
New Tools for Web-Scale N-grams

Dekang Lin,∗ Kenneth Church,† Heng Ji,♮ Satoshi Sekine,∇ David Yarowsky,†

Shane Bergsma,‡ Kailash Patil,† Emily Pitler,⋄ Rachel Lathbury,♯ Vikram Rao,♭

Kapil Dalwani,† Sushant Narsale†

∗Google, Inc. (lindek@google.com),
†Johns Hopkins University (kenneth.church@jhu.edu,yarowsky@cs.jhu.edu,

kailash@jhu.edu, kapild@cs.jhu.edu, sushant@jhu.edu),
♮City University of New York (hengji@cs.qc.cuny.edu),

∇New York University (sekine@cs.nyu.edu),
‡University of Alberta (sbergsma@ualberta.ca),

⋄University of Pennsylvania (epitler@seas.upenn.edu),
♯University of Virginia (rlathbury@virginia.edu),

♭Cornell University (vr59@cornell.edu)

Abstract

We introduce a new set of tools for working with web-scale N-gram data. These tools lower the barrier for working with web-scale text,

and create a new platform for acquiring large-scale linguistic knowledge. They will allow novel sources of information to be applied to

long-standing natural language challenges.

1. Introduction

The overall performance of machine-learned NLP systems

is often ultimately determined by the size of the training

data rather than the learning algorithms themselves (Banko

and Brill, 2001). The web undoubtedly offers the largest

textual data set. Text from the web has been found use-

ful in a diverse range of NLP applications (Kilgarriff and

Grefenstette, 2003).

While the web provides a fantastic linguistic resource, col-

lecting and processing data at web-scale is beyond the

reach of most academic laboratories. Previous approaches

have relied on search engines to collect online informa-

tion (Grefenstette, 1999; Turney, 2001; Keller and Lapata,

2003; Chklovski and Pantel, 2004; Lapata and Keller, 2005;

Nakov and Hearst, 2005). There are a number of drawbacks

in using search engines (Kilgarriff, 2007). While broad-

coverage search engines can work well when counts for a

small number of queries are needed, they are hopelessly

inefficient when millions of queries are required. Search

engines are therefore inadequate for building large-scale

linguistic resources, such as lists of named-entity types

or clusters of distributionally-similar words. Furthermore,

search engines offer a very impoverished query language.

Queries that match capitalization, punctuation, and annota-

tions such as part-of-speech are not supported. There have

been efforts to develop search engines that support different

kinds of linguistic queries, but so far these have used much

smaller document collections than those indexed by com-

mercial search engines (Cafarella and Etzioni, 2005; Banko

et al., 2007). Another option is to apply NLP-strength post-

processing to the pages returned by a search engine for a

particular query (Nakov and Hearst, 2005). For efficiency

reasons this is again only possible at a small-scale.

An alternative to processing web-scale text directly is to

use the information provided in an N-gram corpus. An

N-gram corpus is an efficient compression of large amounts

of text. An N-gram corpus states how often each sequence

of words (up to length N) occurs. To keep the size manage-

able, N-grams that occur with a frequency below a particu-

lar threshold can be filtered.

The data of Brants and Franz (2006), commonly referred to

as the Google N-gram Corpus, provides a widely-used cor-

pus of N-gram counts, taken from a trillion words of online

text. A number of recent NLP systems have used counts

from this corpus (Vadas and Curran, 2007; Yuret, 2007;

Kummerfeld and Curran, 2008; Bergsma et al., 2009). Al-

though this N-gram data is much smaller than the source

text from which it was taken, it is still a very large re-

source, occupying approximately 24 GB compressed, and

containing billions of N-grams in hundreds of files. Spe-

cial strategies are needed to effectively query large num-

bers of counts. Some of these strategies include pre-sorting

queries to reduce passes through the data, hashing (Hawker

et al., 2007), storing the data in a database (Carlson et al.,

2008), and using a trie structure (Sekine, 2008). While

these strategies allow for much faster retrieval of infor-

mation than using a search engine, the kinds of informa-

tion that can be queried remains fairly impoverished, as the

Google N-gram Corpus contains only words and counts.

We propose tools for working with enhanced web-scale

N-gram corpora that include richer levels of source anno-

tation, such as part-of-speech tags. We describe a new set

of search tools that make use of these tags, and collectively

lower the barrier for lexical learning and ambiguity resolu-

tion at web-scale. These tools were developed during a six-

week research workshop at the Center for Language and

Speech Processing at Johns Hopkins University, and will

be released publicly under an open-source license.

2. Overview

Section 3. describes the N-gram data used in our implemen-

tations of the different search tools.

The tools have different strengths and are therefore appro-

priate for different uses. Indeed, we relied on each of these

tools for different NLP applications during our research at

the workshop. Feedback from users helped define the ulti-

mate functionality of the tools.

The first set of tools allows for very expressive search

queries using the idea of rotated N-grams (Section 4.). A

simple query language allows the user to construct detailed

search patterns and gather information from the matching

N-grams. For applications that require arbitrarily expres-

sive searches over words and tags, including the use of reg-

ular expressions, these tools should be used. They are the

main focus of this paper.

Another set of tools are based on suffix arrays (Section 5.).

These tools provide very efficient retrieval of the top-K re-

sults for a query. They also provide the quickest access to

frequency information for exact-match queries (i.e., ones

that do not use tags or regular expressions).

Finally, we describe tools that additionally index syntactic

chunk and named-entity information (Section 6.). These

tools also link the retrieved N-grams back to their location

in the original text. They are therefore most useful for ap-

plications requiring richer levels of annotation and cross-

reference.

3. Tagged N-gram data

3.1. Web-scale N-grams

The data of Brants and Franz (2006) provides a widely-used

corpus of N-gram counts, taken from a trillion words of on-

line text. We built the tools in Section 4. and Section 5. to

make use of a new N-gram corpus, created from the same

source text as this earlier N-gram data, but with several en-

hancements. First, duplicate sentences are discarded. This

is important because in a web corpus, the use of legal dis-

claimers and other boilerplate text causes some sentences

to occur millions of times, skewing the N-gram statistics.1

Second, to filter garbage text, we only keep sentences 20 to

300 bytes long and with less than 20% of characters being

digits or punctuation. Third, we convert all digits to ‘0’ and

replace all URLs with ‘〈URL〉’ and e-mail addresses with

‘〈EMAIL〉.’
The remaining sentences were part-of-speech tagged using

the tag-set of the Penn Treebank (Marcus et al., 1993) via

the TnT Tagger (Brants, 2000). TnT was used because of

its accuracy (96.7% on the Treebank) and efficiency.2

1Likely duplicate sentences in the original Google N-gram cor-

pus have recently been observed, and their effects on extracting

lexical information discussed, at nlpers.blogspot.com/2010/02/

google-5gram-corpus-has-unreasonable.html
2TnT is an HMM-style tagger, and does not use bi-lexical fea-

tures. It can therefore perform poorly on tagging decisions in-

volving bi-lexical dependencies, such as distinguishing between a

past-tense verb (VBD) and a past participle (VBN), where the spe-

cific relation between the verb and noun is important (e.g. troops
stationed (VBN) vs. troops vacationed (VBD) or lessons learned
(VBN) vs. students learned (VBD)). Overall, tagging errors are

fairly consistent in the corpus, and are reflected in the aggregate

statistics (more on this in Section 5.). One of the applications we

investigated was to design a post-processor to fix VBN-VBD er-

rors using N-gram statistics.

After tagging, the N-gram counts were then collected,
keeping only unigrams that occur more than 40 times and
2-to-5-grams that occur more than 10 times. There are 4.1
billion N-grams in the resulting database. Each N-gram en-
try in the database also indicates how often the N-gram oc-
curs with each part-of-speech tag sequence. E.g.:

flies 1643568 NNS|611646 VBZ|1031922

– indicating that flies occurred 1.6 million times, and was

tagged roughly six hundred thousand times as a plural noun

and one million times as a verb.

To allow efficient access to the N-gram entries, and to col-

lect and aggregate information over the entries, we devel-

oped data structures and tools, which we discuss in Sec-

tion 4. and Section 5..

We plan to make the new N-gram data available to the NLP

research community.

3.2. Wikipedia N-grams

The tools in Section 6. use a tagged and cleaned

Wikipedia corpus,3 automatically annotated with part-of-

speech, chunk and named-entity information. Part-of-

speech and chunk tags were annotated by the OAK system,4

and named-entities were annotated by the Stanford NE tag-

ger.5 We extracted N-grams from the annotated corpus, in-

cluding N-grams up to seven tokens in length, without any

frequency thresholds. The corpus contains 1.7 billion to-

kens and there are 4.55 billion unique N-grams in the re-

sulting N-gram database. The data is available under GNU

Free Documentation License.

4. Tools for Rotated N-grams

This section describes our first set of tools for matching

and counting N-grams. We first describe the notion of a

rotated N-gram. We discuss how our data is structured us-

ing this concept. We then describe the programs, patterns,

and commands that work with this data. The tools can be

used in batch mode or when a block of N-grams is returned

using a search key, and we discuss the advantages of each

approach. Finally, we describe some applications of our

tools, including an approach to creating semantic clusters

from the distribution of phrases in the rotated N-gram data

4.1. Data organization

We would like to take an arbitrary input word or phrase

and find all the N-grams containing that word. Once we

have these N-grams, we can match them against arbitrarily

complex patterns, such as regular expressions. E.g., sup-

pose we are searching for expression involving the word

cheetah. If we store the N-grams in alphabetical order,

all the N-grams that begin with cheetah will be sequen-

tial, but those that contain cheetah in later positions will be

distributed throughout the data. An expensive linear pass

through all the data would therefore be required to retrieve

all the matching N-grams.

One solution is to store multiple copies of each N-gram,

rotated so that different words occur at the first position in

3http://nlp.cs.nyu.edu/wikipedia-data
4http://nlp.cs.nyu.edu/oak
5http://nlp.stanford.edu/software/CRF-NER.shtml

different copies. A phrase like “faster than a cheetah” will

be rotated three times (with the “><” marker indicating the

pivot of the rotation):

faster than a cheetah
than a cheetah >< faster
a cheetah >< than faster
cheetah >< a than faster

On the right-hand-side of the rotation marker, the words

are stored in reverse order (this facilitates the clustering de-

tailed in Section 4.6.). Each rotated version is stored with

the corresponding count and part-of-speech tag data for the

original N-gram. Once all the N-grams are rotated, we sort

them alphabetically. In the new version, all the N-grams

containing cheetah will therefore be consecutive. We call

the input query (here, the word cheetah) the search prefix

as it is the prefix of a block of rotated N-grams, and is used

to retrieve this block. A search prefix can be any number of

tokens up to the length of N-grams in the data.

We divide the rotated N-grams into 992 files of roughly

500MB each (unzipped). No prefix spans multiple files.

We build an index over these files. When a search prefix

is given as a query, we search the index file for its location

in the data, and then seek to the appropriate location in the

appropriate file, returning the matching rotated N-grams.

The matching N-grams can be further processed using the

commands and patterns described below. A program called

search_prefix takes as arguments a search prefix, an

index (either one to load from disk or the address of a run-

ning index server) and an optional command (or set of com-

mands) to run on the matching N-grams (Section 4.3.).

Rather than specifying a search prefix, the N-grams can

also be processed in batch mode. The 992 rotated files can

be divided among nodes in a computing cluster and pro-

cessed in parallel. We used Hadoop on IBM/Google’s aca-

demic cloud computing cluster. Section 4.6. describes one

application of batch processing: building semantic clusters

of distributionally-similar phrases.

4.2. Patterns

The patterns are mixed sequences of words and part-of-

speech tags that can be specified to match exactly or with

regular expressions. The patterns are specified using a

fully-parenthesized, Lisp-style syntax. They consist of

atomic patterns and composite patterns.
Atomic patterns match words or tags against strings or
regular-expressions provided by the user. A simple pattern
is (word = WORD), which is true if the token in a given
position matches the provided WORD. Other constructions
include (tag ˜ REGEXP) which matches a tag against a
regular expression and (tag in LIST) which is true if the
tag is in the given list. Sequences of words or tags can also
be matched. For example, word-seq matches a regular
expression over the N-gram tokens:

(word-seq (got an? .* for Christmas))

This matches N-grams like “got an X-box for Christmas,”

“got a pony for Christmas,” etc.
Composite patterns combine other patterns in union, inter-
section, or sequence. For example, (+ PATTERN), matches
one or more consecutive subsequences that match the given

pattern, (? PATTERN) can optionally match one pattern,
while (or PATTERN1 PATTERN2 ... PATTERNn) matches
a sequence if any of the patterns match. The pattern (seq
PATTERN1 PATTERN2 ... PATTERNn) matches a consecu-
tive sequence of the given patterns, as in:

(seq (word = a)
(word = river)
(tag ˜ [ˆN].*))

This pattern matches all the instances where a river occurs

and is not followed by another noun, matching instances

like a river runs, while excluding matches for phrases like

a river boat or a river basin.

4.3. Commands

A command, also known as an extractor, processes the
results returned by matching the patterns against the
N-grams. Commands can print, count, and format match-
ing N-grams or parts of matching N-grams. For example,
the command:

(print-ngram PATTERN [:max-match M])

will print all the N-grams that match the pattern (up to
the first M , if the max-match option is included). The
following is an example of using this command with the
search_prefix program:

search_prefix SERVER ‘learned’
‘(print-ngram

(seq (word = learned)
(or (tag = DT) (tag = PRP$))
(word = lessons)

))’

where SERVER is the hostname and port of a server host-

ing the index. This pattern tells us how often the past-tense

verb learned takes the word lessons as a direct object. This

particular command was used in a task where we looked at

using N-gram counts to disambiguate VBN/VBD tags (see

Footnote 2). A high count for this pattern indicates that

learned is likely a VBN in lessons learned. The equivalent

pattern counts are much lower for students learned, indicat-

ing that learned is a VBD in this context.
It is also possible to count how often particular strings
match patterns, and how often they co-occur with other
matched patterns. The count command can be used in batch
mode as:

(count (seq (+ (tag ˜ [NJ].*) :name NP)
(? (word = ,))
(word in (who which) :name RPr))

:format ‘‘$[NP] $[RPr]’’)

This command counts how often sequences of nouns and
adjectives (labeled as NP) are followed by one of two rela-
tive pronouns (RPr), and outputs the matches as follows:

...
recent conversation which 10
recent debate which 10
recent divorcee who 60
recent meeting which 232 who 13
recent opinion poll which 24
...

Ji and Lin (2009) used similar patterns to learn which en-

tities in text are animate (those tending to be followed by

a who) and inanimate (those tending to followed by which
or where). This information was shown to improve unsu-

pervised person mention detection. They also constructed

similar patterns to determine the grammatical gender and

number of entities.

4.4. Modes of Operation

There are trade-offs between matching patterns using a

search prefix or applying them to all the N-grams in batch

mode. If the goal is to build a lexical resource, i.e., a col-

lection of data that can applied in a variety of NLP applica-

tions, then batch mode is preferred, as it will extract all the

information in the N-gram corpus. This was the approach

taken to extracting gender, number, and animacy informa-

tion.

Using the search_prefix programs are most useful for

preliminary investigations, brain-storming, and proof-of-

concept experiments. For example, sometimes counts are

only needed for a small number of phrases, perhaps only

those in annotated training and testing data. In this case,

instantiating queries with the particular words in these ex-

amples might be faster than collecting the information for

all phrases in the N-gram corpus. This is the approach we

took for our experiments in VBN/VBD disambiguation.

If the search_prefix program will be called repeat-

edly, there are several ways to improve its efficiency. First

of all, we provide functionality to allow a set of commands

to be applied together. The commands then operate in par-

allel on the same block of returned N-grams. Secondly,

it may be useful to develop an automatic way to choose a

good search prefix, if more than one prefix is possible for

the same pattern. If a common word is used, very large

blocks of N-grams will be processed. One strategy we em-

ployed was as follows: we found the longest phrase that oc-

curs in the instantiated pattern. In the case of ties, we chose

the phrase whose first token had the lower unigram count.

The unigram count is only a proxy for number of N-grams
that a phrase occurs in. We really want to minimize the

latter. However, the simpler approach was sufficient for our

applications.

4.5. Pattern-Matching Applications

We already mentioned some applications of our tools. We

used them to acquire lexical knowledge for improving part-

of-speech tagging (VBN/VBD disambiguation) and also to

learn noun gender, number, and animacy for person men-

tion detection. In addition, significant work was done us-

ing these tools to extract lexical knowledge for classifying

count vs. mass nouns, and to determine adjective order in

generation.

Our tools and data will be especially helpful in a broad class

of applications where mining information from search en-

gines can conflate phrases (e.g. Martin Luther) with longer

phrases that have the original as a prefix (e.g. Martin Luther
King Jr. Boulevard).

For example, consider the problem of predicting noun

countability. Countable nouns include river and avocado.

For these, it is correct to refer to a river, one river, three

rivers, many rivers etc. Uncountable, mass nouns include

water and luggage. One cannot say a water, whereas some
water and much water are acceptable.

There are reliable corpus-based indicators of countabil-

ity. We can simply count how often a noun phrase oc-

curs with countable or mass-specific pre-modifiers (Bald-

win and Bond, 2003; Lapata and Keller, 2005; Peng and

Araki, 2005). For example, we could determine count-

ability by contrasting the corpus frequencies of much wa-
ter versus many water. If we naı̈vely apply this pat-

tern, however, we will match cases where water is actually

only a prefix of a larger phrase, such as many water bot-
tles/towers/molecules/etc. Clearly, “we need some mecha-

nism for detecting [noun phrase] boundaries” (Baldwin and

Bond, 2003). While corpus-based approaches have used

part-of-speech tagging to detect phrase boundaries (Bald-

win and Bond, 2003), research using search engines has,

out of necessity, neglected the issue, and achieved lower

performance (Peng and Araki, 2005; Lapata and Keller,

2005).

Similar issues will occur when using web-scale pattern-

matching for any lexical property, whenever a noun occurs

at the beginning or ending of a pattern.6

Our tools offer a solution: they allow the use of web-
scale statistics, without compromising on the quality of
the search patterns. Here, we can include requirements on
neighbor tags as part of the search pattern. We saw an ex-
ample of this pattern in Section 4.2. for getting counts for
the word river. Here is another example that uses the count
command in batch mode to extract the relevant statistics for
matching phrases:

(count (seq (or (word ˜ [Mm]uch)
(word ˜ [Mm]any)
:name PreM)

(+ (tag ˜ [NJ].*) :name NP)
(tag ˜ [ˆN].*))

:format ‘‘$[NP] $[PreM]’’)

The final pattern in the sequence matches any tag that does

not begin with N, and therefore identifies noun boundaries.

The command prints noun phrases and their count with pre-

modifiers much and many. These commands can also be

instantiated with specific nouns (for example, only those

nouns in annotated training and testing data). We would

then use the the aforementioned search_prefix pro-

gram to extract the relevant information.

4.6. Semantic Clustering of N-grams

We now describe one large-scale application that uses the

rotated N-gram data: a web-scale distributional cluster-

ing of phrases. We produce a clustering with ten million

phrases via K-means clustering. We make this data pub-

licly available.

6The problem may be less severe when the noun occurs at the

beginning of the pattern. In such cases, the noun (e.g. water) is

likely the head of any longer phrase that is matched (e.g. bath wa-
ter), since it occurs as the suffix of this longer phrase. Conflating

the noun with the longer phrase may therefore not be harmful if

phrases and their heads tend to agree in the property of interest

(e.g. countability).

Cluster 825 Cluster 883 Cluster 286

Nissan Maxima right:car secrecy agreement left:signed Pramod Kumar left:shri

Nissan Altima right:parts 00-year lease agreement left:sign Krishna Kumar right:singh

Buick Century right:cars deed of agreement right:signed Anil Kumar right:kumar

Nissan Pathfinder left:0000 memorandum agreement left:signing Dinesh Kumar left:dr.

Infiniti G00 right:recalls technology transfer agreement left:under Rajesh Kumar left:mr

Nissan Sentra right:engine twinning agreement right:between Ashok Kumar right:sharma

Pontiac Sunfire left:new operational agreement left:into KUMAR left:dr

Mazda Miata left:ford memorandum of cooperation right:with Virendra right:gupta

Isuzu Rodeo left:used 0-year agreement left:entered Arun Kumar left:mr.

Hyundai Elantra right:sale co-operative agreement left:a Kamlesh

Table 1: Example phrasal clusters acquired using distributional clustering over N-gram data. For each cluster, the first

column indicates the most canonical phrases in the cluster (by similarity to cluster centroid) while the second column

indicates the most highly weighted elements of the centroid feature vector (right: indicates a word occurring on the right,

left: indicates a word on the left). Recall that all digits were pre-converted to ‘0’ in the N-gram source corpus.

Clusters allow us to generalize. Recently, a number of

researchers in NLP have successfully used clusters to im-

prove the performance of systems trained using supervised

machine learning (Miller et al., 2004; Koo et al., 2008; Lin

and Wu, 2009). Essentially, even if a word or phrase has not

been observed in the training data, we may process it cor-

rectly in unseen data provided we have information about

its cluster membership.

For example, suppose we have training data that indicates

Honda Accord is a car. When applying our system, we may

see phrases like peace accord and Nissan Maxima. Based

purely on the identical grammatical heads, we might sus-

pect peace accord is a car, while we would have no infor-

mation for Nissan Maxima. However, if we knew the clus-

ter memberships of the entities involved (Table 1) where

Honda Accord is in Cluster 825 and peace accord is in

Cluster 883, we could learn that all entities in Cluster 825

tend to be cars while none of the phrases in Cluster 883 are

so. This knowledge would let us make the correct determi-

nation at test time.

Most previous large-scale efforts use the algorithm devel-

oped by Brown et al. (1992), e.g. Miller et al. (2004) and

Koo et al. (2008). This algorithm operates over words. A

word in isolation, however, can be ambiguous (like accord),

whereas phrases are less so. Lin and Wu (2009) produce a

clustering with 20 million phrases, but neither the web doc-

uments they used for clustering, nor their resulting clusters,

are publicly available.

We follow Lin and Wu (2009) in using K-means to cluster

phrases, but make our clusters publicly available. To make

web-scale clustering practical, we cluster using our rotated

N-gram data. We first define what we mean by phrase, and

then apply this definition operationally to build our clusters.

A phrase is intuitively a sequence of words that functions

as a single unit in a sentence. For example, while degree in
computer science is a phrase (it can play many roles in text),

we regard degree in computer on its own as not a phrase.

Frequency is therefore an inadequate filter; degree in com-
puter occurs 52,181 times in our corpus, and is of course

more frequent than degree in computer science, which oc-

curs 39,640 times. Lin and Wu (2009) define phrases to

be sequences of words that are queried on a search engine.

While this is a potentially useful heuristic, query data is not

made publicly available. We instead use the following idea:

N-grams that have low entropy of context are not phrases.

For example, if degree in computer is always followed by

one of a few specific tokens, it is not itself a phrase. We ap-

proximate choosing N-grams with high entropy of context

by ensuring a certain number of unique left and right con-

texts co-occur with the N-gram, that a certain percentage

of the left and right contexts are stop words, and that the

phrase itself obeys some constraints such as not beginning

with a stop word, not ending in a conjunction, preposition,

or determiner, and not containing certain punctuation.

The main idea of clustering phrases using N-gram data is

to use higher-order N-grams to extract the context (i.e. dis-

tributional) features for lower-order phrases. Phrases that

are similar should have similar distributional features. This

is a simple application of Harris (1985)’s distributional hy-

pothesis: words (and phrases) that occur in similar contexts

tend to have similar meanings.
We simultaneously identify phrases and extract their dis-
tributional contexts in a single pass through the N-gram
data. For example, consider passing through the block of
N-grams beginning with the phrase degree in engineering:

degree in engineering 31978
...
degree in engineering >< PhD 110
degree in engineering >< accredited 21
degree in engineering >< four-year 72
...
degree in engineering mechanics 63
degree in engineering management 63

As we encounter these N-grams, we have the total count

of the phrase degree in engineering (31978) and counts

for various left-contexts (left:PhD 110, left:accredited 21,

left:four-year 72) and right-contexts (right:mechanics 63,

right:management 63). We include as context features both

adjacent tokens and those separated from the phrase by a

stop word.

We use the Map-Reduce distributed programming

paradigm (Dean and Ghemawat, 2008), and run experi-

ments using Hadoop on IBM/Google’s academic cloud

computing cluster. Our mapper creates the count vectors

for each example, while the reducer sums the frequency

of each context across all examples (the global context

counts). We then do another pass over the context vectors,

converting the context counts to the mutual information

between the phrases and the contexts (dividing the phrase-

context co-occurrence count by the count of the phrase

and the global count of the context, determined in the

reduction part of the previous pass). This produces the

feature vectors needed for clustering.

Finally, we run K-means clustering over the resulting fea-

ture vectors. We use as our distance metric the cosine sim-

ilarity between feature vectors. K-means is used because

it is computationally efficient and easily parallelized. We

run 50 iterations using 1000 cluster centroids and random

initialization.

We tuned our thresholds by running several development

clusterings and assessing the results. The final run of our

algorithm produced a clustering of 10 million phrases in

1000 clusters. The algorithm is found to intuitively cluster

entities like cities, cars, movies, etc. Table 1 provides some

example clusters. Cluster 286 is a collection of names of

Indian origin. These were clustered because they occurred

in the context of other Indian names. There are potentially

many applications of such name collections.

We used the clusters in an experiment determining the

scope of conjunctions. They were found to enable good

disambiguation performance on this task, exceeding meth-

ods based on co-occurrence frequencies.

5. Suffix-array tools

A separate set of tools are based on suffix arrays. The tools

take as input flat files such as the tagged N-gram data de-

scribed in Section 3.. These flat files associate each N-gram

key with parts-of-speech and frequency counts. We split the

input files into chunks of roughly 2GBs each. The chunk

size is selected so that we can afford random access within

a chunk. We build indexes (suffix arrays) for each chunk.

Suffix arrays support a number of different types of queries.

Given a list of patterns, it is easy to find N-grams that match

the pattern in various ways including exact match, starts

with and contains. With a variation of suffix arrays de-

scribed in (Church et al., 2007), the indexes can be mod-

ified to return the top-K results by counts. This option is

particularly useful for queries that would otherwise flood

the user with too many matches.

A part-of-speech tagger was built on top of these tools. The

tagger highlighted opportunities for improving the part-of-

speech tags in the input files. The tagger incorrectly tagged

‘work’ as a verb in ‘He drove to work’ because of tag-

ging errors in the input files. If the tagging errors in the

input files were random, then ‘more data would be better

data,’ but unfortunately, TnT often makes the same mis-

takes again and again.

The tools mentioned above were also applied to other types

of flat files including the output of our K-means cluster-

ing, as well as the output of BBN’s self-organizing units on

Switchboard speech (Garcia and Gish, 2006).

6. Part-of-speech, chunk, & named-entity

N-gram matching in Wikipedia

We also developed a search tool for corpora with richer lev-

els of source annotation, beyond part-of-speech (POS) tag-

ging. We used this tool to index our annotated Wikipedia

data (Section 3.2.). The tool supports queries with an arbi-

trary number of wild-cards and also allows restricting the

wildcards to particular POS, chunk (such as NP, VP, PP)

or Named Entity (NE) types (person, location, and organi-

zation). It outputs matching N-grams with frequencies as

well as with all the contexts of the N-gram in the original

corpus (i.e. the source sentences, keyword-in-context lists

and document ID information). The tool takes a fraction of

a second for a search on a single CPU Linux-PC environ-

ment (using 1GB memory and 500GB disk).

This system is an extension of the N-gram search en-

gine system described in (Sekine, 2008). The previous

system can only handle tokens in the query, such as “*

was established in *.” However, finer specification of the

wildcards by POS, chunk or NE is quite useful for filter-

ing out noise. For example, the new system can search

“NE=COMPANY was established in POS=CD.” This finer

specification halves the number of matching N-grams for

this query, and avoids returning N-grams which have a

comma or a common noun at the first position or a loca-

tion in the last position. The structure of the index is com-

pletely changed from the trie structure of (Sekine, 2008). It

now uses an inverted index structure with additional check-

ing mechanisms. The index size has reduced greatly from

2.4TB to 500GB, with a minor sacrifice in search speed.

A separate paper provides full details of the architecture

and algorithms of this particular search tool (Sekine and

Dalwani, 2010).

Acknowledgments

We gratefully acknowledge Frederick Jelinek and the mem-

bers of the Center for Language and Speech Process-

ing at Johns Hopkins University for hosting the work-

shop at which this research was conducted. We thank

the IBM/Google Academic Cloud Computing Initiative for

providing access to their computing cluster. We also thank

the National Science Foundation, Google Research, and the

Defense Advanced Research Projects Agency for sponsor-

ing the workshop, and Thorsten Brants, Fernando Pereira

and Alfred Spector at Google for their help with providing

the new N-gram data.

7. References

Timothy Baldwin and Francis Bond. 2003. Learning the

countability of English nouns from corpus data. In ACL.

Michele Banko and Eric Brill. 2001. Scaling to very very

large corpora for natural language disambiguation. In

ACL.

Michele Banko, Michael J. Cafarella, Stephen Soderland,

Matt Broadhead, and Oren Etzioni. 2007. Open infor-

mation extraction from the web. In IJCAI.
Shane Bergsma, Dekang Lin, and Randy Goebel. 2009.

Web-scale N-gram models for lexical disambiguation. In

IJCAI.

Thorsten Brants and Alex Franz. 2006. The Google Web

1T 5-gram Corpus Version 1.1. LDC2006T13.

Thorsten Brants. 2000. TnT – a statistical part-of-speech

tagger. In ANLP.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-

cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-

based n-gram models of natural language. Comput. Lin-
guist., 18(4):467–479.

Michael J. Cafarella and Oren Etzioni. 2005. A search en-

gine for natural language applications. In WWW.

Andrew Carlson, Tom M. Mitchell, and Ian Fette. 2008.

Data analysis project: Leveraging massive textual cor-

pora using n-gram statistics. Technial Report CMU-ML-

08-107.

Timothy Chklovski and Patrick Pantel. 2004. VerbOcean:

Mining the web for fine-grained semantic verb relations.

In EMNLP.

Kenneth Church, Bo Thiesson, and Robert Ragno. 2007.

K-best suffix arrays. In Human Language Technologies
2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Compan-
ion Volume, Short Papers.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce:

simplified data processing on large clusters. Commun.
ACM, 51(1):107–113.

Alvin Garcia and Herbert Gish. 2006. Keyword spotting

of arbitrary words using minimal speech resources. In

IEEE Int. Conf. Acoust., Speech, Signal Processing.

Gregory Grefenstette. 1999. The World Wide Web as a

resource for example-based machine translation tasks. In

ASLIB Conference on Translating and the Computer.

Zellig Harris. 1985. Distributional structure. In The Phi-
losophy of Linguistics, pages 26–47. Oxford University

Press.

Tobias Hawker, Mary Gardiner, and Andrew Bennetts.

2007. Practical queries of a massive n-gram database.

In Australasian Language Technology Association Work-
shop.

Heng Ji and Dekang Lin. 2009. Gender and animacy

knowledge discovery from web-scale N-grams for unsu-

pervised person mention detection. In PACLIC.

Frank Keller and Mirella Lapata. 2003. Using the web to

obtain frequencies for unseen bigrams. Computational
Linguistics, 29(3):459–484.

Adam Kilgarriff and Gregory Grefenstette. 2003. Intro-

duction to the special issue on the Web as corpus. Com-
putational Linguistics, 29(3):333–347.

Adam Kilgarriff. 2007. Googleology is bad science. Com-
putational Linguistics, 33(1).

Terry Koo, Xavier Carreras, and Michael Collins. 2008.

Simple semi-supervised dependency parsing. In ACL-
08: HLT.

Jonathan K Kummerfeld and James R Curran. 2008. Clas-

sification of verb particle constructions with the Google

Web1T Corpus. In Australasian Language Technology
Association Workshop.

Mirella Lapata and Frank Keller. 2005. Web-based models

for natural language processing. ACM Transactions on
Speech and Language Processing, 2(1):1–31.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering for

discriminative learning. In ACL-IJCNLP.

Mitchell Marcus, Beatrice Santorini, and Mary

Marcinkiewicz. 1993. Building a large annotated

corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Scott Miller, Jethran Guinness, and Alex Zamanian. 2004.

Name tagging with word clusters and discriminative

training. In HLT-NAACL.

Preslav Nakov and Marti Hearst. 2005. Search engine

statistics beyond the n-gram: Application to noun com-

pound bracketing. In CoNLL.

Jing Peng and Kenji Araki. 2005. Detecting the countabil-

ity of english compound nouns using web-based models.

In IJCNLP: Companion Volume.

Satoshi Sekine and Kapil Dalwani. 2010. Ngram search

engine with patterns combining token, POS, chunk and

NE information. In LREC.

Satoshi Sekine. 2008. A linguistic knowledge discovery

tool: Very large ngram database search with arbitrary

wildcards. In COLING: Companion volume: Demon-
strations.

Peter D. Turney. 2001. Mining the web for synonyms:

PMI-IR versus LSA on TOEFL. In European Confer-
ence on Machine Learning.

David Vadas and James R. Curran. 2007. Large-scale

supervised models for noun phrase bracketing. In PA-
CLING.

Deniz Yuret. 2007. KU: Word sense disambiguation by

substitution. In SemEval-2007: 4th International Work-
shop on Semantic Evaluations.

