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Tihonov’s Theorems for systems of first-order ordinary diffrxential equations containing small Parameters in the derivativea. 

which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAform the mathematical foundation of the stendy-state approximation, are restated. A general procedure for simplifying 

chemical and enzyme reaction kinetics. based on the difference of characteristic time scales. is presented. Korzuhin’s Theorem. 

which makes it possible to approximate any kinetic sysrem by il closed chemical system. is also reported. The notions and 

theorrms are illustrated with examples of Michnehs-Menten enzyme kinetics and of a simple autocatalytic system. Another 

example illustrates how the differences in the rate constants of different elementary reactions may be exploited 10 simplify 

reaction kinetics by using Tihonov’s Theorem. AI1 necessary mathematical notions are explained in the appendices. The most 

simple formulation of Tihonov’s 1st Theorem ‘for beginners’ is also given. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction 

In their recent paper, Kijima and Kijima [I] 

stated in section 1 that “the steady-state assump- 

tion or steady-state treatment in chemical reaction 

kinetics (. _ . ) has been used so far without proof.” 

And once again in section 3 “_ _ . there has been no 

general study on the condition when the steady- 

state approximation holds even on the first-order 

reaction.” 

It seems that the authors are not familiar with 

some important work of such authors as A.N. 

Tihonov, L.S. Pontryagin. A.B. Vasil’eva, V-F. 

Bu:uzov. V.M. Volosov, IS. Gradstein and V. 

Vazov. Especially in Tihonov’s work [2], the 

mathematical problems which are the very basis of 
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Sciences. Bialobrreska 58. 02-32.5 Warsaw. Poland, and from 

FacuItti des Sciences. I’Universitti de Kinshasa. B.P. 190. 
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N.B. In different sources the name of A.N. Tihonov is often 

written as Tikhonov, Tichonov. Tichonoff. Tychonoff. etc. 

the steady-state approximation (i.e.. the theory of 

systems of ordinary first-order differential equa- 

tions (SFO) containing small parameters in the 

derivatives) are considered in a very general 

manner. The theorems he proved therein, called by 

other Soviet authors Tihonov’s Thecrems. may be 

applied to systems with reactions of any order and 

with any number of components. 

In appendix A we reproduce the English 

summary of Tihonov’s paper [2]. by J.L. Massera 

from Mathematical Reviews [3]. 

It is interesting to note that the theory of 

ordinary differential equations with slowly varying 

coefficients (see. for example, ref. 4) is in some 

sense equivalent to the theory of differential equa- 

tions containing small parameters in the deriva- 

tives. For example, the equation 

pdx/dr’=p(r’).r (p” I) (1) 

by the transformation of the independent variab!e 
(time) 

I = 1*/p 
(2) 



is transformed into the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dr/dr = p(pr)x (3) 

where now the new coefficient.p(~f). varies slowly- 

However. the formulation of Tihonov’s Theorems 

has so far been known to the author only in 

Russian f2.5.6] and reported in Polish [7,8]. As far 

as the literature in EngIish is concerned, even in 

the speciahst book by Mtirray [9]_ singtdar per- 

turbation systems are treated heuristically with 

only a brief mention of Tihonov’s rigorous proof 

[2] and a reference to Vasil’eva’s work [lo]. The 

latter seems to be the only source in English (apart 

from the above-mentioned summary [3]) in which 

Tihonov’s Theorem is form&ted and prove (and 

some similar. more sophisticated mathematical 

cases are discussed. everything being treated in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

rather complicated manner): even there the more 

general theorem proven by Tihonov in ref. 2 

(Tihonov’s 2nd Theorem) is not reported at all. 

As the steady-state approximation is w%dely used 

in scientific literature comeming. e.g. chemical 

relaxation (see ref. 11) and enzyme kinetics (see 

r.zf_ 12). we think that it would be interesting to 

restate here Tihonov’s Theorems (without proofs). 

We will follow Tihonov’s original paper [2]. The 

notions used there are well known to the specialist. 

But_ for the convenience of our readers, we give in 

appendix B the definitions of al1 the mathematical 

terms used. 

In ref. 2. Tihonov proved two theorems. one for 

an SFO. not necessarily autonomous (see appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C). containing a smail parameter in some deriva- 

tives. and another for SF0 containing sevt ral small 

parameters in the derivatives_ We shall call them 

Tihonov’s 1st Theorem and Tihonov’s 2nd The- 

orem. respectiveIy. The 1st Theorem is in reality a 

special c&se of the more comphcated 2nd The- 

orem+ However. because of its greater simplicity 

and wide applicability \ve give here also the 1st 

Theorem. Moreover. in appendix D vve provide 

possibly most simple formulation of the 1st The- 

orem (according to ref. 5) ‘for beginners‘. 

2. Tihonov’s 1st Theorem 

Consider an SFO with one small parameter IL: 

~l\/J~=/(.~.~.r) (411) 

pdz/dr= F(x.z.r) (4h) 

and its solution, determined by initial conditions: 

.K(I”) =.x0. z(rO) = z0 (5) 

where X=(X, . . . . . x,), x”=(_Y~,___,x,~) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf= 

(f,. . - . .f,,) are vectors in n-dimensional space, 

whereas z = ( - ~t..._.z,~), z”=(z~,___,z~~), F= 

f &, - - . , F,) are vectors in s-dimensional space. 

Putting p = 0 in eq. 4. one obtains the degezzerute 

Kvsrenr 

ds/dr=j(x.=,r): _x(J~)=_~~ (63) 

z=+(_r.r) (6b) 

where z = +(_K, I) is a root of the system of alge- 

braic equations F(x, z, t) = 0 or 

F;(X.-__r)=o (1=1.....5) (7) 

The system of equations 

d=/dr=F(s.-_.r): =(r”)=z” (8) 

in which both x and t are taken as parameters. is 

called the adjoined sysrenz. Of course. the point 

z = Q(S, r) is an isolated singular point (root) of 

the adjoined system. as all terms on the right-hand 

sides of eq. 8 are nultified at this point. 

We shall assume further that all functions we 

use are continuous ones and that the differential 

equations we consider have uniquely determined 

solutions. 
The aim of the work [2]. i.e., the investigation of 

the solution of the SF0 (eq. 4) with initial condi- 

tions (eq. 5) when p + 0 is summarized in 

When p + 0 the solution of the original system 

(eq. 4). with conditions (eq. 5). tends to the solu- 

tion of the degenerate system (eq. 6) if: 

(1) the root z= +(s, t) is the stabIe root of the 

adjoined system: 

(2) the initial values z0 lie in the domain of 

influence of the root z = Q(X_ I) for initiai values 

(*X0. rO). 

This asymptotic equality remains valid for alI 

times r  for which the solution of the adjoined 

system lies inside the stability domain D of the 

root z = +(s_ r ). 
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(For the definitions of an isolated, stable root 

and of the domain of influence. according to 

Tihonov [2], see appendix B; for the conditions of 

existence, uniqueness and stability of solutions of 

an SF0 see appendix C.) 

This theorem remains valid also if the right-hand 

sides of eq. 4 depend continuously on the parame- 

ter CL, i.e., for the system 

dx/dt=j(x,z,r,p) (4a') 

pdz/dr = F( x, -_ .I, p) (4b’) 

where f and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF are continuous functions of their 

arguments 161. 

As the asymptotic procedure lowers the order 

of the SFO, the initial conditions (eq. 5) generally 

may not be fulfilled by the solutions of the 

asymptotic (degenerate) system. The solution of 

the original system may be approximated by the 

solution of the degenerate system for times t >> rd. 

where t, = ]plnp] [6]. If the asymptotic system is of 

the second order, one may make a complete dis- 

cussion of its, based e.g., on the phase-plane meth- 

ods [S-S]. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATihonov’s 2nd Theorem 

Consider now an SF0 with several small 

parameters p”‘. 

d.r/dr=f(x.=(".....=(m'.t) (93) 

P(‘“.,jr”‘/& = F’/‘(.~,=“‘,_._,;‘“‘. t); (j= l,...,m)(9b) 

and its solution determined by the initial condi- 

tions 

_r(rO)=.G’. $I’(rO)=.+ (_/=l,_._,“I) (10) 

where x = (xz ,..., x,), _x”=(x~,___,x~) and f= 

( f, _ _ _ _ . f, ) are vectors in n-dimensional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspace, 

whereas L(J) = ($‘,_ _ _, p), =0(J) = (g(i),_ _ _, 

=.:(I)) and F(J)= (I?:‘),. _ _, ks:-‘)) are vectors in s,- 

dtmensional spaces. respectively (for i = 1,. . - , zzz )- 

Tihonov investigated the solution of eq. 9 with 

the initial conditions, eq. 10, when all /L’*(I)-+ 0 in 

such a way that 

~~J+“/p’J’+~ (11) 

Putting in eq. 9 p (“I) = 0 one obtains the sitzg&  , 

degetzerate system of the first  order: 

d_r/dr =~(x.=~",...,z~"'.I) (=a) 

#"dz"'/dr= F"'(x.="'.....='m'.I) (j=l.....(m -I)) 

(12b) 

=(m,=*(m,(l.=(I),___.=(m--I)) 

with initial conditions 

(12c) 

.r(rO) =X0; Z(“(Yo)=+” (i=l....,(m-I)) (13) 

where rcrn’ = #D(“*‘(_Y, z(I). . _ _ , z(“‘- -l), t) is a root of 

the system of algebraic equations F(“‘)(r , i (l ), _ _ _ , 
z(““, t) = 0, i.e. 

F:_““(.r,=(” ,.... Z(m). t)=O (/,=I__.._&) 

The system of equations 

(14) 

d;(““/dr = Ftm’(_y. Z(“_..._;(nr’, I); ~(““(0) = +“” (1s) 

in which x, z(I),. . . , z(“‘-“, t are taken as parame- 

ters, is called the adjoined system of the first  order. 

The system is termed doub&  degezzerate if it is a 

singly degenerate system for a degenerate system 

of the first order. The degenerate system of the 

first order has (m - 1) small parameters @’ (i = 

1 ,...,(m- 1)); by putting $“‘-“=O in this sys- 

tem, one obtains a degenerate system of the sec- 

ond order and similarly the definitions of the other 

notions of the second order. Analogously, one 

defines degenerate systems of the k-th order and 

all other notions of the k-th order. 

The behavior of the solution of the original 

system (eq. 9) with initial conditions. eq. 10, when 

all p(j) + 0 are under the condition eq. 11, is 

summarized in 

Tiizorzov’s 2xd Theorenz 

When p(i) -+ 0 the solution of the whole original 

system (eq. 9), with the initial conditions (eq. IO), 

tends to the solution of the degenerate (nz-times 

degenerate) system if: 

(1) the roots z(J) = +(-“, with the aid of which 

the degenerate system is defined, are stable roots 

of adjoined equations of the j-th order for any i 

(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGjGrn); 

(2) the initial values z’(” are in the domain of 

influence of the roots z(i) = +(I’ for initial values 

(X",io~'~,...,Z~~'~-l~, to). 

The asymptotic equalities remain valid for all 



times 1. for which the solution of the totally degen- 

erate system .r( f ). 3”  (t). lies inside the stability 

domains of the roots Z(J) = &I) for ah;. 

4. Chemicals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystems. Korzuhin’s Theorem 

Tihonov’s 1st and 2nd Theorems have a direct 

application in the simplification of kinetic equa- 

tions_ From the law of mass action (LMA) one 

obtains generally an SF0 with right-hand sides 

being polynomials of orders not greater than the 

second. i.e.. the reactions are uni- and bimolecular. 

In some chemical reaction models trimolecular 

reactions are also aswmed (e.g... in the ‘Brussela- 

tor’ model [13]). Lvhich leads to terms of the third 

order. But. for applying Tihonov’s Theorems. 

neither linearity nor positiveness of variables. nor 

even autonomy of the SF0 (see appendis B) is 

required. 

First of all. it is necessary to take into account 

the reagents for which the system is clored - for 

such reagents (or groups of reagents) a mass con- 

servation law (MCL) holds. Biochemical systems 

are very often closed for some macromolecular 

components_ e-g.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAenzymes and enzymatic com- 

piexes: 

where E,, is the total enzyme concentration. E the 

actua! concentration of free enzyme. EC the actual 

concentration of the c--th enzyme complex and the 

sunl.naiion is taken over a11 complexes present in 

the system. For simplicity here after we denote a 

reagent and its molecular concentration by the 

s:tmc s_vmhol. ;t capital Latin letter. If one dif- 

ferentiates eq. 16. one obtains 

dE,‘dr’+ ~dE<,w=O (17) 

From eq. 17 it is seen that the kinetic equations for 

a group of reagents for which the MCL exists (e.g.. 

for an enzyme and its compleses) are linearly 

dependent. So. if the SF0 has been primarily 

written down for all reagents present in the sys- 

tem. one equation (for E or one of EC ) must be 

dropped and replaced by the algebraic equation 

expressing the MCL (eq. 16). Of course. there may 

be more than one group of reagents for which an 

Mc L holds. 

As far as the reagents for which the system is 

open are concerned_ suitable flux terms. describing 

an exchange with the environment, must be in- 

cluded in the kinetic equations in addition to the 

terms arising from chemical reactions_ Such terms 

are usually introduced in the form 

J,=k-(R,.,,- R) (18) 

where .I, is the flux of component R (positive when 

R is being supplied to the system. negative when it 

is flowing out of the system), R the actual con- 

centration inside the system. and R,,,, the actual 

concentration outside the system, i.e.. in the en- 

vironment. Usually. R_,, is assumed to be inde- 

pendently controllable (a so-called control varia- 

ble). A special case, but one which is very often 

utilized. is to keep R,,, constant: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R <,“I = RU (‘9) 

R, is called the reservoir concentration Then the 

flux term (eq. IS) contributes 50 the right-hand 

side of the kinetic equation for R a constant term 

equal to 

-Jr- = X-R,, 

and a linear term 

(20) 

Jr- = - kR (21) 

R ,,“( may also change with time. but the time 

dependence R,,“,(t) must be known. In such a case 

the SF0 is no longer an autonomous one. but 

Tihonov’s Theorems still may be applied. 

If there are IV reagents in the system under 

consideration and there are g groups for which 

MCL are fulfilled (the h-th group composed of IV,, 

reagents. h = 1.. . _. g). then the system of kinetic 

equations to be solved is as follows: 

.v s 

JR,/dr’= k, i c k,‘R,+ c kj’R,R, 

1-I ,_I= I 

.v 

+ c k,““‘R,R,R,, (i=l.....(rV-_R)) 

,.l.nr = I 

(nl) 
\; 

R, = R:;‘- 2 R_ (i=(A-~+I).___.n-) (72b) 

PI,-1 
(h = I......?) 



where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJz differential equations have been replaced 

by algebraic ones of the type in eq. 16. Hereinafter 

t’ denotes real time and R, the actual concentra- 

tion of the i-th component; the summation over p,, 

denotes summation over all N,, components be- 

longing to the h-th group for which an MCL is 

fulfilled and Rg” is the total concentration of this 

group of reagents. The RPh are present also on the 

right-hand sides of eq. 22a as their summations are 

taken over all N components present in the sys- 

tem. 

As usual. each kinetic constant (li,. k{. kj’. 

k:““) is taken as h aving a positive or negative sign 

or being equal to zero if. respectively. R, is pro- 

duced. consumed or is not involved at all in the 

given elementary step (i.e., in reaction with R,. R,. 

etc., or the flux term)_ The terms k, arise from the 

influx (eq. 20) or from the decomposition reactions 

of the zero-th order (e.g.. one may assume that the 

reagent is among other things a substrate for an 

enzyme and that the enzyme is saturated with the 

substrate so that the reaction rate is maximal and 

Goes not depend on the concentration of the rea- 

gent). The terms k:R, arise from the outflux (eq. 

21) or from decomposition reactions of the first 

order_ 

An SF0 like eq. 22a is called a closed cilemical 

qxrenz (CCS) if the following conditions are 

fulfilled [5]: 

(1) all R, are positive (concentrations): 

(2) the right-hand sides are of order not greater 

than two (all ki”” and all higher terms are equal to 

zero. i.e., at most bimolecular interactions are pre- 

sent): 

(3) no autocatalytic terms are present. i.e.. all 

J.z:. k:’ and k:’ possess negative signs or are equal to 

zero: 

(4) the system is closed. i.e.. there is neither 

influx (all k, = 0) nor outflux and so the mass 

conservation law 

is valid, where p, denotes the molecular mass of 

the i-th component; 

(5) no elementary reactions of decomposition 

of the zero-th order are present, i.e.. in eq. 22 k: 

and k,J’ are nonnegative for all j # i. I == i: 

(6) in elementary reactions all stoichiometric 

coefficients are equal to unity or zero. i.e.. even the 

reaction A --+ 2B is treated as a nonelementary one 

but as a result of a chain of elementary reactions. 

e.g., A+B+C,C + B: so the kinetic constants in 

eq. 22 do not contain factors related to stoichio- 

metric coefficients. since one assumes that in a 

CCS only elementary reactions occur. 

Some authors (e.g.. see ref. 5) define a CCS 

using only conditions 1-4. It is interesting to 

report here the theorem proven by Korzuhin (see 

refs. 5 and 6): 

Korzuhin s TJzeorem 

It is always possible to construct a closed chem- 

ical system of kinetic equations. in which the be- 

havior of some variables will coincide with any 

desired accuracy and for any desired time period 

with the behavior of a given system 

dR,/dr’=‘k,(R ,._._. R,v) (i=I ____ _A’) 

where 9, are polynomials of nonnegarive integer 

powers. 

For an open system the MCL (eq. 23) is not 

fulfilled. But any system may always be ‘extended 

to a closed system’ by introducing coupled re- 

servoirs of the necessary reagents. Additional vari- 

ables have to be introduced to fulfill also other 

conditions imposed on the system (eq. 22) to be a 

CCS. Korzuhin’s Theorem is. in some sense, the 

inverse of Tihonov’s Theorems as it concerns the 

problem of construction of a whole (‘original’) 

SF0 for the given system treated as a degenerate 

one. The SF0 eq. 22a. with conditions l-6. repre- 

sents a homogeneous CCS which is in general the 

simplest possible nonlinear SFO. The importance 

of Korzuhin’s Theorem lies in the fact that it 

demonstrates the possibility of realization of any 

given behavior (in particular, of stable auto-oscil- 

lations) of a part of the reagents during any given 

time period just in a homogeneous CCS if only the 

number of variables (reagents) is sufficiently large. 

In heterogeneous (e.g., compartmental) systems 

some of the conditions 1-6 are no longer valid. 

therefore the SF0 representing such systems are 

more compiicated. Complex behavior may be ob- 



served much more frequently in heterogeneous 

systems than in homogeneous ones as the number 

of variables may be then considerably smaller. 

Korzuhin’s algorithm - treating any ‘non- 

chemical’ term in the: SF0 as a complex chemical 

reaction which unfolds in a chain of elementary 

reactions - makes it possible to inspect quickly 

and effectively the different model variants for any 

given comptex ehemicai or biochemical system. At 

the same time it shows one to understand better 

such extremely important phenomena as, for ex- 

ample. autocatalysis. We discuss later the applica- 

tion of Korzuhin’s Theorem to a simple autocata- 

Iytic model and its connections with Tihonov’s 

Theorems. 

5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeneral procedure to simplify kinetic equations 

Small parameters appear in (bio)chemicaI 

kinetic systems in a natural way if one represents 

variables in a normalized dimension1es.s form. To 

do this one puts in eq. 22 

R, = r,.:, (31) 

where 5 denotes the dimensionless normalized 

concentration of the i-th component and RI’) is a 

constant having the dimension of concentration. 

As Rj”’ one may take. for example. the total 

concentration of a group of reagents for which an 

MCL is fuffilfed (as EC3 in eq. 16 and RF’ in eq. 

22b). the Michnelis constant for an enzyme. the 

inhibition constant for an inhibitor. Constant con- 

centration in the environment {reservoir vaiue. as 

R,, in eq. 20). initiaL concentration Rf. or con- 

centration z, that the given component would 

have in the steady state. etc. Smali parameters 

appear also in a kinetic system if some elcmenta~ 

reaction steps are rapid as compared to others. 

Taking into account eq. 23, one obtains eq. 22 

in the form 
.v s 

dr,/dr’= Y, + c “,,‘r + x “,,r”,rr 

/-’ /,I - I 

s 

+ c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIc,,,“,T)i,~“, (ret..... (N-g)) (243) 
,J.“’ - t 

.v* 

$=I- c J& fr=(1~“-ni-r) . . . . . IV) (24b) 
fh - t 

where now a11 kinetic constants have the dimen- 

sion [time] - I 

!c, = k,/R)Q’ (254 

tcII - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,,R;“‘/R:” (25b) 

IQ 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX.,,,Rj”R$“/R!” (25cl 

As a rule, the values for RIO’ it-( eqs. 24 are such 

taken that the dimensionless variables $- are be- 

tween 0 and I and of the order of unity at most_ 

Then the most important term in any equation of 

the form of eq. 24a is the one for which the 

constant (K,. nr,,, K~){, - - _ > has the greatest absolute 

value, yi. Dividing the i-th equation by yi one 

obtaines from eq. 24a 

where 

7; = t/u, (27) 

denotes the i-th characteristic time and where al1 

constants 

~:==h.,/Y‘ (%a) 

“,I ’ = $0, (ZSb) 

=;,I:,I ==z 5/Z/ 7, (zk) 

are now Less or much Iess than unity and only the 

one for which x was selected for defining the time 

q (eq. 27) is exactly equal to unity. 

If we are interested in the behavior of the 

system in times of a certain specified order, say of 

the order of Y-, we introduce the dimensionless 

time variabIe I by taking T as the unit of time: 

I = r’/T (29) 

Then. changing the differentiation with respect to 

t’ by differcntintion with respect to dimensionless 

time. I 

d dr d 1 d 

z? dl’” 
-i-_- 
dr T dr 

(30) 

denoting 

T,/T= “‘* (3’) 



and eliminating from the right-hand sides of eqs. 

26 the variables r,v_,+ ,,, -. , r,\. by using eqs. Mb, 

one obtains finally the system 

P P 

r?l,-d~/dr=o,t c a,,/5-+ c a,,,‘/‘,+ 

whereP=(N-g). 
In short-hand notation 

J?z=:, = ‘t,(r ,‘.._. rp) (33) 

where hereinafter the dotted variable denotes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdif- 

ferentiation with respect to the dimensionless time 

variable I and ‘k, denotes the right-hand side of the 

i-th ec,uation, eqs. 32. 

If the time scale T we are interested in is such 

that some nli are much greater than unity. say 

these q with indexes i=(pi l).(p-+2).....P. 

then. by dividing the corresponding equation by 

III;, one finds that the time derivatives of these 

variables 

: =-+( 
l 

r ,.._ ~_rp) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i=(p+I) . .._. P) (34) 
I 

are close to zero. since I /tlz, -=+z I. They are caIIed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cery slow or reservoir vuriuhks, i.e., changing only 

with characteristic times T, z=- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. For time dura- 

tion of order 7they remain practically unchanged 

and may be replaced by their initial values 

r,(O) = ry= A, (i= (p-f- l )___..P) (351 

(where ( P -p) = 4) and be treated as parameters. 

This is equivalent to treating the system as an 

open one 161. In this way eqs. 33 are reduced to 

h~,?,=*,(r ,.-... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArp;d,,, . . . . . dP) (i=l ..... p) (36) 

The system may now be further reduced using 

Tihonov’s Theorems. The equations are classified 

in such a way that the first cIass contains all. say 

rr. equations whose relative time scale parameter 

#II, is of the order (equal to) unity (i.e., the kinetic 

equations for variables for which characteristic 

times q are of the same order as T) - these are so 

cahed slog or basic variables 

?,=+,(r ,..... r,;A,,, ._... d,,) (i==l . . . . . n) (37a) 

The remaining s equations (S = p - 11) are classi- 

fied into m classes in such a way that into succes- 

sive classes go the equations iiaving smaller and 

smaller parameters WI, (i.e., the kinetic equations 

for variables for which characteristic times T are 

smaller and smaller than the time unit T). into the 

j-th class (j = I,. . _, m) go s, equations. The smali 

parameters (much less than unity) we will denote 

further by p(i) or just by pcI- So 

,+~‘=,~J(r ,.._.. r,:r,+ ,,__.. r&,:,4/ _* . .._. / fp) 

(1, = I..... s,:j= I.....m) 

where 

( 3’b) 

,*-I- &==“-p (37C) 

r-1 

and t.~“ ’ fulfill eqs. 1 I, i.e., they are small parame- 

ters of greater and greater degree. These groups of 

variables are called quick variables - after a time 

of order even much smaller than that of T they 

reach their (quasi)stationary values. In the follow- 

ing the quick. basic and reservoir variables will be 

denoted by z. x and p. respectively. 

The separation of reservoir variables is often 

made to some extent automatically, based on the 

fact that the components having very great con- 

centrations as compared to others (that is exactly 

why they are called ‘reservoir variables’) change 

much slower than other components. If we con- 

sider the simplest bimolecular reaction A I- X 5 B, 

it is easy to see that in any moment the instanta- 

neous transformation rates are dX/ dt a 

- exp( - t/tX) and d A/ dr a - exp( - r/ ~.~) where 

lh = I/ x-P and r, = I/ kX are instantaneous time 

constants for X and A, respectively. If one now 

assumes that A 3r) X then r,, B I_~. i.e., in any 

instant A ci-anges much slower than X. So, if one 

assumes that some variables are reservoir ones, it 

is equivafent to treat them as parameters - they 

may be replaced in eqs. 22 by their constant 

(initial) values (cf. eqs. 35). The differential equa- 

tions for these variables may be dropped from the 

very beginning before introducing dimensionless 

concentrations and time variables and separating 

basic and quick variables. In such a case the 

constant values of these reservoir variables. treated 

as parameters, are often useful to define the time 



unit 1. and/or the small parame:ers $I) or are 

included directly in kinetic constants. 

The system eqs. 37. when taken together with 

the necessary initial conditions, is identica1 with 

eqs.9 and 10 (or with eqs. 4 and 5 for nr - 1) and 

Tihonov’s Theorem may be used to simplify it. 

The conditions of continuity and of uniqueness of 

solutions (see appendix C) are of course fulfilled 

for the SFO. eqs. 32). and thus also for eqs. 37. 

whereas the stability of a solution (see appendices 

B and C) must be verified in each particular case. 

However. if the system eqs. 4b or 4b’ is linear in 

quick variables = (this is the case when reactions 

between quick reagents. e.g.. between enzyme 

complexes. may be neglected). then the algebraic 

system rqs. 7 is a linear one and therefore it has 

the unique solution: the adjoined system eqs. 8 has 

then the unique stationary root. This root is stable 
if there are no bifurcations, i.e.. no reactions of 

decomposition of the type 2, -+ Z, + Z, of the 

quick reagents [f;]. In such a case. before applying 

Tihonov’s 1st Theorem one must verify only a 

condition concerning the initial values. namcIy. 

vvhrther they lie in the domain of infIuence of the 

root (rq. 6b). 

6. EsampIes 

AS the first example. let us take the simplest 

enzymatic reaction - the mechanism of Michaelis 

and Menten: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xvith four components: substrate S. enzyme E. 

enzyme-substrate complrs (ES) and product I’. In 

this mechanism no fluxes are t&err into account 

and so there exist two MCL: 

&. i ( ES) = E(0) _ E,, (39u) 

ss P;(ES)-=S(O)=S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(39b) 

A,S ;t result, there are only t\vo independent dif- 

ferential kinetic equations. The characteristic time 

constants for substrate and snzyme are. respec- 

tivelv. 

$ = l/X-,&,: r, = I/x-,s,, (10) 

If we are interested in times of order 7;- we obtain 

[I41 

d.r/dr = -x-+(x--p)=+.\_= 

fidz/dr = .r - X-z -.x-z 

with initial conditions 

s(0) = I: Z(O) = 0 (41c) 

where 

r = C/T, 

are dimensionless variables and the constants are 

defined as follows 

p = T, /l-, = E&S,,: 0 = k,,‘k,S,,: 

R,,=(k_,+k2)/‘k,: k=K,,/S, (42b) 

t’ denotes real time and K,, the Michaelis con- 

stant. 
If one assumes S,, 3-> E. then T,. > T,. and p < I _ 

In such a case the enzyme is the f;lst component 

whereas the substrate is the slow one. The degener- 

ate system is here reduced to one equation ob- 

tained from eq. 41b. The root 

?=S/(k+_L) (43) 

(here and in eq_ 44 s is treated as a parameter!) 

obtained from eq. 41b when p = 0 is the stable 

root of the adjoined system 

d-_/dr a s - x-z - x-_ (44) 

since for any value of s the right-hand side and SO 

the time derivative in eq. 44 is negative for : h ? (: 

wiI1 therefore decrease until the derivative will be 

equal to 0. i.e._ until = = 5) and positive for = < - 

(in such a case : vvill increase uniil : = _T). When 

the system starts from the initial value c(O) = 0. = 

will increase until :=?, so the initial conditions 

(eq. 41~) he in the domain of influence of the root 

= == -_. 

The assumptions of Tihonov’s 1st Theorem are 

fulfilled and the steady-state approximation may 

be used: putting = = ? in eq. 41a. a single equation 

with one vrariable A- is obtained 

ds/dr = -p-V/( k i- I) 6453 

which is easily integrable and gives the transcen- 

dental algebraic equation for s(r): 

.V i x- . In s = 1 - pr (46) 
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Returning to the drmensional variables one ob- 

tains from eq. ~5 the we11 known Michaelis-Menten 

expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dS/dr’= - k,SE,,/(K,, + S) (47) 

The steady-state approximation fails. however, for 

very short times (of the order I < I/p)_ One may 

see that the initial conditions (eq. 41~) can no 

longer be satisfied in a consistent manner (the 

authors of ref. 1 speak about induction per-iod. 

T,). If we do not want to use the quasi-stationary 

approximation. the solution of the system eq. 41, 

is very complicated. based on coordinate transfor- 

mation of the rate equations and subsequent solu- 

tion of an integral equation [ 14:. 

It has been demonstrated that the steady-state 

approximation for the Michaelis-Menten mecha- 

nism may be applied either when E, < .S, (irre- 

spective of the values of rate constants) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor when 

the rate constants of decomposition of the en- 

zyme-substrate complex (i.e., k_ , and k,) are much 

greater than the rate constant of its formation (i.e.. 

k,) even if the concentrations of enzyme and 

substrate are of the same order. E,, = .S,: the appli- 

cations of Tihonov’s 1st Theorem to the 

Michaelis-Menten mechanism in different cases 

are discussed in refs. 5 and 6. 

As the second example. let us consider the 

simplest autocatalytic process. describing an ex- 

ponential growth 

ds/dr = .r (43) 

- It is not a closed chemical system in the sense of 

the definition given in section 4. But. following 

Korzuhin’s Theorem_ it is possibie to find a closed 

chemical system. the behavior of which will coin- 

cide with any desired accuracy with the behavior 

of eq. 48. One may show that this is the case. for 

example. for the following system: 

&I 
B+Z,+Z,iC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(49) 

*3 
z, ‘Zz 

A+-B+CtZ,+Z2tZ3=11fO=con~ir ln~ 

We assume that A and B are present at very high 

concentration, i.e., that they are reservoir variables 

and may be treated as parameters (cf. section 5). 

The kinetic equations for 2,. Z, and Z, are 

dZ,/dr’= -x-,2, + x-,~lZ~ (5Oa) 

dZ,/dr’= k,Z, - k,BZ, i - x-,/I&  (50b) 

dZ,/dr’= k,BZz - k,.-tZ, (SOC) 

Writing eq. 50 in terms of dimensionless variables 

- =Z,/M” (i=1.2.3) -, (51) 

one will observe that the characteristic time con- 

stants for Z,. Z,, and Z, are equal 

?-, = l/x-,: T, = T, = I/kzB (52) 

Introducing dimensionless time 

I = I./T= k,Ar’ (53) 

and assuming that 

X-,‘.t/k2L3 =p; X-,/t/X-, =p (54) 

(for simplicity we assume that both quotients have 

identical values) one finds that all 112, (cf. eqs. 32) 

are equal to p and so eqs. 50 in dimensionless form 

becomes 

dz,/dr = - z, + z1 (553) 

dz,/dr = z, - z1 C zz (55b) 

d=,/dr = zz - z3 (55c) 

One may demonstrate that when p -+ 0. the 

solution z3( r) of the system. eqs. 55, coincides with 

the solution X(I) of eq. 48 (cf. ref. 5). By changing 

the variable 

s = pz3 (56) 

one obtains from eqs. 5.5 

d.r/dr = - .r + zz (573) 

pdz,/‘dr=s-z, (57b) 

pdz,/dr = .x f -_, - z1 (57c) 

The adjoined system is in this case 

dz,/dT=x-z=, (58a) 

dz,/dr = .r f z, - zz (58b) 

where x is no longer a function of time but a 

parameter_ Putting p = 0, one obtains the root of 

the adjoined system 

:, =x; zz = 2x (59) 



As eqs. 58 are a linear SFO, it is easy to integrate. 

The result is: 

=,(z)=i,+(-_p--,)exp(--) (boa) 

=1(‘)=I,i[(.-:--E,)s~(=4-~z)]exp(--) (60b) 

One sees immediately from eqs. 60 that the root. 

rqs. 59, is stable: =I and z2 quickly tend to the 

steady-state values 5, and ZZ, irrespective of their 

initial values z:’ and z:. i.e., all possible initial 

values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlie in the domain of influence of the root. 

The assumptions of Tihonov’s 1st Theorem are 

thus fulfilled and. when p - 0, solutions of the 

system_ eq. 57. tend to the solution of the degener- 

ate system 

dz/dr = -.r -c Z2 (613) 

Z, = s (6’b) 

Z2 = 2.r (61c) 

and so s (and also z;) behaves as if it were 

produced in the autocatalytic process (eq. 48). 

To demonstrate that the assumptions of 

Tihonov’s Theorem are fulfilled, it is not necessary 

to integrate the adjoined system. In more 

complicated cases this may be practically impossi- 

ble. Instead. one may use the Routh-Hurwitz crite- 

rion for this purpose (cf. appendix C). In the 

above example. the adjoined system (eqs. 58) has 

the uniqtie root (the uniqueness of a root may be 

in general checked with the aid of LiFschitz condi- 

tions. cf. appendix C). The characteristic equation 

(eq. C8) in this case is 

I 
-1-x 0 &I , -,-A = I 

0 (Q) 

i.e. 

XZ+2X+1=0 

So xve have (eq. C9) 

/>*,==I: h,=Z: h2=1 

and further zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(63) 

(b-1) 

z I Q,=l: D,=Ir D1= o , =I! 
I I (65) 

i.e.. they are all positive. The Routh-Hunvitz crite- 

rion shows that the root is stable and. as it is also 

unique. any initial condi:ions must lie in its do- 

main of influence. If there is more than one root of 

the adjoined system, similar considerations must 

be made for all roots separately, as the coefficients 

of the characteristic equation and consequently the 

Routh-Hurwitz determinants depend on the value 

of the root (cf. eqs. C7-ClO). 

From the above considerations. one may see 

that to sustain an autocatalytic process ‘inexhaus- 

tible’ reservoirs of ‘building’ materials (A and B) 

for the reagents 2, and Z2 must exist. In reality 

the system, eqs. 49, modeIs an autocatalytic system 

only for the times for which A and B are practi- 

caIly constant (of the order I < l/p). After a suffi- 

cientIy long time any reservoir wiI1 in reaIity be 

exhausted. One ought also to note that the auto- 

catalytic process gives a byproduct C. 
As the third example, let us consider a case 

when small parameters arise in the system because 

of the differences in rate constants (cf.. the remark 

concerning the applicability of the steady-state 

approximation to the Michaelis-Menten mecha- 

nism in this section)_ This will also demonstrate 

another method of separation of quick and basic 

(slow) variables. Let us assume that the reaction 

L 
R,tR,dR, (66) 

takes place in the system and that this reaction is a 

quick one, i.e. 

k = l/p where p-z 1 (67) 

The reagents R,. R, and R, may participate also 

in slow reactions (Le., with rate constants much 

less than Jc). Assume that in appropriately defined 

dimensionless variables the kinetics of the system 

are given by 

3, = .q, ( r. s ) (683) 

i,= -~r,r2~G,(r_x) 

F2= -_S’,r+G~(r_.x) (68b) 

I 

wherer=(r,. ‘;. ~-_~)and~=(s,_..._x,,): theterms 

G, and g, denote contributions of slow reactions_ I 

denotes slow variables. 

The SF0 in which the terms ?f the order less 

than 1.1~ (e.g.. the contributions or slow reactions) 
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are neglected, is called a truncated system. Usually. 

the truncated system has certain linear integrals, 

some of which represent conservation laws. These 

integrals are slow variables for the original SF0 

and taking them as new variables leads to separa- 

tion of quick and slow variables_ 

It is easy to see that in the example under 

consideration there exist two such lineary indepen- 

dent integrals of the truncated system 

X,+1 = r, + r, (69x) 

x,+2 = r, - ‘2 (@b) 

By introducing these integrals into eq. 63 and 

denoting r, by I, one obtains 

_?,Tg,(=._r) (i=l .....n) 

-% + I =G,(-_._x)+G,(~._x) (70a) 

Kn+2 = G,(z,x)-G2(z_x) 

p?= -z(z-X”LZ;f~G,(z.X) (‘Ob) 

where now X=(X ,,.-.. x,,, x,~, ,, x,,+z). The sys- 

tem obtained is identical with eqs. 4’ and Tihonov’s 

1st Theorem may be applied if the assumptions 

are fulfilled_ The above example illustrates how 

the differences in rate constants of elementary 

reactions may be exploited to simplify reaction 

kinetics by using Tihonov’s Theorem. 

7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConcluding remarks 

The method proposed by Kijima and Kijima [I] 

m_ay not be applied directly (without linearliza- 

tion) even to a Michaelis-Menten mechanism (eq. 

41) because of the nonlinear term XI. Their method 

may be classified between graph-theoretical meth- 

ods, however, the word ‘graph’ does not appear in 

the article. Because of introducing two kinds of 

arrows (edges or branches in graph-theoretical 

terminology) their graphs correspond to so-called 

colored graphs (two ‘colors’ of edges) and because 

each edge has given direction and ‘value (the rate 

constant) they belong to the class of graphs called 

labeiled signal flow graphs (SFG) or labelled di- 

rected graphs [15]. The theory of graphs, de- 

veloped primarily for the analysis of electrical 

networks, has been extensively used for simplify- 

ing kinetic (bio)chemical systems (see, for exam- 

ple, refs. 16-19). It is interesting to note that the 

‘diagrams’ used by Hill [ 181 and other authors are 

also labelled SFG and therefore the general theory 

developed for SFG may be applied to these dia- 

grams [20]. 

Tihonov’s Theorems may be applied to systems 

in which reactions of the second (and even higher) 

order take place. If some rate constants are equal 

to zero, i.e., some reaction steps are irreversible. 

the fundamental assumption of ref. 1 is not 

fulfilled. In contrast, Tihonov’s Theorems may be 

even easier to apply in such cases (because of the 

smaller number of terms) than in the case when all 

reactions are reversible and no general assump- 

tions about the number of components in the 

system are necessary. 
The fast components ‘forget’ their initial values. 

These values are necessary only to check if the 

assumptions of Tihonov’s Theorems are fulfilled 

(Le., to check if they are lying in the domain of 

influence of the root). However, sums of initial 

concentrations of some groups of fast components 

(e.g., the totai initial enzyme concentration E,,) 

may determine some characteristic constants of 

the system, e.g. small parameters p(j)_ 

The obvious conclusion from Tihonov’s Theo- 

rems is that the steady-state approximation works 

well for times (much) greater than the characteris- 

tic time constant used as the unit of time (i.e., the 

time constant of the components which may be 

thought to be slow in the time scale we are inter- 

ested in), however, not so great that the reagents 

assumed to be reservoir variables are exhausted_ 

The fact that the characteristic time constant 

for a given reagent is small, compared to the time 

scale we are interested in, constitutes a criterion 

for fast equilibration which is even more im- 

portant in practice than the fact that some elemen- 

tary reactions are relatively quick (i.e., some reac- 

tion rate constants are much greater than others). 

Only relations between characteristic time scales 7 

of different reagents and their relations to the time 

scale of observation we are interested in (which is 
taken as the normalizing unit of time T) are of 

importance. in section 5 we have subdivided all 

the reagents into at least three classes, called re- 

servoir (very slow), y. basic (slow), x, and quick, z, 

&=rL@&(r,_s.=. t,p) (k + I....,q) (713) 



_i,=/,(s._~.z.r.p) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i=l ..__ .n) (71b) 

~,=+_.Lz.r_P) (I=l .....s) (‘1c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The concentration hierarchy in the system is usu- 

aliy in agreement with the time hierarchy 161. i.e. 

.r; < Y, < z, (72) 

As we have demonstrated. if we are interested in 

the behavior of the system in periods of the order 

of the time scale characteristic for s,. then we put 

_YL = 0 (cf. eqs. 34 and 35) and we eliminate the 

variables 2, using Tihonov’s Theorem. However_ if 

we are interested in the transient phenomena (i.e.. 

in time interval 0 -Z t CC p), then the variables z, 

ought to be considered as basic ones and s, as 

reservoir ones. Oppositely. if we are interested in 

the evolution of the system (I 3-> 1). then the vari- 

ablesr;, ought t<> be treated as basic ones and X, as 

quick ones. ReaI systems geurrally have more than 

three characteristic time scales (i.e.. some groups 

of quick variables. z:” (i = 1.. _ _ _ m) and then 

Tihonov’s 2nd Theorem may be a useful zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmathe- 

matical tool. 

In conclusion. it may be said that the mathe- 

matical foundations of the steady-state approxi- 

mation have been well established four more than 

30 years. 

Appendix A 

Tihonov. A.N. Systems of differential equations 

containing small parameters in the deriva- 

tives. Mat. Sbornik N.S. 31 (73). 575-586 

( 1952). (Russian) 

Consider a system (1) d.ridr =/(_I-. z. I). 

pd z/d1 = F(x. z. I). where s. f are pr-vectors. z. F 

i)r-vectors. and f. F satisfy suitable regularity as- 

sumptions. Assume -_ = +(s. I ) is an isolated solu- 

tion of F(_(s. z. I) = 0 vvhose points are (asymptoti- 

cally) stable equilibrium points of the adjoined 

system d z/d7 = F(s. z. t) (s. t being considered 

here as parameters. the point (s. P) belonging to a 

hounded open region D). Assume that the inittal 

conditions ( _I-“. z”. t”) are such that the solution 

r(r) of the adjoined system dz/d?- = F(_Y’, z. to), 

z(0) = z@, satisfies lim,,, I( T) = 9(x”, to). Then 

the solution of (1) through the initial point 

(x0. z”, r”) tends. as p + 0. to the solution of the 

degenerate system dx/dr =f(x. Q(x. f). f) as long 

as the point (x. r) does not leave the region 3. A 

similar result holds for systems containing several 

small parameters p,_ _ _ _ _ p,,, tending to 0 in such a 

way that p, c ,/p, + 0. J. L. Mas~eru (Montevideo)_ 

Appendix B 

B. I. I?fahetnatical dejittitions (from ref- 2) 

The ttorttz of an s-dimensional vector o = 

(F,..__. v~) will be denoted by ]o] and defined as 

fL‘I= ,+ 
/-I 

(Et) 

(Euclidian norm)_ 

The root z = +(x, I) of the adjoined system of 

equations F(x, z, r) = 0 will be called the isohred 

roof if there exists an E for which this system may 

not be fuIfiIled by any other vector z’ = (z;_ _ _ _ . z-z) 
with the property 

I-_‘-+(_\‘_r)l’< (=‘-+I) (W 

The isolated singular point (root) .Z = (Z,_ _ _ . , f,) 
of the acljoitted system 

d:/ds=F(s.z.r); =(r”)=z” (B3) 

(where x and r are taken as parameters) is called a 

srohilir_s point if for any E there exists a 6(e) such 

that trajectories starting in a point M belonging to 

the 6(c) neighborhood of the singular point tend 

to this singular point without leaving the l neigh- 

borhood when r -+ so. i.e. 

(1) the trajectory of any point ?=(z,__.__z,) 

beronging to the 6(e) neighborhood of the point 5 

tends to 5 when r -* co: 

Iim Z(T)=: if I=(O)-?lc6(~) (B3) 
7-x 

(2) trajectories of points from the 8(e) neigh- 

borhood of the point Z do not leave the e neighbor- 

hood of this point: 

f:(r)--_f<r foran~r.ifI=(O)-_l<S(r) (=I 



The isolated root z = Q(x, t) of the system 

F(x, Z, t) = 0 is called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstable in some bounded 

region D of the space (x, t), if for all points 

belonging to 5 the points z = Q(_K, t) are singular 

stability points of the system (eq. B3). 

The domain of influence of the stable root z = 

+(x, f) in the subspace x = constant, I = constant 

is defined as a set of all points z” from which 

trajectories of the adjoined system (eq. B3) tend to 

= = +(x, I) when 7 --j cc. 

The root z(“‘)= #“‘)(x. z(‘),....P(“~-‘), 2) of the 

adjoined system of the first order F(“‘)(_Y_ z(l ). _ _ _. 

z”“‘, I) = 0 (where x, z(‘) -(“‘-‘). t are treated ..__,_ 

as parameters) is called an isolated roof of the first 

order. if there exists such E that this system may 

not be fulfilled by any other vector z’(“‘) for which 

,-_“““_.*o’“Z’, <c (=?Wi,,+!nl,) (B6) 

The root of the first order L(“‘) = #“‘)(x. 
..(I) -(m-‘). t) is called a stable roar in some - ._._,_ 

closed bounded region 5, if for all (s. I(‘)._ _ _, 
:(“I-I), f) of this region z(“‘)= r$(“‘) is a stable 

singular point of the adjointed system. 

Appendis C 

Cl. Orher wathenzaticul definit ions 

An ordinary differential equation of the first 

order or a system of first-order ordinary differen- 

tial equation (SFO) 

dz/dr=F(z.i) (~=~,.___.~,) (Cl) 

is called arc;ononzous if the right-hand sides do not 

depend explicitly on the independent variable r, 

i.e. 

d-_/di=F(=) (CI) 

where F and z are vectors of s-dimensional space 

(s= 1,2,...). 

C_7_ Exisrence and uniqueness of solul iotzs of SF0 

The system (eqs. Cl) has a unique solution 

z = ~(7) through every point (Z = z,,, 7 = ~“0) in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(S + I)-dimensional domain D if for (z, T) E D 

functions F( =, T) are single-valued, bounded. con- 

tinuous and if the LipscJzitz condit ions 

IF(c=, , . . . . =,)-F(T; t ,..._, lJ,)I -= nr. 2 I=, - o,I (C3) 
,--I 

are fulfilled for some A4 independent of z and o. 

Then z(r) is a continuous function of the given 

value z0 = ~(7~). Each solution extends to the 

boundary of D. 

The Lipschitz conditions are satisfied, in partic- 

ular. whenever F(z, T) has bounded and continu- 

ous derivatives, aF/ar{, (I = 1, _ _ _, s) in D. 

The root of an SF0 is a szable root if all 

perturbations 6~ around this root diminish to zero 

when 7 * cc 

s=- 0 (C4) 5-x 

To investigate if a root 5 of the autonomous SF0 

(eq. C2) is stable, one linearizes the system around 

Z ; - by putting 

=,==,+s-_, (I=1 . . . . . s) (C5) 

one obtains 

d(&,)/dT= c a,,:, (I=l.....s) 

1-I 

(C6) 

where the matrix A = l la,,l j is given by 

” ,, =aF,/a:,I,_: (l.j= I . . . . . . r) (C7) 

The root z = 5 

1 
is stable if all eigenvalues h,, (I = 

,..., s). of the matrix A have negative real parts. 

1, are the zeros of the characteristic equation 

della,, - h&J = 0 (cs) 

when S,! = 0 for r-i, 6,‘= 1 for i=i (Kronecker’s 

delta). 
The characteristic equation, after reso!ving the 

determinant in eq. C8, is a polynomial of the s-th 

order: 

b,~~+b,h’-‘+...+b_,_,h+h,=O cc91 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Given b, > 0, all roots X, of the characteristic 

polynomial (all eigenvalues of the system eqs. C2 

have negative real parts if and only if the determi- 



nanis 

4, = ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D,=h, 

Dz = 
h, &I 

I I 4 h2 

bt kl 0 
D, = 6, I I 6, b, 

6, b., b, 

_ _ _ _ 
_ . _ - 
_ _ . - 

cc101 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b, ho 0 . . . 0’ 

D,= h! ________________ :_‘.. 
hz b, _‘. (where b,,, = 0 if nz > s) 

____.____..._____....... 

6,,_, 6,,_, bZ<--3 . . . b, 

are all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApositive (Routh-Hunvitz criterion). This is 

true only if all 6, and either all even-numbered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, 

or all odd-numbered D, are positive (LiCnard- 

Chipart test; [21]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendis D 

Di. Tihonov’s Theorem for Begitmers 

Consider a system of p first-order ordinary 

differential equations. Let us assume that s of the 

p equations have a small parameter p. multiplying 

the time derivatives: 

d.r,/dr=f,(.r ,.___._ r_.-_ ,.___. 2.) (;=I ____. II) (Dla) 

pdz,/dr = F,(x ,.___._ r,. - -,.._.. Z, ) (I= I.....s) (Dlb) 

where (n +s)=p. 

Eq. Dla is called the clegetlet-ate sy.ster?z. eq. 

D 1 b the adjoined system. 

02. Tihonov ‘s Theorem 

The solution of the whole (original) system (eqs. 

D 1) tends to the solution of the degenerate system 

when p + 0 if the following conditions are fulfilled: 

(a) the solution -7, = +,(_x,, _ _ _ , x,,. =,. - _ . _ 
=,).___._,=~~(s,.___._Y,,.T,,___.=_~) is an isolated 

root of the algebraic system 

F,(X ,..._._ r,.-_ I.‘.‘. =,)=cl (I=1 . . . . . s) (D2) 

(i.e.. in the small neighborhood of this root there 

are no others roots); 

(b) the solution t,,. _. , Zs is a stable isolated 

singular point of the adjoined system (i.e., any 

perturbation throwing the system out of this point, 

diminishes with time to zero) for all values of 

(x ,, _ . . , x,) which are treated here just as parame- 

ters and not as functions of time; 

(c) the initial values (zp,. . _, z,“) are in the do- 

main of influence of the stable singular point of 

the adjoined system (i.e., the system will evolve in 

such a way that (z,, . . _, z,), when started from 

(ZPI--.,iI O), will tend to (F,, . . . , z;); 

(d) the solutions of the whole system (eqs. Dl) 

and of the adjoined system (eq. Dl b) are unique 

and the right-hand sides (f;- and F,) are continuous 

functions. 

Note added in proof (Received 20th June 1983) 

Professor Benno IHess has recently called the 

author’s attention to the publication of Reich and 

Sel’kov [22], in which the authors outline the sim- 

plest case of using Tihonov’s 1st Theorem (how- 

ever, without formulation of the theorem itself) 

with one rapid and one slow variable. 
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