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Tihonov's Theorems for systems of first-order ordinary differential equations containing small parameters in the derivatives,
which form the mathematical foundation of the steady-state approximation, are restated. A general procedure for simplifying
chemical and enzyme reaction kinetics, based on the difference of characteristic time scales. is presented. Korzuhin’s Theorem.
which makes it possible to approximate any kinetic system by a closed chemical system. is also reported. The notions and
theorems are illustrated with examples of Michaelis-Menten enzyme kinetics and of a simple autocatalytic system. Another
example illustrates how the differences in the rate constants of different elementary reactions may be exploited to simplify
reaction kinetics by using Tihonov's Theorem. All necessary mathematical notions are explained in the appendices. The most
simple formulation of Tihonov's 1st Theorem *for beginners’ is also given.

1. Introduction

In their recent paper, Kijima and Kijima [I]
stated in section 1 that “the steady-state assump-
tion or steady-state treatment in chemical reaction
kinetics (... ) has been used so far without proof.”™
And once again in section 3 **... there has been no
general study on the condition when the steady-
state approximation holds even on the first-order
reaction.”

It seems that the authors are not familiar with
some important work of such authors as A.N.
Tihonov. L.S. Pontryagin. A.B. Vasil’eva, V.F.
Butuzov. V.M. Volosov, LS. Gradstein and V.
Vazov. Especially in Tihonov’s work [2], the
mathematical problems which are the very basis of
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the steady-state approximation (i.e.. the theory of
systems of ordinary first-order differential equa-
tions (SFO) containing small parameters in the
derivatives) are considered in a very general
manner. The theorems he proved therein, called by
other Soviet authors Tihonov’s Thecrems, may be
applied to systems with reactions of any order and
with any number of components.

In appendix A we reproduce the English
summary of Tihonov’s paper [2]. by J.L.. Massera
from Mathematical Reviews [3].

It is interesting to note that the theory of
ordinary differential equations with slowly varying,
coefficients (see, for example, ref. 4) is in some
sense equivalent to the theory of differential equa-
tions containing small parameters in the deriva-
tives. For example, the equation

pdx/drr=p(r)x (p<=1) (1

by the transformation of the independent variable
(time)

(=r/e @)
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ts transformed into the form
dx/dr=p(pr)x (3)

where now the new coefficient. p(u?). varies slowly.
However. the formulation of Tihonov’s Theorems
has so far been known to the author cnly in
Russian [2.5.6] and reported in Polish [7.8]. As far
as the literature in English is concerned. even in
the specialist book by Murray [9]. singular per-
turbation systems are treated heuristically with
only a brief mention of Tihonov's rigorous proof
[2] and a reference to Vasil’eva’s work [10]. The
latter seems to be the only source in English (apart
from the above-mentioned summary [3]) in which
Tihonov’s Theorem is formuiated and prove (and
some similar. more sophisticated mathematical
cases are discussed. everything being treated in a
rather complicated manner); even there the more
general theorem proven by Tihonov in ref. 2
(Tihonov's 2nd Theorem) is not reported at all.

As the steady-state approximation is widely used
in scientific literature concerning. e.g.. chemical
relaxation (see ref. 11) and enzyme kinetics (see
ref. 12). we think that it would be interesting to
restate here Tihonov's Theorems (without proofs).
We will follow Tihonov's original paper {2]. The
notions used there are well known to the specialist.
But. for the convenience of our readers, we give in
appendix B the definitions of all the mathematical
terms used.

In ref. 2. Tihonov proved two theorems. one for
an SFO. not necessarily autonomous (see appendix
C). containing a small parameter in some deriva-
tives. and another for SFO containing seve ral small
parameters in the derivatives. We shall call them
Tihonov's Ist Theorem and Tihonov's 2nd The-
orem, respectively. The Ist Theorem is in reality a
special case of the more complicated 2nd The-
orem. However. because of its greater simplicity
and wide applicability we give here also the Ist
Theorem. Moreover. in appendix D we provide
possibly most simple formulation of the Ist The-
orem {azcording to ref. 5) *for beginners’.

2. Tihonov’s 1st Theorem

Consider an SFO with one small parameter p:
dayzde=f(x.z.1) (4a)
pdz/de= F(x.z.1) (4b)

and its solution, determined by initial conditions:

x(19y=x% :z(1%)==z° (5)
= - 0 .. 0

where x = (x....,x,), x =(xP,...,x2) and f=

(fi---..f,) are vectors in n-dimensional space,

whereas z =(z,..... z), 20=(z20,...,:0), F=

(Fy...., F)) are vectors in s-dimensional space.
Putting = 0 in eq. 4. one obtains the degenerare
systemnt

dxysdr=f(x.z.1): x(1%9)=x° {6a)
z=o(x.1) (6b)
where = = ¢(x, 1) i5s a root of the system of alge-
braic equations F(x, z,1)=0 or

Fi(x.z.1)=0 (I=1..... s) (7)

The system of equations
do/dr=F(x.z.t): z{%)=:0 (8)

in which both x and 7 are taken as parameters. is
called the adjoined systern. Of course. the point
- =¢(x, 1) is an isolated singular point (root) of
the adjoined system, as all terms on the right-hand
sides of eq. 8 are nullified at this point.

We shall assume further that aill functions we
use are continuous ones and that the differential
equations we consider have uniquely determined
solutions.

The aim of the work {2]. i.e., the investigation of
the solution of the SFO (eq. 4) with initial condi-
tions (eq. 5) when p — 0 is summarized in

Tibonouv's Ist Theorem

When p — 0 the solution of the original system
{eq. 4). with conditions (eq. 5), tends to the solu-
tion of the degenerate system (eq. 6) if:

{1) the root = = ¢{x, ) is the stable root of the
adjoined system:

(2) the initial values z° lie in the domain of
influence of the root z = ¢(x. 1) for initial values
(x“. t“).

This asymptotic equality remains valid for all
times ¢t for which the solution of the adjoined
system lies inside the stability domain D of the
root = = ${Xx. ).
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(For the definitions of an isolated, stable root
and of the domain of influence, according to
Tihonov [2], see appendix B; for the conditions of
existence, uniqueness and stability of solutions of
an SFO see appendix C.)

This theorem remains valid also if the right-hand
sides of eq. 4 depend continuously on the parame-
ter u, i.e., for the system

dxysdr=f(x,z,1,1) (427)
pdz/de=F(x,z.t,pn) (4b%)

where f and F are continuous functions of their
arguments [6]. |

As the asymptotic procedure lowers the order
of the SFO, the initial conditions (eq. 5) generally
may not be fulfilled by the solutions of the
asymptotic (degenerate) system. The solution of
the original system may be approximated by the
solution of the degenerate system for times 7 > 1,.
where ¢, = |pIny| [6]. If the asymptotic system is of
the second order, one may make a complete dis-
cussion of its, based e.g., on the phase-plane meth-
ods [5-8].

3. Tihonov’s 2nd Theorem

Consider now an SFO with several small
parameters '/,
dx/dr=f(x. =D ..., =tm 1) (9a)
’L(j),dz(j)/d, = F(_I)(x':(l).”.‘:(m). t); (j= 1....,m)(9b)

and its solution determined by the initial condi-
tions

x(10)=x° ()= (y=1....m) (10)

o =
where x = (X,...,X,), x®=(x{,...,x])) and f=
(fieee-n f.) are vectors in n-dimensional space,

whereas z)=(z{/,...,z), 0 = (Y
=0y and F'=(F{’,..., F{”’) are vectors in s-
dimensional spaces. respectively (for j=1,...,m).

Tihonov investigated the solution of eq. 9 with
the initial conditions, eq. 10, when all p>— 0 in

such a way that

PP

plr+h pn g (i1)

Putting in eq. 9 p"?=0, one obtains the singly
degenerate system of the first order:

dx/di=f(x,z",..,z¢", 1) (12a)
p A= ydr = FO(x, 2., M )y (G=1..... (m—1))

(12b)
BRI T SN0 ztm—1) (12¢)

with initial conditions
xX(2)=x% () =0 (j=1.....(m—1)) (13)

where z("™ = ') (x, zV .., z¢"" D ) is a root of
the system of algebraic equations F{"(x, z"
=™ 7)=0, ie.

[P

(e, 2,20 0)=0 ({,=1..... Som) (14)
The system of equations
d:('")/d'r=F(m)(X, = :('"),,l); :(m)(o)=:0(m) (]5)

in which x, z'",..., z" ™" r are taken as parame-
ters, is called the adjoined system of the first order.

The system is termed doubly degenerate if it is a
singly degenerate system for a degenerate system
of the first order. The degenerate system of the
first order has (» — 1) small parameters p'/) (j=
1,...,(m— 1)); by putting p"~ " =0 in this sys-
tem, one obtains a degenerate system of the sec-
ond order and similarly the definitions of the other
notions of the second order. Analogously, one
defines degenerate systems of the k-th order and
all other notions of the k-th order.

The behavior of the solution of the original
system (eq- 9) with initial conditions. eq. 10, when
all p'?— 0 are under the condition eq. 11, is
summarized in °

Tihonov’s 2r.d Theorem

When p'/? — 0 the solution of the whole original
system (eq. 9), with the initial conditions (eq. 10),
tends to the solution of the degenerate (m-times
degenerate) system if:

(1) the roots z¢/?=¢'’, with the aid of which
the degenerate system is defined, are stable roots
of adjoined equations of the j-th order for any j
(I<jsm);

(2) the initial values z°? are in the domain of
influence of the roots z/)= ¢! for initial values
(x9, 200, 29U=D 40y

The asymptotic equalities remain valid for all
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times /. for which the solution of the totally degen-
erate system X(1). Z(r). lies inside the stability
domains of the roots =77 = ¢!/} for all j.

4. Chemicals systems. Korzuhin’s Theorem

Tihonov's Ist and 2nd Theorems have a direct
application in the simplification of kinetic equa-
tions. From the law of mass action (LMA) one
obtains generally an SFO with right-hand sides
being polynomials of orders not greater than the
second. i.e.. the reactions are uni- and bimolecular.
In some chemical reaction models trimolecular
reactions are also assumed (e.g.. in the ‘Brussela-
tor’ model [13]). which leads to terms of the third
order. But. for applyving Tihonov's Theorems.
neither linearity nor positiveness of variables. nor
even autonomy of the SFO (see appendix B) is
required.

First of all. it is necessary to take into account

the reagents for which the system is closed - for
such reagents (or groups of reagents) a mass con-
servation law (MCL) holds. Biochemical systems
are very often closed for some macromolecular
components. e.g., enzymes and enzymatic com-
plexes:
E+ Y E =E, (16)
where E, is the total enzyme concentration. E the
actual concentration of free enzyme. E, the actual
concentration of the ¢-th enzyme complex and the
sumamaiion is taken over all complexes present in
the system. For simplicity here after we denote a
reagent and its molecular concentration by the
same svmbol. a capital Latin letter. If one dif-
ferentiates eq. 16, one obtains

dE/dr+ Y dE, /di'=0 (17

From eq. 17 it is seen that the kinetic equations for
a group of reagents for which the MCL exists (e.g..
for an enzyvme and its complexes) are linearly
dependent. So. if the SFO has been primarily
written down for all reagents present in the sys-
tem. one equation (for E or one of E_ ) must be
dropped and replaced by the algebraic equation
expressing the MCL (eq. 16). Of course. there may

be more than one group of reagents for which an
M¢ L holds.

As far as the reagents for which the system is
open are concerned. suitable flux terms. describing
an exchange with the environment, must be in-
cluded in the kinetic equations in addition to the
terms arising from chemical reactions. Such terms
are usually introduced in the form

Je=k-(R.—R) (18)

where J_is the flux of component R (posizive when
R is being supplied to the system. negative when it
is flowing out of the system), R the actual con-
centration inside the system. and R_, the actual
concentration outside the system, i.e.. in the en-
vironment. Usually. R, is assumed to be inde-
pendently controllable (a so-called control varia-
ble). A special case, but one which is very often
utilized. is to keep R, constant:

out

Rou =Ry (19)

R, is called the reservoir concentration. Then the
flux term (eq. 18) contributes to the right-hand
side of the kinetic equation for R a constant term
equal to

J = kR, (20)
and a linear term

J- = —kR 1)
R, may also change with time. but the time
dependence R, (1) must be known. In such a case
the SFO is no longer an autonomous one, but
Tihonov’s Theorems still may be applied.

If there are N reagents in the system under
consideration and there are g groups for which
MCL are fulfilled (the s-th group composed of N,
reagents. = 1..... g). then the system of kinetic
equations to be solved is as follows:

Al N
dR,/di'=k,+ 3 kIR, + 3. kI'R,R,
y=1 Jd=1
N
+ Z krllmRﬁRlRm (i= """ (1\'—g))
g d.m=1
(22a)
\h
R,=Ry'— 3 R, (i=(N—-g+1D..... N) (22b)
-1
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where / differential equations have been replaced
by algebraic ones of the type in eq. 16. Hereinafter
t’ denotes real time and R, the actual concentra-
tion of the /-th component; the summation over p,,
denotes summation over all N, components be-
longing to the A-th group for which an MCL is
fulfilled and RY" is the total concentration of this
group of reagents. The R, are present also on the
right-hand sides of eq. 22a as their summations are
taken over all N components present in the sys-
tem.
As usual. each kinetic constant (k,. k7. k7.
K}y is taken as having a positive or negative sign
or being equal to zero if. respectively. R, is pro-
duced, consumed or is not involved at all in the
given elementary step (i.e., in reaction with R . R,
etc., or the flux term). The terms 4, arise from the
influx (eq. 20) or from the decomposition reactions
of the zero-th order (e.g.. one may assume that the
reagent is among other things a substrate for an
enzyme and that the enzyme is saturated with the
substrate so that the reaction rate is maximal and
does not depend on the concentration of the rea-
gent). The terms k/R, arise from the outflux (eq.
21) or from decomposition reactions of the first
order.

An SFO like eq. 22a is called a closed chemical
system (CCS) if the following conditions are
fulfilled [5]:

(1) all R, are positive (concentrations);

(2) the right-hand sides are of order not greater
thar two (all £/ and all higher terms are equal to
zero, i.e., at most bimolecular interactions are pre-
sent):

(3) no autocatalytic terms are present. i.e.. all
k!, k' and k" possess negative signs or are equal to
zero;

(4) the system is closed. i.e.. there is neither
inflex (all £, =90) nor outflux and so the mass
conservation law

N
Z p, R, = constant
=1
is valid, where p, denotes the molecular mass of
the i-th component;

(5) no elementary reactions of decomposition
of the zero-th order are present, i.e.. in €q. 22 X/
and k/! are nonnegative for all j =i /=i,

(6) in elementary reactions all stoichiometric
coefficients are equal to unity or zero. i.e.. even the
reaction A — 2B is treated as a nonelementary one
but as a result of a chain of elementary reactions.
e.g., A — B + C, C — B: so the kinetic constants in
eq. 22 do not contain factors related to stoichio-
metric coefficients. since one assumes that in a
CCS only elementary reactions occur.

Some authors (e.g.. see ref. 5) define a CCS
using only conditions 1-4. It is interesting to
report here the theorem proven by Korzuhin (see
refs. 5 and 6):

Korzuhin’s Theoremt

It is always possible to construct a closed chem-
ical system of kinetic equations. in which the be-
havior of some variables will coincide with any
desired accuracy and for any desired time period
with the behavior of a given system

dR,/dti"=¥(R,.....Ry) (i=1.....N)

where ¥, are polynomials of nonnegative integer
powers.

For an open system the MCL (eq. 23) is not
fulfilled. But any system may always be ‘extended
to a closed system’ by introducing coupled re-
servoirs of the necessary reagents. Additional vari-
ables have to be introduced to fulfill also other
conditions imposed on the system (eq. 22) to be a
CCS. Korzuhin’s Theorem is. in some sense, the
inverse of Tihonov’'s Theorems as it concerns the
problem of construction of a whole (‘original’)
SFO for the given system treated as a degenerate
one. The SFO eq. 22a, with conditions 1-6, repre-
sents a homogeneous CCS which is in general the
simplest possible nonlinear SFO. The importance
of Korzuhin’s Theorem lies in the fact that it
demonstrates the possibility of realization of any
given behavior (in particular, of stable auto-oscil-
lations) of a part of the reagents during any given
time period just in a homogeneous CCS if only the
number of variables (reagents) is sufficiently large.

In heterogeneous (e.g., compartmental) systems
some of the conditions 1-6 are no longer valid,
therefore the SFO representing such systems are
more complicated. Complex behavior may be ob-
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served much more frequently in heterogeneous
systems than in homogeneous ones as the number
of variables may be then considerably smaller.

Korzuhin’s algorithm - treating any ‘non-
chemical’ term in the SFO as a complex chemical
reaction which unfolds in a chain of elementary
reactions — makes it possible to inspect quickly
and effectively the different model variants for any
given complex chemical or biochemical system. At
the same time it allows one to understand better
such extremely tmportant phenomena as. for ex-
ample. autocatalysis. We discuss later the applica-
tion of Korzuhin's Theorem to a simple autocata-
Iytic model and its connections with Tihonov’s
Theorems.

5. General procedure to simplify kinetic equations

Small parameters appear in (bio)chemical
kinetic systems in a natural way if one represents
variables in a normalized dimensionless form. To
do this one puts in eq. 22

R, =R\ (23)

where 7, denotes the dimensionless normalized
concentration of the i-th component and R{® is a
constant having the dimension of concentration.
As R one may take. for example, the total
concentration of a group of reagents for which an
MCL is fulfilled (as E; in eq. 16 and RY” in eq.
22b). the Michaelis constant for an enzyme. the
inhibition constant for an inhibitor. constant con-
centration in the environment (reservoir value, as
R, in eq. 20). initial concentration RY. or con-
centration R, that the given component would
have in the steady state. etc. Small parameters
appear also in a kinetic system if some elementary
reaction steps are rapid as compared to others.

Taking into account eq. 23, one obtains eq. 22
in the form

h b
dr, /dt"=x, + Z K, 1, + z K, 17,0
=1 FELY!

N

D Kt (P11 (N =g))  (24n)

RN
n=l— 3 n (1=(N=g+1).....N) (24b)
o=t

where now all kinetic constants have the dimen-
sion [time] ™!

K, =k_/R™ {25a)
LTS == kURfr(n/R(rO) (25b)
Koy = ko REOORIO /RO (25¢)

As a rule, the values for R{? in egs. 24 are such
taken that the dimensionless variables », are be-
tween O and 1 and of the order of unity at most.
Then the most important term in any equation of
the form of eq. 24a is the one for which the
constant («,. k,,, K, ... ) has the greatest absolute
value, y,. Dividing the /-th equation by vy; one

obtaines from eq. 24a
N

~
- . <
T,-dr/dr=aj+ 3 a,r+ 3, a,mnn
st sA=1

N
+ Z A X, %0 X, (Fm=1 0 (N—-g))
RN R
(26)
where
7=1/v (27N

denotes the i-th characteristic iime and where all
constants

al=xK/7, {28a)
al,=x,/¥, (28b)
{28<)

a4 =K/ Y,
are now less or much less than unity and only the
one for which ~ was selected for defining the time
7, (eq. 27) is exactly equal to unity.

If we are interested in the behavior of the
system in times of a certain specified order, say of
the order of 7, we introduce the dimensionless
time variable ¢ by taking T as the unit of time:

r=0'/T (29)

Then. changing the differentiation with respect to
¢* by differentiation with respect to dimensioniess

time. ¢
4 _d 4 1 4 (30)

denoting
/T =m, 31
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and eliminating from the righi-hand sides of eqs.
26 the variables ry_,,,...,7y DY using egs. 24b,
one obtains finally the system

Vad Vd
In,'dl;/dl‘:tl,-*‘ z a/j'}+ Z a'./IDrI+
g=1 Jd=1
P
2 g, (i=1...P) (32)
g dom=1]

where P = (N — g).
In short-hand notation

mF=¥(r..... rp) (33)

where hereinafter the dotted variable denotes dif-
ferentiation with respect to the dimensionless time
variable r and ¥, denotes the right-hand side of the
i-th ecquation, eqs. 32.

If the time scale 7 we are interested in is such
that some m, are much greater than unity, say
these g with indexes i=(p+ ). (p+2)..... P.
then, by dividing the corresponding equation by
m;, one finds that the time derivatives of these
variables

?,=~';1'—;-‘I',(r‘ ..... ) (i=(p+1).....P) (34)
are close to zero, since 1 /m, < 1. They are called
very slow or reservair variables, i.e., changing only
with characteristic times 7, > 7. For time dura-
tion of order 7 they remain practically unchanged
and may be replaced by their initial values

n(@)=rP=u, (i=(p+1)....P) (35)

(where ( P — p)~= ¢g) and be treated as parameters.
This is equivalent to treating the system as an
open one §6). In this way egs. 33 are reduced to

mF = (r i A adp) (P=10.0p) (36)

The system may now be further reduced using
Tihonov’s Theorems. The equations are classified
in such a way that the first class contains all. say
n. equations whose relative time scale parameter
m, is of the order (equal to) unity (i.e., the Kinetic
equations for variables for which characteristic
times 7, are of the same order as T') ~ these are so
called sfow or basic variables

2= (r.-... Py A, iens Ap) (i=lo... n) (37a)

The remaining s equations (s = p — n) are classi-
fied into m classes in such z way that into succes-
sive classes go the equations having smaller and
smaller parameters m, (i.e., the kinetic equations
for variables for which characteristic times 7, are
smaller and smaller than the time unit 77). Into the
J-thclass (j=1,...,m) go s, equations. The smali
parameters (much less than unity) we will denote
further by '/’ or just by p. So

WO = W (ryeeni e Tt A e A,)
(L,=1..... s, j=1.....m) (37v)
where
ny
"+ Zs)::n+s=p (37¢)
=1

and p'/? fuifill egs. 11, i.e., they are small parame-
ters of greater and greater degree. These groups of
variables are called guick variables — after a time
of order even much smaller than that of T they
reach their (quasi)stationary values. In the follow-
ing the quick. basic and reservoir variables will be
denoted by z., x and y. respectively.

The separation of reservoir variables is often
made to some extent automatically, based on the
fact that the components having very great con-
centrations as compared to others (that is exactly
why they are called ‘reservoir variables’) change
much slower than other components. If we con-

) &
sider the simplest bimolecular reaction A + X — B,

it is easy to see that in any moment the instanta-
neous transformation rates are dX/dr«
—exp(—1/7x) and dA/dr o« —exp(—1t/1,) where
t=1/kA and t, = 1/kX are instantaneous time
constants for X and A, respectively. If one now
assumes that 4 = X then 1, > 1,. e, in any
instant 4 ci-anges much slower than X. So, if one
assumes that some variables are reservoir ones, it
is equivalent io treat them as parameters — they
may be replaced in eqs. 22 by their constant
(initial) values (cf. egs. 35). The differential equa-
tions for these variables may be dropped from the
very beginning before introducing dimensionless
concentrations and time variabjes and separating
basic and quick variables. In such a case the
constant values of these reservoir variables. treated
as parameters, are often useful to define the time
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unit 7. and/or the small parameiers p'’’ or are
inciuded directiy in kinetic constants.

The system eqs. 37. when taken together with
the necessary initial conditions, is identical with
eqs.9 and 10 (or with egs. 4 and 5 for m = 1) and
Tihonov's Theorem may be used to simplify it.
The conditions of continuity and of uniqueness of
solutions (see appendix C) are of course fuifilled
for the SFO. egs. 32). and thus also for egs. 37,
whereas the stability of a solution (see appendices
B and C) must be verified in each particular case.
However, if the system eqs. 4b or 4b’ is linear in
quick variables = (this is the case when reactions
between quick reagents. e.g.. between enzyme
complexes. may be neglected). then the algebraic
system eqgs. 7 is a linear one and therefore it has
the unique solution: the adjoined system eqs. 8 has
then the unique stationary root. This root is stable
if there are no bifurcations, i.e.. no reactions of
decomposition of the type Z, »Z, +2Z, of the
quick reagents [5]. In such a case. before applying
Tihonov's Ist Theorem one must verify only a
condition concerning the initial values. namely,
whether they lie in the domain of influence of the
raat (eq. 6b).

6. Examples

As the first example, let us take the simplest
enzyvmatic reaction — the mechanism of Michaelis
and Menten:

' k. .
S+E & (ES) - P+E (38)
L

with four components: substrate S, enzyme E.
enzyme-substrate complex (ES) and product P. In
this mechanism no fluxes are taken into account
and so there exist two MCL:

E+(ES)=E(0)=E, (39a)
S+ P=(ES)=S(0)=S5, (39b)
As a result, there are only two independent dif-
ferential kinetic equations. The characteristic time

constants for substrate and enzyme are. respec-
tively.

T, =1/ Eg: T, =1/KS, (40)

If we are interested in times of order 7, we obtain
[14]

dx/dr= —x+(k—-B)z-+x= (41a)
wdzy/dt=x — ks — xz (41b)
with initial conditions

x()=1: =(0)=0 (41¢)
where

t=0" /T, =k\Egt’: x(1)=5/Sy: z(1)=(ES)/E, (42a)

are dimensicnless variables and the constants are
defined as follows

u=T/T =Ey/So: B=ky/k;S,:
Ka=(k_+k)/k: k=Ky/S, (42b)

t’ denotes real time and K,; the Michaelis con-
stant.

If one assumes §, > E,then 7, > T and p << 1.
In such a case the enzyme is the fast component
whereas the substrate i1s the slow one. The degener-
ate system is here reduced to one equation ob-
tained from eq. 41b. The root

Z=x/(k+x) (43)

(here and in eq. 44 x is treated as a parameter')
obtained from eq. 41b when p =0 is the stable
root of the adjoincd system

doy/dr=x— Az~ xz (44)

since for any value of x the right-hand side and so
the time derivative in eq. 44 is negative for - > Z (-
will therefore decrease until the derivative will be
equal to 0. i.e.. until - = 2) and positive for z <=
(in such 2 case - will increase uniil z = 7). When
the system starts from the initial value z2(0)=0. =
will increase until == =, so the initial conditions
(2q. 41c) fie in the domain of influence of the root

The assumptions of Tihonov’s 1st Theorem are
fulfilled and the steady-state approximation may

be used: putting = = 7 in eq. 41a. a single equation
with one variable x is obtained
dx/dr= —~ Bx/(k+ x) (45)

which is easily integrable and gives the transcen-
dental algebraic equation for x(7):

x4+ k- lnx=1-—8r1 (46)
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Returning to the Zimensional variables one ob-
tains from eq. +5 the well known Michaelis-Menten
expression

dS/de'= — k,SEy /( Ky + S) (47)

The steady-state approximation fails, however, for
very short times (of the order r < 1/u). One may
see that the initial conditions (eq- 4lc) can no
longer be satisfied in a consistent manner (the
authors of ref. 1 speak about induction period.
73). If we do not want to use the quasi-stationary
approximation. the solution of the system eq. 41,
is very complicated. based on coordinate transfor-
mation of the rate equations and subsequent solu-
tion of an integral equation [14.

It has been demonstrated that the steady-state
approximation for the Michaelis-Menten mecha-
nism may be applied either when E; < §, (irre-
spective of the values of rate constants) or when
the rate constants of decomposition of the en-
zyme-substrate complex (i.e., k_, and k,) are much
greater than the rate constant of its formation (i.e..
k) even if the concentrations of enzyme and
substrate are of the same order. £, = S,: the appli-
cations of Tihonov's 1Ist Theorem to the
Michaelis-Menten mechanism in different cases
are discussed in refs. 5 and 6.

As the second example. let us consider the
simplest autocatalytic process. describing an ex-
ponential growth

dx/dr=x (48)

It is not a closed chemical system in the sense of
the definition given in section 4. But, following
Korzuhin’s Theorem. it is possibie to find a closed
chemical system. the behavior of which will coin-
cide with any desired accuracy with the behavior
of eq. 48. One may show that this is the case. for
example. for the following system:

k
A+Z, > Z,+Z,

Az
B+Z, > Z;+C (49)

k3
Z,—2Z;

A+ B+ C+ Zy+ Zy + Zy= My = consiant

We assume that 4 and B are present at very high

concentration, i.e., ihat they are reservoir variables
and may be treated as parameters (cf. section 5).
The kinetic equations for Z,. Z, and Z, are

dZ,/de'= —k Z,+ Kk, AZ; (50a)
dZ, /1" =k Z,~ koBZo + k,AZ, (50b)
dZ,/dt’' =k, BZ, ~ k,AZ, (50c)

Writing eq. 50 in terms of dimensionless variables
5 =Z, /M, (i=1.2.3) n

one will observe that the characteristic time con-
stants for Z,. Z., and Z; are equal

Ti=1/ky: To=Ty=1/k,B (52)
Introducing dimensionless time

t=1 /T =k At" (53)
and assuming that

kiAd/kB=p: kiAd/ki=gn (€29
(for simplicity we assume that both quotients have
identical values) one finds that all m, (cf. eqs. 32)

are equal to g and so egs. 50 in dimensionless form
becomes

dz,/dt= —z;+ =3 (55a)
dza/dt=xzy— 2+ 23 (55b)
dzy/dt=z2,—z; (55¢)

One may demonstrate that when p— 0. the
solution z;(t) of the system., egs. 55, coincides with
the solution x(t) of eq. 48 (cf. ref. 5). By changing
the variable
x=pnz; (56)

one obtains from eqgs. 55

dx/dr= ~x+ 25 (57a)
pdzyjdr=x—2 (57b)
pdz, /dr=x+2—~ =, (57¢)

The adjoined system is in this case

dz;/dr=x—1z, (58a)
doy/dr=x+z— =, (58b)
where x is no longer a function of time but a

parameter. Putting p = 0, one obtains the root of
the adjoined system

I=x; I,=2x (59)
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As eqgs. 58 are a linear SFO, it is easy to integrate.
The result is:

)=:l+(:?——5|) exp(—7) (60a)
=5+ {(:7-5)r+(=0—5)] exp(—7) (60b)

One sees immediately from egs. 60 that the root.
egs. 59, is stable: ; and z, quickly tend to the
steady-state values =, and Z,, irrespective of their
initial values z{ and zY. ie.. all possible initial
values lie in the domain of influence of the root.

The assumptions of Tihonov’s 1st Theorem are
thus fulfilled and. when p — 0, solutions of the
system. eq. 57. tend to the solution of the degener-
ate system

dx/dr= —x+ =z, (61a)
=X (61b)
z,=2x {61c)

and so x (and alsc¢ =;) behaves as if it were
produced in the autocatalytic process (eq. 48).

To demonstrate that the assumptions of
Tihonov's Theorem are fulfilled, it is not necessary
to integrate the adjoined system. In more
complicated cases this may be practically impossi-
ble. Instead. one may use the Routh-Hurwitz crite-
rion for this purpose (cf. appendix C). In the
above example. the adjoined system (egs. 58) has
the unique root (the uniqueness of a root may be
in general checked with the aid of Lipschitz condi-
tions. cf. appendix C). The characteristic equation
(eq. CB8) in this case is

Wl —1=A 0 — 5
det I 11— 0 (62)

1.e.

N 420 +1=0 (63)
So we have (eq. C9)

1 =20 by=1 (64)
and further

!

D,=1: D=2: D,= 1

=2 (65)

(=N N}

i.e.. they are all positive. The Routh-Hurwitz crite-
rion shows that the root is stable and. as it is also
unique. any initial conditions must lie in its do-
main of influence. If there is more than one root of

the adjoined system, similar considerations must
be made for all roots separately, as the coefficients
of the characteristic equation and consequently the
Routh-Hurwitz determinants depend on the value
of the root (cf. egs. C7-C10).

From the above considerations. one may see
that to sustain an autocatalytic process ‘inexhaus-
tible’ reservoirs of *building’ materials (A and B)
for the reagents Z, and Z, must exist. In reality
the system, egs. 49, models an autocatalytic system
only for the times for which A and B are practi-
cally constant (of the order r < 1 /). After a suffi-
ciently long time any reservoir will in reality be
exhausted. One ought also to note that the auto-
catalytic process gives a byproduct C.

As the third example, let us consider a case
when small parameters arise in the system because
of the differences in rate constants (cf.. the remark
concerning the applicability of the steady-state
approximation to the Michaelis-Menten mecha-
nism in this section). This will also demonstrate
another method of separation of quick and basic
(slow) variables. Let us assume that the reaction

A
R, +R;, — R; (66)

takes place in the system and that this reaction is a
quick one, i.e.

k=1/p where p-<<l (67)

The reagents R,. R, and R; may participate also
in slow reactions (i.e., with rate constants much
less than k). Assume that in appropriately defined
dimensionless variables the kinetics of the system
are given by

=g (r.x) (68a)
- |

= _;’lr:*'cl("--\')

= — —:;rlrz +Ga(r.x) (68b)

- 1
7y = ;r,r:+63(r..\’)

where r = (r,. ;. ) and x = (x,..... x,): the terms
G, and g, denote contributions of slow reactions. x
denotes slow variables.

The SFO in which the terms ~f the order less
than 1/p (e.g.. the contributions o: slow reactions)
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are neglected, is called a truncated system. Usually,
the truncated system has certain linear integrals,
some of which represent conservation laws. These
integrals are slow variables for the original SFO
and taking them as new variables leads to separa-
tion of quick and slow variables.

It is easy to see that in the example under
counsideration there exist two such lineary indepen-
dent integrals of the truncated system

Xp1=n+n (69a)
(69b)

Xpe2 =N 771
By introducing these integrals into eq. 63 and
denoting r, by z, one obtains

X=8(=.x) (i=1,.... n)

R a1=Gi (2. x)+G3(z.x) (70a)
Xnr2=G (2. x)—Ga(z.x)

p= —z(z—~x,. .3+pG(z.x) (70b)
where now x = (xy,--..X,, X,,, 1> X, +2)- The sys-

tem obtained is identical with egs. 4’ and Tihonov’s
1st Theorem may be applied if the assumptions
are fulfiled. The above example illustrates how
the differences in rate constants of elementary
reactions may be exploited to simplify reaction
kinetics by using Tihonov’s Theorem.

7. Concluding remarks

The method proposed by Kijima and Kijima [1]
may not be applied directly (without linearliza-
tion) even to a Michaelis-Menten mechanism (eq.
41) because of the nonlinear term xz. Their method
may be classified between graph-theoretical meth-
ods, however, the word ‘graph’ does not appear in
the article. Because of introducing two kinds of
arrows (edges or branches in graph-theoretical
terminclogy) their graphs correspond to so-called
colored graphs (two ‘colors’ of edges) and because
each edge has given direction and * value’ (the rate
constant) they belong to the class of graphs called
labelled signal flow graphs (SFG) or labelled di-
rected graphs [15]. The theory of graphs, de-
veloped primarily for the analysis of electrical
networks, has been extensively used for simplify-
ing kinetic (bio)chemical systems (see, for exam-
ple, refs. 16—19). It is interesting to note that the

‘diagrams’ used by Hill [18] and other authors are
also labelled SFG and therefore the general theory
developed for SFG may be applied to these dia-
grams [20].

Tihonov’s Theorems may be applied to systems
in which reactions of the second (aud even higher)
order take place. If some raie constants are equal
to zero, i.e., some reaction steps are irreversible,
the fundamental assumption of ref. 1 is not
fulfilled. In contrast, Tihonov’s Theorems may be
even easier to apply in such cases {because of the
smaller number of terms) than in the case when all
reactions are reversible and no general assump-
tions about the number of components in the
system are necessary.

The fast components ‘forget’ their initial values.
These values are necessary only to check if the
assumptions of Tihonov’s Theorems are fulfilled
(i-e., to check if they are lying in the domain of
influence of the root). However, sums of initial
concentrations of some groups of fast components
(e.g., the total initial enzyme concentration E;)
may determine some characteristic constants of
the system, e.g. small parameters p/).

The obvious conclusion from Tihonov’s Theo-
rems is that the steady-state approximation works
well for times (much) greater than the characteris-
tic time constant used as the unit of time (i.e., the
time constant of the components which may be
thought to be slow in the time scale we are inter-
ested in), however, not so great that the reagents
assumed to be reservoir variables are exhausted.

The fact that the characteristic time constant
for a given reagent is small, compared to the time
scale we are interested in, constitutes a criterion
for fast equilibration which is even more im-
portant in practice than the fact that some elemen-
tary reactions are relatively quick (i.e., some reac-
tion rate constants are much greater than others).
Only relations between characteristic time scales 7
of different reagents and their relations to the time
scale of observation we are interested in (which is
taken as the normalizing unit of time 7°) are of
importance. In section 5 we have subdivided all
the reagents into at least three classes, called re-
servoir (very slow), y, basic (slow), x, and quick, z,

Fe=nPi(x.y.2.0,08) (k+1.....9) (71a)
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R=f(x.y.z.t.p) (i=1.....n) (71b)

7

Fi(x.y.z.t.p) (I=1.._.. s) (71c)

T

The concentration hierarchy in the system is usu-
aliy in agreement with the time hierarchy [6]. i.e.

R

= v, <z (72)

As we have demonstrated. if we are interested in
the behavior of the system in periods of the order
of the time scale characteristic for x,. then we put
T =0 (cf. egs. 34 and 35) and we eliminate the
variables z; using Tihonov’s Theorem. However. if
we are interested in the transient phenomena (i.e..
in time interval 0 <7 < p), then the variables =,
ought to be considered as basic ones and x, as
reservoir ones. Oppositely. if we are interested in
the evolution of the system (7 > 1), then the vari-
ables y; ought to be treated as basic ones and x, as
quick ones. Real systems gencrally have more than
three characteristic time scales (i.e.. some groups
of quick variables, ={"' (j=1..._. m) and then
Tihonov's 2nd Theorem may be a useful mathe-
matical tool.

In conclusion. it may be said that the mathe-
matical foundations of the steady-state approxi-
mation have been well established four more than
30 vears.

Appendix A

The uabstract of Tihonov’s work [2] from Marhe-
matrical Reciews (3]

Tihonov. AN. Systems of differential equations
containing small parameters in the deriva-
tives. Mat. Sbornik N.S. 31 (73). 575-586
(1952). (Russian)

Consider a system (1) dx/dr = f(x. =. 1).
wdzy/dr= F(x, =, t). where x. f are n-vectors. =. F
m-vectors. and f. F satisfy suitable regularity as-
sumptions. Assume = = ¢(x. 1) is an isolated solu-
tion of F(x. z. r)= 0 whose points are (asymptoti-
cally) stable equilibrium points of the adjoined
system dz/d7 = F(x. z. 1) {(x. t being considered
here as parameters. the point (x. 7) belonging to a
bounded open region D). Assume that the initial
conditions (x". =", r?) are such that the solution

z(7) of the adjoined system dz/dr= F(x°, z. :9),
z(0) = £°, satisfies lim__. . z(7) = ¢(x%, 1°). Then
the solution of (1) through the initial point
(x%. 29, 19) tends. as p — 0. to the solution of the
degenerate system dx/dr = f(x. ¢(x, ). 1) as long
as the point (x, t) does not leave the region D. A
similar result holds for systems containing several
small parameters p,..... u,, tending to 0 in such a
way that g, .. /pu, — 0. J.L. Massera (Montevideo).

Appendix B

B.1. Mathematical definitions (from ref. 2)

The norm of an s-dimensional vector v=
(Og.--.. v.) will be denoted by |v] and defined as

|c]=]/ 3 e (B1)
i=1

(Euclidian norm).

The root = = ¢(x, r) of the adjoined system of
equations F(x, =, t)=0 will be called the isolated
root if there exists an e for which this system may
not be fulfilled by any other vector z’ = (={..... z])
with the property

2= e(x.0)l<e (*=9) (B2)

The isolated singular point (root) Z=(5,..... %))
of the adjoined system

dz/dr=F(x.z.1): =z(:¥)=2:9 (B3)

(where x and r are taken as parameters) is called a
stability point if for any e there exists a 6(¢) such
that trajectories starting in a point M belonging to
the 8{e) neighborhood of the singular point tend
to this singular point without leaving the € neigh-
borhood when 1 — o0, ie.

(1) the trajectory of any point == (zj.....z,)
belonging to the 8(¢) neighborhood of the point =
tends to = when 7 — oco:

lim z(7)=235 if |z2(0)—3]<8(¢) (B4)

(2) trajectories of points from the 8(€) neigh-
borhood of the point £ do not leave the € neighbor-
hood of this point:

lz(7)—Zl<e foranyr.if|z(0)—3|<8(¢) (B5)
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The isolated root z=¢(x,r) of the system
F(x,z,t)=0 is called stable in some bounded
region D of the space (x, ), if for all points
belonging to D the points z = ¢(x, t) are singular
stability points of the system (eq. B3).

The domain of influence of the stable root z =
$(x, ) in the subspace x = constant, r = constant
is defined as a set of all points z° from which
trajectories of the adjoined system (eq. B3) tend to
z=¢(x,r) when 7 — co.

The root z¢"™ = @™ (x. zV,.... 2"~V 1) of the
adjoined system of the first order F"(x. z'V, ...
zUm 1y=0 (where x, z'"), ..., ="~ D _ are treated

as parameters) is called an isolated root of the first
order. if there exists such ¢ that this system may
not be fulfilled by any other vector =z for which

2 _ g <o (270 = gt (B6)

The root of the first order z{(") = ¢!")(x,
M ztm=b 1y is called a stable root in some
closed bounded region D, if for all (x, =M

z0m=D_ ¢y of this region "= ¢'™ is a stable
singular point of the adjointed system.

Appendix C
Cl. Other mathematical definitions

An ordinary differential equation of the first
order or a systemn of first-order ordinary differen-
tial equation (SFO)

dz/dr=F(z.7) (z=2z..... =) (C1)
is called au.onomous if the right-hand sides do not
depend explicitly on the independent variable T,
le.

dz/dr= F(z) (C2)

where F and = are vectors of s-dimensional space
(s=1,2,...).

C2. Existence and uniqueness of solutions of SFO

The system (eqs. Cl1) has a unique solution
z = z(7) through every point (z = z3, 7= 7,) in the
(s + 1)-dimensional domain D if for (z,7)E D
functions F(z, 7) are single-valued, bounded, con-

tinuous and if the Lipschitz conditions

|F(7izy,enz )= F(7ivq...., v,)|<1il-lzl]:,—u,| (C3)

are fulfilled for some M independent of - and wv.
Then z(7) is a continuous function of the given
value z;=2z(7). Each solution extends to the
boundary of D.

The Lipschitz conditions are satisfied, in partic-
ular, whenever F(z, v) has bounded and continu-
ous derivatives, 9F/3z,, (/=1,...,5) in D.

The root of an SFO is a stable root if all
perturbations 8- around this root diminish to zero
when 7 — oo

§-—— 0 (Ca)

T —

To investigate if a root = of the autonomous SFO
(eq. C2) is stable, one linearizes the system around
Z; by putting

Z,=z,4+ 8z, (I=1..... s) (C5)

one obtains

d(8z,)/dv= Y a,z, (I=1..... s) (C6)

=1

where the matrix 4 =|q, || is given by

a,=03F/9z]. s (lj=1.... s) <7y

The root = = = is stable if all eigenvalues A, (/=
l....,s). of the matrix 4 have negative real parts.
A, are the zeros of the characteristic equation

detla,, —A8/|=0 (<8)

when 8/ =0 for =/, 8/ = 1 for /= (Kronecker's
delta).

The characteristic equation, after reselving the
determinant in eq. C8, is a polynomial of the s-th
order:

BN+ b N b A+ b =0 (C9)

Given b, >0, all roots A, of the characteristic
polynomial (all eigenvalues of the system egs. C2
have negative real parts if and only if the determi-
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nants

D, = b,

D, =b,
b b,

D,=|' 7

R A

b, by O

Dy=|bs by b, (C10)
bs by by
b, bo 0 .. ol

D, = b3 hz . b' A O (where b, =0if m>s)
basy bas—2 bri3 b,

are all positive (Routh-Hurwitz criterion). This is
true only if all b, and either all even-numbered D,
or all odd-numbered D, are positive (Liénard-
Chipart test; [21].

Appendix D
D1. Tihonov’s Theorem for Beginners

Consider a system of p first-order ordinary
differential equations. Let us assume that s of the
p equations have a small parameter g, multiplying
the time derivatives:

dx,/dr=fi(x5.....0 X, Spe---a2g) (i=1o... n) (Dla)
pdz,/de= F(x;.....0 X,.Iy.---5) (I=1..... s) (D1b)
where (n +5)=p.

Eq. Dla is called the degenerate system. eq.
D1b the adjoined system.

D2. Tihonov's Theorem

The solution of the whole (original) system (egs.
D1) tends to the solution of the degenerate system
when g — 0 if the following conditions are fulfilled:

(a) the solution Z; = ¢ (x{,--., X, Zys----

-0 TR Iz =¢(x}.---sX,. Z4,-... 2,) Is an isolated
root of the algebraic system
F(x,..... X, . 24.---2,)=0 (I=1..... s) (D2)

(i.e.. in the small neighborhood of this root there

are no others roots);

(b) the solution Z,,...,Z, is a stable isolated
singular point of the adjoined system (i.e., any
perturbation throwing the system out of this point,
diminishes with time to zero) for all values of
(x4,...,X,) which are treated here just as parame-
ters and not as functions of t:me;

(¢) the initial values (z?,...,z?) are in the do-
main of influence of the stable singular point of
the adjoined system (i.e., the system will evolve in
such a way that (z;,...,z;), when started from
(z2,...,29), will tend to (Z,,...,Z,.);

(d) the solutions of the whole system (eqs. D1)
and of the adjoined system (eq. D1b) are unique
and the right-hand sides ( f; and F;) are continuous
functions.

Note added in proof (Reccived 20th June 1983)

Professor Benno Hess has recently called the
author’s attention to the publication of Reich and
Sel’kov [22], in which the authors outline the sim-
plest case of using Tihonov’s 1st Theorem (how-
ever, without formulation of the theorem itself)
with one rapid and one slow variable.
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