \rightarrow AgCI(s) + NaNO_3(aq)$
	B) $H_2CO_3(aq) \rightarrow H_2O(\ell) + CO_2(g)$
	C) NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H ₂ O(ℓ)
	$D Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
16. I can identify a redox reaction from a list of chemical	
reactions.	
	Which balanced equation represents a redox reaction?
	(A) $PCl_5 \rightarrow PCl_3 + Cl_2$
	B) $\text{KOH} + \text{HCl} \rightarrow \text{KCl} + \text{H}_2\text{O}$
	C) LiBr \rightarrow Li ⁺ + Br ⁻ D) Ca ²⁺ + SO ₄ ²⁻ \rightarrow CaSO ₄
	D) $Ca^{-1} + 5O_4^{-1} \rightarrow CaSO_4$ Which of the following elements is most likely to react?
17. From a list of given list of	A) Cu B) Al
elements, I can determine which	B) Al C) Li
element is most active.	D) Mg
	1

	The two types of electroch	nemical cells are:	
18. I can state the two types of electrochemical cells.	voltaicand	electrolytic	
		Voltaic	Electrolytic
	Components	salt bridge anode cathode electrolyte	power supply anode cathode electrolyte
19. I can compare the two types of electrochemical cells in	Oxidation occurs at the	anode	anode
terms of: components, location of oxidation, location of reduction, direction of electron flow,	Reduction occurs at the	cathode	cathode
conversion between electrical and chemical energy, and spontaneity	Electrons flow from	anode to cathode	anode to cathode
of reaction.	Energy conversion that occurs in this cell	chemical energy is converted to electrical energy	electrical energy is converted to chemical energy
	Is this reaction spontaneous or does it require an outside power source to happen?	spontaneous	requires and outside power source
20. I can state the purpose of the salt bridge in a voltaic cell.	The purpose of the salt bri	dge is to allow for the mi §	gration/movement of ions
21. Given an electrochemical cell, I can predict the direction of electron flow.	The diagram below represents an ele Salt bridge Zn Zn ²⁺ (aq) 1.0 M What occurs when the switch is clos A) Zn is reduced. B) Cu is oxidized. C) Electrons flow from Cu to Zn. D) Electrons flow from Zn to Cu.	Cu	
22. I can explain, in terms of atoms and ions, the changes in mass that take place at the anode and cathode of an electrochemical cell.	Explain, in terms of atoms during the operation of an The mass of the cathode i reduced to atoms and bed Explain, in terms of atoms during the operation of an The mass of the anode de oxidized into ions and bed	electrochemical cell. ncreases because ions fro come part of the cathode. and ions, why the mass of electrochemical cell. creases because atoms fro	m the solution get the anode decreases om the cathode get

Unit 10: Chemical Reactions

If you can do all the things listed below, you are ready for the Unit 10 test.

Write the chemical formula for the following compounds:
sodium bromide <u>NaBr</u> lithium selenide <u>Li₂Se</u>
iron (III) fluorideFeF3vanadium (V) oxideV2O5
Write the IUPAC name for the following compounds:
write the for the following compounds.
CrOchromium (II) oxide
MgI ₂ magnesium iodide
Write the chemical formula for the following compounds:
Write the chemical formula for the following compounds:
calcium oxalate <u>CaC₂O₄</u>
calcium oxalate <u>CaC₂O₄</u>
calcium oxalate <u>CaC₂O₄</u>
calcium oxalate <u>CaC₂O₄</u> nickel (II) thiosulfate <u>NiS₂O₃</u>
calcium oxalate <u>CaC₂O₄</u> nickel (II) thiosulfate <u>NiS₂O₃</u> Write the IUPAC name for the following compounds:
calcium oxalate <u>CaC₂O₄</u> nickel (II) thiosulfate <u>NiS₂O₃</u>
calcium oxalate CaC_2O_4 nickel (II) thiosulfate NiS_2O_3 Write the IUPAC name for the following compounds: Sn(C_2H_3O_2)_2 tin (II) acetate
calcium oxalate CaC2O4 nickel (II) thiosulfate NiS2O3 Write the IUPAC name for the following compounds: $Sn(C_2H_3O_2)_2$ tin (II) acetate $(NH_4)_3PO_4$ ammonium phosphate
calcium oxalate CaC_2O_4 nickel (II) thiosulfate NiS_2O_3 Write the IUPAC name for the following compounds: Sn(C_2H_3O_2)_2 tin (II) acetate
calcium oxalate CaC_2O_4 nickel (II) thiosulfate NiS_2O_3 Write the IUPAC name for the following compounds: Sn(C_2H_3O_2)_2 tin (II) acetate (NH_4)_3PO_4 ammonium phosphate The three types of chemical formulas are:
calcium oxalate CaC2O4 nickel (II) thiosulfate NiS2O3 Write the IUPAC name for the following compounds: $Sn(C_2H_3O_2)_2$ tin (II) acetate $(NH_4)_3PO_4$ ammonium phosphate
calcium oxalate CaC_2O_4 nickel (II) thiosulfate NiS_2O_3 Write the IUPAC name for the following compounds: Sn(C_2H_3O_2)_2 tin (II) acetate (NH_4)_3PO_4 ammonium phosphate The three types of chemical formulas are:
14. I can define empirical formula, molecular formula, and hydrate.
--
15. Given the empirical formula and the molar mass, I can determine the molecular formula of a compound.
16. I can use particle diagrams to show conservation of mass in a chemical equation.
17. I can balance a chemical equation showing conservation of mass using the lowest whole number coefficients.
18. Given a partially balanced equation, I can predict the missing reactant or product.
19. Given a list of chemical reactions, I can classify them as being a synthesis reaction, decomposition reaction, single replacement reaction, or double replacement reaction.

20. Given a balanced equation, I can state the mole ratios between any of the reactants and/or products.	Given the following balanced equation, state the mole ratios between the requested substances. $C_3H_8(g) + 5O_2(g) - 3CO_2(g) + 4H_2O(l)$ The mole ratio between C_3H_8 and O_2 is <u>1</u> <u>C_3H_8</u> : <u>5</u> <u>O_2</u> . The mole ratio between C_3H_8 and CO_2 is <u>1</u> <u>C_3H_8</u> : <u>3</u> <u>CO_2</u> . The mole ratio between C_3H_8 and H_2O is <u>1</u> <u>C_3H_8</u> : <u>4</u> <u>H_2O</u> . The mole ratio between CO_2 and O_2 is <u>3</u> <u>CO_2</u> : <u>5</u> <u>O_2</u> . The mole ratio between H_2O and CO_2 is <u>4</u> <u>H_2O</u> : <u>3</u> <u>CO_2</u> .		
21. I can define stoichiometry.	Definition: stoichiometry – the calculations of the quantities in chemical reactions		
22. Given the number of moles of one of the reactants or products, I can determine the number of moles of another reactant or product that is needed to completely use up the given reactant/product.	Using the equation from question #20, determine how many moles of O ₂ are needed to completely react with 7.0 moles of C ₃ H ₈ . 35 moles Using the equation from question #20, determine how many moles of CO ₂ are produced when 7.0 moles of C ₃ H ₈ completely react. 21 moles		
23. Given the mass or volume of one of the reactants or products, I can determine the mass or volume of another reactant or product that is needed to completely use up the given reactant/product.	Using the equation from question #20, determine how many liters of O ₂ at STF are needed to react completely with 88.0 g of C ₃ H ₈ . 224 L Using the equation from question #20, determine how many grams of H ₂ O are produced when 88.0 g of C ₃ H ₈ completely react. 72 g		

Unit 11: Bonding & IMF

If you can do all the things listed below, you are ready for the Unit 11 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
8. I can still do everything	
from Unit 8.	
9. I can still do everything	
from Unit 10.	
10. I can state the three	The three types of chemical bonds are:
types of chemical bonds.	ionic,covalent, and
types of chemical bonus.	
	metallic
11. I can state the number of	
valence electrons that an atom	Atoms are most stable when they have <u>8</u> valence electrons.
attains to be most stable.	
12. I can state the two types	The two types of compounds are <u>ionic</u> and
of compounds.	
	molecular
	Definition:
	ionic bond
12 Lean define ionic hand	
13. I can define ionic bond, covalent bond, and metallic bond	covalent bond
in terms of the types of elements	
(metals, nonmetals) from which	
they are formed.	
	metallic bond

	Definition:	
14. I can define ionic and covalent bonds based on what happens to the valence electrons.	In an <u>ionic bond</u> , the valence electrons of the <u>metal</u> are	
	<u>transferred</u> to the <u>nonmetal</u> so that each atom attains a stable octet (like noble gases).	
	In a <u>covalent bond</u> , the valence electrons of the two <u>nonmetals</u>	
	are <u>shared</u> so that each atom attains a stable octet (like noble gases).	
15. I can explain TICS as it relates to chemical bonding.	TICS stands for <u>transferred ionic, covalent shared</u> . It helps me remember what happens to the electrons in each type of bond.	
	Explain, in terms of valence electrons, why the bonding in methane ($\rm CH_4$) is similar to the bonding in water ($\rm H_2O$).	
	In both $CH_4 \& H_2O$ the valence electrons are shared to form covalent bonds.	
16. In terms of valence electrons, I can find similarities		
and differences between the bonding in several substances.	Explain, in terms of valence electrons, why the bonding in HCl is different than that bonding in NaCl .	
	In HCl the valence electrons are shared to form a covalent bond. In NaCl, the valence electrons are transferred from the Na to the Cl to form an ionic bond.	
	Draw Lewis dot diagrams for the following ionic compounds.	
17. I can draw a Lewis dot	LiBr CaCl ₂	
diagram to represent an ionic compound.	[Li]⁺[:Br:] ⁻ [:Ca] ^{*+} [:Ci!] ⁻	
	Draw Lewis dot diagrams for the following molecular substances.	
18. I can draw a Lewis dot diagram to represent a molecular (covalently bonded) compound.	$H_{2O} \stackrel{O}{H} H_{H} CO_{2} O = C = O$	

	In a single covalent bond, <u>2</u> electrons are shared.			
19. I can state the number				
of electrons that are shared in	In a double covalent bond, <u>4</u> electrons are shared.			
single and multiple covalent				
bonds.	In a triple covalent bond, <u>6</u> electrons are shared.6			
	Lewis dot diagrams for ionic compounds have brackets because			
20. I can explain why the	Lewis dot diagrams for forme compounds have brackets because			
Lewis dot diagrams of ionic	the elements involved in the bond have charges .			
compounds have brackets and the				
Lewis dot diagrams of molecular	Lewis dot diagrams for molecular compounds do NOT have brackets because			
compounds do not.				
	_the electrons are shared and there are no charges			
21. I can state the type of				
bonding that occurs in the	Polyatomic ions have <u>covalent</u> bonding because			
polyatomic ions (Reference Table				
E) and explain why they have that	nonmetals are sharing valence electrons.			
type of bonding.	State the type(s) of bonding in the following compounds:			
22. Given the chemical				
formula for a compound, I can	NaCl_ionicCOcovalent			
determine the type(s) of bonding				
in the compound.	HgmetallicNa_PO_4ionic&covalent			
23. I can explain and apply				
the meaning of BARF as is applies	BARF stands for <u>"broken absorbed, released formed"</u>			
to chemical bonding.				
	This means that when a bond is FORMED, energy is <u>released</u>			
	and when a bond is BROKEN, energy is <u>absorbed</u> .			
	Given the balanced equation:			
	$N + N - N_2$			
	Which statement describes the process represented by this equation?			
	A) A bond is formed as energy is absorbed.			
	 A bond is formed as energy is released. A bond is broken as energy is absorbed. 			
	D) A bond is broken as energy is released.			
24. I can explain the				
difference between a polar	Polar covalent bonds are formed when <u>two different</u>			
covalent bond and a nonpolar	nonmetals share electrons unevenly.			
covalent bond in terms of the				
types of nonmetals involved.	Nonpolar covalent bonds form when <u>two of the same</u>			
	nonmetals share electrons evenly.			
25. I can explain how to	The degree of polarity of a covalent bond is determined by the			
determine the degree of polarity				
of a covalent bond.	_electronegativity differencebetween the			
	elements.			

26. I can explain why one covalent bond is more or less polar than another covalent bond, based on electronegativity difference.	Explain, in terms of electronegativity difference, why the bond between carbon and oxygen in a carbon dioxide molecule is less polar than the bond between hydrogen and oxygen in a water molecule. The difference in electronegativity between carbon and oxygen is less than the difference in electronegativity between hydrogen and oxygen so the CO bond is less polar.
27. I can define symmetrical and asymmetrical.	<u>Definition:</u> symmetrical – molecule that has the at least two lines of symmetry
	asymmetrical – molecule that does not have lines of symmetry
28. I can state, in order, the	When determining if a MOLECULE is polar or non-polar, the first question to
three questions that are asked to determine if a MOLECULE is polar or nonpolar.	ask is"Is there more than one polar bond?"
	When determining if a MOLECULE is polar or non-polar, the second question to
	ask is "Does the central atom have unshared pairs of electrons?"
	When determining if a MOLECULE is polar or non-polar, the third question to
	ask is"Is the molecule symmetrical?"
29. I can explain and apply the meaning of SNAP as it applies	SNAP means"symmetrical nonpolar, asymmetrical polar"
to determining molecule polarity.	Why is a molecule of ${\rm CH}_4$ nonpolar even though the bonds between the carbon and hydrogen are polar?
	A) The shape of the CH_4 molecule is symmetrical.
	B) The shape of the CH_4 molecule is asymmetrical.
	C) The CH_4 molecule has an excess of electrons.
	D) The CH ₄ molecule has a deficiency of electrons.
	Explain, in terms of charge distribution, why a molecule of water ($\rm H_2O$) is polar.
	A water molecule has asymmetrical distribution of charge.

30. I can determine if a	Determine which molecules are polar and which are nonpolar. Justify your			
molecular is polar or nonpolar.	answer.			
	H ₂ O	CO ₂		
	polar; central atom has	nonpolar; symmetrical		
	unshared electrons			
	I ₂	CH ₄		
	12			
	nonpolar; no polar bonds	nonpolar; symmetrical		
31. I can explain and apply	"Like dissolves like" means			
the expression "like dissolves like"				
and give an example.	if two substances have the same polarity (dissolve in one another	polar or nonpolar), they will		
	dissolve in one another			
	An example of "like dissolving like" is <u>ar</u>	nmonia dissolving in water		
	Explain, in terms of molecular polarity, why ammonia is more soluble than			
	methane in water at 20 ⁰ C at standard pressure.			
	Both ammonia and water are polar so ammonia dissolves in water. Methane			
	is nonpolar and therefore will not dissolve well in polar water.			
32. I can define	Definition:			
intramolecular forces and	Intramolecular forces – forces of attraction	within a molecule		
intermolecular forces and give				
examples of each.				
	Examples: ionic bonds and covalent bonds			
	Intermolecular forces – forces of attraction	between molecules		
	Examples: dipole-dipole, London dispersion	n forces (van der waals), hydrogen		
	bonds			
33. I can list the				
intramolecular forces from	Strongast souglant hands	ionic bonds Markast		
STRONGEST to WEAKEST.	Strongestbonds>	ionic bonds Weakest		

34. I can list the intermolecular forces from	Strongest hydrogen bonds >dipole-dipole >		
STRONGEST to WEAKEST.	London dispersion forces (van der waals) Weakest		
35. I can state 8 physical properties of substances that are dependent on the type of bonding	Eight physical properties that are dependent on the type of bonding and the strength of the IMF are:		
in the substance and the strength of the IMF.	1. <u>physical state</u> 2. <u>melting point</u>		
	3. boiling point 4. conductivity		
	5. <u>vapor pressure</u> 6. <u>malleability</u>		
	7. <u>solubility</u> 8. <u>hardness</u>		
36. I can state the relationship between polarity and IMF strength.	As the polarity of the molecule <u>increases</u> , the strength		
	of the IMF <u>increases</u> .		
37. I can state the			
relationship between size of the molecule and IMF strength.	As the size of the molecule <u>increases</u> , the strength		
	of the IMF <u>increases</u> .		
38. Given the physical state	At STP, iodine (I_2) is a crystal and fluorine (F_2) is a gas. Compare the strength of the IN45 in a complete of F_2		
of some substances, I can compare the relative strength of the IMF.	of the IMF in a sample of ${\rm I}_2$ at STP to the strength of the IMF in a sample of ${\rm F}_2$ at STP.		
	F ₂ has weaker IMF than I ₂ .		
39. Given the boiling points (or freezing points) of some substances, I can compare the	At STP, CF_4 boils at -127.8°C and NH_3 boils at -33.3°C. Which substance has stronger IMF? Justify your answer.		
relative strength of the IMF.			
	NH ₃ has stronger IMF because NH ₃ has a higher boiling point.		
40. I can explain and apply			
the meaning of "Hydrogen bonding is FON".	"Hydrogen bonding is FON" means <u>Hydrogen bonding occurs when the</u>		
	_molecule contains fluorine, oxygen, or nitrogen.		
	Which compound has hydrogen bonding between its molecules?		
	A) CH ₄ B) CaH ₂ C) KNO ₃ D)H ₂ O		

41. I can define normal	Definition:		
boiling point, vapor pressure,	normal boiling point - the temperature at which a substance boils at 1 atm		
volatile, and nonvolatile.	pressure		
	vapor pressure - the pressure exerted by a vapor in equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system volatile – easily evaporated at normal temperatures		
	nonvolatile – not easily evaporated at normal temperatures		
42. I can determine the	What is the vapor pressure of ethanol at 56 ⁰ C?		
vapor pressure of ethanol, ethanoic acid, propane, or water at a given temperature.	49 kPa		
43. I can state the			
relationship between the strength	As the strength of IMF <u>increases</u> , vapor pressure		
of IMF and vapor pressure.			
	increases		
44. I can explain the how adding a nonvolatile solute to a	When a nonvolatile solute is added to a solvent, the freezing point of the		
pure solvent affects the freezing	solvent is lowered because the solute disrupts		
point of the solvent.			
	_crystal formation		
	The more solute that is added, the <u>lower</u> the feeezing point gets.		
45. I can explain the how	When a nonvolatile solute is added to a solvent, the boiling point of the		
adding a nonvolatile solute to a pure solvent affects the boiling	solvent is raised because the solute increases		
point of the solvent.	solvent <u>is raised</u> because the solute <u>increases</u>		
. 	_attractions between solute and solvent particles		
	The more solute that is added, the <u>higher</u> the boiling point gets.		

AC Loop state E shusian	First should be a set in the state set of the set of th		
46. I can state 5 physical	Five physical properties of ionic substances are:		
properties of ionic substances.			
	1. <u>have ionic bonding</u>		
	2. have high mp		
	U+		
	3. <u>have high bp</u>		
	4. low vapor pressure		
	 A standard standard state of the field state of the state		
	5. <u>conduct electricity as liquids or aqueous</u>		
47. I can identify a substance	A solid substance was tested in the laboratory. The results are shown below.		
as "ionic" based on its properties.			
	*dissolves in water		
	*is an electrolyte		
	* has a high melting point		
	Based on these results, the solid substance could be		
	Based on these results, the solid substance could be		
	(A) (I)		
	A) Hg		
	B)AuCl		
	C) CH ₄		
	D) $C_{12}H_{22}O_{11}$		
	Based on bond type, which compound has the highest melting point?		
	A) CH_4 B) $C_{12}H_{22}O_{11}$ CNaCl D) C_5H_{12}		
48. I can state 5 physical	Five physical properties of molecular substances are:		
properties of molecular			
substances.	1. have covalent bonding		
Substances.			
	2 have low mp		
	2. have low mp		
	3. <u>have low bp</u>		
	4. <u>high vapor pressure</u>		
	5. do NOT conduct electricity		

49. I can identify a substance as "molecular" based on its properties.	A chemist performs the sa white crystalline solids, A in the table below.			
		Solid A	Solid B	
	Melting Point	High, 801°C	Low, decomposes at 186°C	
	Solubility in H ₂ O (grams per 100.0 g H ₂ O at 0°C)	35.7	3.2	
	Electrical Conductivity (in aqueous solution)	Good conductor	Nonconductor	
	 B) both solids contain on C) solid A contains only contains only ionic both solid A contains only contains only contains only covalen 	covalent bond onds ionic bonds ar t bonds	s and solid <i>B</i> id solid <i>B</i>	
	Which terms describe a suppoint and poor electrical of		as a low melting	
	A) covalent and metallic			
	 B) covalent and molecular C) ionic and molecular 			
	D) ionic and metallic			

Unit 12: Reaction Rates & Equilibrium

If you can do all the things listed below, you are ready for the Unit 12 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything from Unit 1.	
2. I can still do everything from Unit 2.	
3. I can still do everything from Unit 3.	
4. I can still do everything	
from Unit 4. 5. I can still do everything	
from Unit 5.	
6. I can still do everything from Unit 6.	
7. I can still do everything from Unit 7.	
8. I can still do everything from Unit 8.	
9. I can still do everything	
from Unit 10.	
10. I can still do everything from Unit 11.	
11. I can define effective collision and collision theory	Definition: effective collision – a collision between two reactants that have the proper orientation and sufficient energy to overcome the activation energy barrier collision theory – substances must sustain effective collisions in order for chemical reactions to occur
12. I can state and apply the relationship between temperature and reaction rate in terms of collision theory.	As the temperature <u>increases</u> , the reaction rate for most chemical reactions <u>increases</u> because there are <u>more</u> effective collisions between particles. Given the reaction: $2Mg(s) + O_2(g)> 2MgO(s)$ At which temperature would the reaction occur at the greatest rate? A) $0^{\circ}C$ B) $15^{\circ}C$ C) $95^{\circ}C$ D) 273K

13. I can state and apply the relationship between surface area and reaction rate in terms of collision theory.	As the surface area <u>increases</u> , the reaction rate <u>increases</u> because there are <u>more</u> effective collisions between particles. At STP, which 4.0 g sample of Zn(s) will react most quickly with dilute hydrochloric acid? A) lump B) bar Opowdered D) sheet metal	
14. I can state and apply the relationship between concentration and reaction rate in terms of collision theory.	As the concentration <u>increases</u> , the reaction rate <u>increases</u> because there are <u>more</u> effective collisions between particles. At 20 ^o C, a reaction between powdered Zn(s) and hydrochloric acid will occur most quickly if the concentration of the HCl is A) 1.0 M B) 1.5 M C) 2.5 M D2.8 M	
15. I can state the unit used to measure energy.	Energy is measured in <u>joules</u> .	
16. Based on the location of the energy term, I can determine if the reaction is exothermic or endothermic.	 Given the following balanced equation: I + I> I₂ + 146.3 kJ Is this reaction exothermic or endothermic? Justify your answer. Exo. Energy is a product. 	
17. I can use Table I to determine if a reaction is exothermic or endothermic.	Which balanced equation represents an endothermic reaction? A) $C(s) + O_2(g) \rightarrow CO_2(g)$ B) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$ C) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ D) $N_2(g) + O_2(g) \rightarrow 2NO(g)$	

19. I can define potential	Definitions:
energy diagram, reaction	potential energy diagram – a graph that shows the changes in potential
coordinate, PE _{reactant} , PE _{product} ,	energy over the course of a chemical reaction.
heat of reaction (Δ H), activation	
energy, catalyst.	
	reaction coordinate -shown on the X-axis of a potential energy diagram, it
	indicates the reaction pathway
	PE _{reactant} – potential energy of the reactant
	PE _{product} – potential energy of the product
	heat of reaction (Δ H) – potential energy of the products minus the potential
	energy of the reactants
	activation energy – the amount of energy that must be added to the reactants
	to overcome the energy barrier so the reaction will happen
	catalyst – a substance that speeds up the rate of a chemical reaction by
	allowing it to occur via an alternate pathway that requires less energy
	entropy –a measure of the system's disorder
20. Given a potential energy	Give the potential energy diagram below, determine if the reaction is
diagram, I can determine if the	exothermic or endothermic. Justify your answer.
reaction is exothermic or endothermic.	
endotnermic.	
	Potential Energy
	ŭ
	Reaction Coordinate
	A+D → G
	Endo. The products have more energy than the reactants
	Endo. The products have more energy than the reactants.
	1

25. Given a balanced equation, I can determine if the reaction results in an overall increase or decrease in entropy.	Which reaction results in an increase in entropy? A) $CO_2(g) \rightarrow CO_2(s)$ B) $H_2O(\ell) \rightarrow H_2O(s)$ C) $Ca(s) + 2 H_2O(\ell) \rightarrow Ca(OH)_2(aq) + H_2(g)$ D) $NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$
	Which equation shows an increase in entropy? A) $CO_2(g) \rightarrow CO_2(s)$ B) $CO_2(\ell) \rightarrow CO_2(g)$ C) $CH_3OH(\ell) \rightarrow$ $CH_3OH(s)$ D) $CH_3OH(g) \rightarrow$ $CH_3OH(\ell)$
	Which reaction has the greatest increase in entropy? (A) $2 H_2O(\ell) \rightarrow 2 H_2(g) + O_2(g)$ (B) $2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g)$ (C) $H_2O(g) \rightarrow H_2O(\ell)$ (D) $H_2O(\ell) \rightarrow H_2O(s)$
26. I can define forward reaction, reverse reaction, reversible reaction, and closed system	Definitions: forward reaction – the chemical reaction read from left to right
	reverse reaction – the chemical reaction read from right to left
	reversible reaction – a chemical reaction that can proceed from both left to right and right to left
	closed system – a system in which reactants and products are trapped and may not enter or leave
27. I can state the three types of equilibrium.	The three types of equilibrium are: <u>Phase</u> equilibrium
	<u>Chemical/reaction</u> equilibrium and <u>Solution</u> equilibrium

28. I can state two conditions that apply to all systems at equilibrium.	In a system at equilibrium the <u>rate</u> reaction must be <u>equal</u> <u>concentrations</u>		
29. Given a list of reactions, I can identify reactions that show equilibrium (chemical, phase, or solution).	Which balanced equation represents phase equilibrium? A) $H_2(g) + I_2(s) <> 2HI(g)$ (b) $I_2(s) < I_2(s) <> I_2(g)$ C) $KCI(s) < \frac{H_2O}{-2>} KCI(aq)$ D) $2KCI(s) + 3O_2(g)> 2KCIO_3$ Which balanced equation represents solution equilibrium? A) $H_2(g) + I_2(s) <> 2HI(g)$ B) $I_2(s) <> I_2(g)$ (C) $KCI(s) < \frac{H_2O}{-2->} KCI(aq)$ D) $2KCI(s) + 3O_2(g)> 2KCIO_3$ Which balanced equation represents chemical equilibrium? Which balanced equation represents chemical equilibrium? (D) $2KCI(s) + I_2(s) <> 2HI(g)$ B) $I_2(s) <> I_2(g)$ (C) $KCI(s) < \frac{H_2O}{-2->} KCI(aq)$ D) $2KCI(s) <> I_2(g)$ (D) $I_2(s) <> I_2($		
30. In terms of saturation, I can describe a solution that is at equilibrium.	In terms of saturation, a solution that is at equilibrium must besaturated		
31. I can state LeChatelier's Principle.	LeChatelier's Principle states when subjected to a stress, systems at equilibrium will shift to relieve the stress		
32. Given a balanced equation at equilibrium, I can predict the direction of shift in the equilibrium when the temperature, concentration, or pressure is changed or if a catalyst is added.	Given the reaction at equilibrium: $2SO_2(g) + O_2(g) <> 2SO_3(g) + 392kJ$ Predict the direction of shift in the equilibrium (right, left, no shift) when the following changes are made to the system.ChangeDirection of ShiftIncrease concentration of SO2rightIncrease concentration of SO3left		
	Increase temperature Increase pressure Add a catalyst	left right no shift	

Unit 13: Organic Chemistry

If you can do all the things listed below, you are ready for the Unit 13 test.

Place a checkmark next to each item that you can do! If a sample problem is given, complete it as evidence.

1. I can still do everything from Unit 1.	
2. I can still do everything	
from Unit 2.	
3. I can still do everything	
from Unit 3.	
4. I can still do everything	
from Unit 4.	
5. I can still do everything	
from Unit 5.	
6. I can still do everything	
from Unit 6.	
7. I can still do everything	
from Unit 7.	
8. I can still do everything	
from Unit 8.	
9. I can still do everything	
from Unit 10.	
10. I can still do everything	
from Unit 11.	
11. I can still do everything	
from Unit 12.	
	Definitions:
	organic compound – all carbonate containing compounds except CO, CO ₂ ,
	and carbonates
	saturated hydrocarbon – a compound containing only C and H in which each
	carbon atom has 4 single bonds
12. I can define organic	
compound, saturated	
	unsaturated hydrocarbon - a compound containing only C and H in which
compound, saturated	unsaturated hydrocarbon - a compound containing only C and H in which there is at least one double bond (possibly triple) between C atoms
compound, saturated hydrocarbon, unsaturated	
compound, saturated hydrocarbon, unsaturated	
compound, saturated hydrocarbon, unsaturated	there is at least one double bond (possibly triple) between C atoms
compound, saturated hydrocarbon, unsaturated	there is at least one double bond (possibly triple) between C atoms isomertwo organic compounds that have the same molecular formula, but
compound, saturated hydrocarbon, unsaturated	there is at least one double bond (possibly triple) between C atoms isomer –two organic compounds that have the same molecular formula, but different structural formula and therefore different physical and chemical
compound, saturated hydrocarbon, unsaturated	there is at least one double bond (possibly triple) between C atoms isomertwo organic compounds that have the same molecular formula, but
compound, saturated hydrocarbon, unsaturated	there is at least one double bond (possibly triple) between C atoms isomer –two organic compounds that have the same molecular formula, but different structural formula and therefore different physical and chemical
compound, saturated hydrocarbon, unsaturated	there is at least one double bond (possibly triple) between C atoms isomer –two organic compounds that have the same molecular formula, but different structural formula and therefore different physical and chemical

	Draw the complete structural formula for $CH_3CH_2CH_2CH_2CH_3$.	
	н н н н	
13. I can expand a		
condensed structural formula to		
show the structural formula of an organic compound.	Draw the complete structural formula for CH ₃ CHCHCH ₃ .	
organic compound.		
	c = c - c - h	
14. I can state the name and	The element that is capable of forming rings, chains, and networks is	
symbol of the element that is		
capable of forming rings, chains,	carbon Its symbol isC	
and networks.	HONC1234 tells me that	
	Hydrogen forms 1 bond. Oxygen forms 2 bonds. Nitrogen forms 3 bonds.	
	Carbon forms 4 bonds.	
15. I can explain the meaning	Which structural formula <i>correctly</i> represents a hydrocarbon molecule?	
of and apply HONC1234.	A) H H B L L	
	н н н н С) н ц D) ц ц	
	H = C = C	
	H O H H	
16. Given the formula, I can	Which formula represents a hydrocarbon?	
determine if a compound is a	A) CH ₃ CH ₂ CH ₂ CHO B) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	
hydrocarbon or not.	C) CH ₃ CH ₂ CH ₂ COOH D) CH ₃ CH ₂ COOCH ₃	
	Determine how many carbon atoms are in each of the following compounds:	
17. Given the name, I can		
use Reference Table P to determine how many carbons	decane <u>10</u> ethene <u>2</u>	
atoms are in a compound.	3-nonene91-pentyne5	
	Determine the homologous series of hydrocarbons to which each of the	
18. Given the name, I can use Reference Table Q to	following belongs:	
determine to which class of	decanealkane2-decenealkene	
hydrocarbons a compound		
belongs.	3-nonenealkene1-pentynealkyne	
	Determine if each of the following is a saturated or unsaturated hydrocarbon.	
19. Given the name, I can		
determine if the hydrocarbon is	decane <u>sat</u> ethene <u>unsat</u>	
saturated or unsaturated.	3-noneneunsat1-pentyneunsat	

	Determine the homologous series of hydrocarbons to which each of the
20. Given the formula, I can determine to which homologous series a hydrocarbon belongs.	following belongs:
	H H H H H—C—C—C—C—H H H H H belongs to the <u>alkane</u> series.
	$\begin{array}{ccc} H & H \\ H - C - C \equiv C - C - H \\ H & H \end{array}$ belongs to the <u>alkyne</u> series.
	H H H H H H H H H H H H H H H H H H H
	Determine if each of the following is a saturated or unsaturated hydrocarbon.
21. Given the formula, I can determine if a hydrocarbon is saturated or unsaturated.	CH ₃ CH ₂ CH ₂ CH ₃ <u>sat</u>
	CH ₃ CHCHCH ₃ nsat
	Determine the number of hydrogen atoms in each of the following.
22.Given the name, I can use	decense 22 devices 0
Reference Table Q to determine how many hydrogen atoms the	decane <u>22</u> 1-butene <u>8</u>
hydrocarbon contains.	3-nonene <u>18</u> 1-pentyne <u>18</u>
23. Given a list of compounds, I can determine which	Given a formula representing a compound: $\begin{array}{c} 0 & H & H & H \\ \parallel & 1 & 1 & 1 \\ H & -C - C - CC - H \\ 1 & 1 & 1 \\ H & H & H \end{array}$ Which formula represents an isomer of this compound? A) H & H & H & O \\ H & -C - C - C - C - H \\ H & -C - C - C - C - H \\ H & - H & H \\ H & - H & H \\ H & - H & H \\ \end{array} (B) H & O & H & H \\ H & - H & H \\ \end{array}
ones are isomers.	$\begin{array}{c} H - C - C - C - H \\ H - C - C - C - H \\ H + H \\ H + H \\ H \\ \end{array}$ $\begin{array}{c} C \end{pmatrix} H + H + O \\ H - C - C - C - C - OH \\ H + H \\ H \\ H \\ \end{array}$ $\begin{array}{c} H \\ \end{array}$

	Name the following organic compounds.		
26. I can use Reference Tables P & R and IUPAC nomenclature to name simple compounds in any of the classes of	нннн ссн 		
	butane	butanone	butanoic acid
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} H & H & H & H & H \\ H - C - C - C - C - N \\ H & H & H & H \\ \end{array}$ $\begin{array}{c} H & H & H \\ 1 - butanamine \\ H - C - C - C - N \\ H - C - C - C - N \\ \end{array}$
organic compounds.	H—Ċ—C≡C—Ċ—H H H		
	-2-butyne	butanal	butanamide
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} H & O & H & H \\ H - C - O - C - C - C - H \\ H & H & H \\ methylpropanoate \\ H \\ H & H & H \end{array}$	$\begin{array}{c} \begin{array}{c} H & H & H & H \\ H & -C & -C & -C & -O & -C & -H \\ H & -C & -C & -D & -C & -H \\ H & H & H & H & H \end{array}$ methylpropyl ether
 F stands for <u>fermentation</u>. This type of organic reaction results from a reaction of <u>a sugar</u> to form <u>carbon dioxide</u> and <u>ethanol</u> typically requires a catalyst, in the form of an enzyme to occur. S stands for <u>substitution</u>. This type of organic reaction happens when <u>saturated</u> hydrocarbons replace one of the <u>hydrogens</u> for some other element (often halide). C stands for <u>combustion</u>. In this type of organic reaction a <u>hydrocarbon</u> reacts with <u>oxygen</u> to form <u>carbon dioxide</u> and <u>water</u>. It is an exothermic reaction. A stands for <u>addition</u>. In this type of organic reaction. 		to form <u>ethanol</u> It yme to occur. . This type of organic hydrocarbons me other element (often a this type of organic reacts with and action.	
	an <u>unsatur</u>	ated hydrocarbon	becomes a
	saturated	when when the second seco	en the double bond breaks

	P stands for <u>polymerization</u> . In this type of organic	
	reaction many <u>monomers</u> are linked together to form a	
	polymer A generalized form of this reaction looks like this	
	Note: N and n are very large numbers equal to about 2000.	
27. I can use F-SCAPES to list and describe the 7 types of organic reactions. (continued)	$n \begin{pmatrix} H \\ H \end{pmatrix} c = c \begin{pmatrix} H \\ H \end{pmatrix} \longrightarrow \begin{pmatrix} H & H \\ I & I \\ - C - C \\ I & I \\ H & H \end{pmatrix}_{n}$	
	E stands for <u>esterification</u> . In this type of organic	
	reaction an <u>alcohol</u> reacts with a	
	<u>organic acid</u> to form an <u>ester</u> and	
	water The products of this reaction are typically fragrant.	
	S stands for <u>saponification</u> . In this type of organic	
	reaction a <u>fat</u> reacts with a <u>base</u> to form	
	<u>soap</u> . You can really "clean up" if you remember this organic	
	reaction.	
	Given the balanced equation for an organic reaction:Given the equation: $C_2H_2 + 2Cl_2 \rightarrow C_2H_2Cl_4$ $\stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}$	
	A) additionB) esterificationC) fermentationD) substitution	
	A) combustion B) esterification C) polymerization D) substitution	
	Given the equation:	
28. Given an equation, I can	$\begin{array}{c} C_{2}H_{6}+Cl_{2} \rightarrow C_{2}H_{5}Cl+HCl \\ \\ O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
identify the type of organic	A) addition involving a saturated hydrocarbon	
reaction that is occurring.	B)addition involving an unsaturated hydrocarbonThis reaction is an example ofC)substitution involving a saturated hydrocarbonA) fermentationB) saponificationD)substitution involving an unsaturated hydrocarbonC) hydrogenationD) esterification	
	Which equation represents fermentation? Which equation represents fermentation? B) $C_2H_6 + Cl_2 \rightarrow C_2H_6Cl + HCl$ B) $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$ C) $CH_3COOH + CH_3OH \rightarrow CH_3COOCH_3 + H_2O$ D) $nC_2H_4 \rightarrow (C_2H_4)n$ Which reaction best represents the complete combustion of ethene? A) $C_2H_4 + HCl \rightarrow C_2H_5Cl$ B) $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ C) $C_2H_4 + 3 O_2 \rightarrow 2 CO_2 + 2 H_2O$ D) $C_2H_4 \rightarrow (C_2H_4)n$ D) $C_2H_4 + H_2O \rightarrow C_2H_5OH$	