Gene Expression RFP response

Initial Submission

EMBL-EBI (European Bioinformatics Institute)
OMG document \# lifesci/2000-11-16

OMG Document lifesci/00-03-09 (Gene Expression RFP)
Version 1.0
20 November 2000

The companies listed above hereby grant a royalty-free license to the Object Management Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, so long as the OMG reproduces the copyright notices and the below paragraphs on all distributed copies.
The material in this document is submitted to the OMG for evaluation. Submission of this document does not represent a commitment to implement any portion of this specification in the products of the submitters.
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed above shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. The information contained in this document is subject to change without notice.
This document contains information, which is protected by copyright. All Rights Reserved. Except as otherwise provided herein, no part of this work may be reproduced or used in any form or by any means graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems without the permission of one of the copyright owners. All copies of this document must include the copyright and other information contained on this page.
The copyright owners grant member companies of the OMG permission to make a limited number of copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.
CORBA, OMG and Object Request Broker are trademarks of Object Management Group.

1. Preface

This submission is in response to LSR RFP, Gene Expression, Object Management Group (OMG) Document lifesci/00-03-09 (Gene Expression RFP)

1.1 Submission Contact Points

Ugis Sarkans
European Bioinformatics Institute
EMBL Outstation - Hinxton
Wellcome Trust Genome Campus
Hinxton, Cambridge CB10 1SD
United Kingdom
(+44) 1223494603
ugis@ebi.ac.uk

1.2 Supporting Organisations

The proposal is supported by the Microarray Gene Expression Database (MGED) group and has been prepared by the Microarray Markup Language (MAML) working group of MGED.
The MGED group is an open discussion group established at the Microarray Gene Expression Database meeting MGED I on November 16-17, 1999, in Cambridge, UK. The goal of the group is to facilitate the adoption of standards for DNA-array experiment annotation and data representation, as well as the introduction of standard experimental controls and data normalization methods. The underlying goal is to facilitate the establishing of gene expression data repositories, comparability of gene expression data from different sources and interoperability of different gene expression databases and data analysis software. Since 1999 the group has had two general meetings and the third one is scheduled for March 28-30, 2001, in Stanford US. MGED group includes representatives from the EMBL-EBI, National Center for Biotechnology Information (NCBI), National Center for Genome Research (NCGR), DNA Databank of Japan (DDBJ), National Human Genome Research Institute, German Cancer Research Centre, Stanford University, University of California at Berkeley, University of Colorado, Rockefeller University, Whitehead Institute, Affymetrix, Incyte and Gene Logic Ltd. MGED has established five working groups, including MAML working group, which is coordinated by Paul Spellman from the University of California at Berkeley (UCLB).

For more information on MGED see http://www.mged.org/.

1.3 Acknowledgements

Below is the list of authors from the MGED MAML working group, who have substantially contributed to the proposal:

Paul Spellman	UCLB	spellman@ bdgp.lbl.gov
Alvis Brazma	EMBL-EBI	brazma@ebi.ac.uk
Jack Chen	NIH	xchen@helix.nih.gov
Mike Cherry	Stanford University	cherry@stanford.edu
Jonathan Epstein	NIH	jonathan_epstein@nih.gov
Carol Harger	NCGR	cah@ncgr.org
Pascal Hingamp	University Marselle	hingamp@ciml.univ-mrs.fr

Alex Lash	NCBI	alash@ ncbi.nlm.hih.gov
Isaac Neuhaus	BMS	isaac.neuhaus@ bms.com
John Quackenbush	TIGR	johnq@ tigr.org
V. Ravichandran	NIST	vravi@ nist.gov
Alan Robinson	EMBL-EBI	alan@ebi.ac.uk
Ugis Sarkans	EMBL-EBI	ugis@ebi.ac.uk
Jason Stuart	Open Informatics	jason_e_stewardt@yahoo.com
Ron Tailor	CU School of Medicine	taylor@uchsc.edu
R. Yang	GCG	yang@ gcg.com
Jiaye Zhou	NCGR	JZ@ncgr.org

The authors would like to thank all the MGED members who have contributed to the proposal.

1.4 Proof of Concept

MGED group, which includes representatives from most of the major microarray data providers in academia and industry, and major public bioinformatics databases centres, is committed to establishing standards for gene expression profiling.
The EMBL-EBI, NCBI and NCGR are establishing a public repositories for gene expression data which will use the data format proposed in this document. Although currently the data format is based on XML specification, the complete object description will be added in the next submission.

1.5 Response to RFP Requirements

All the mandatory requirements listed in the items 6.5 of the RFP are fulfilled in this proposal

2. Introduction

We propose a framework for describing information about a DNA-array experiment and a data format - Microarray Markup Language (MAML) - for communicating this information. The information includes details about:

1. Experimental design: the set of the hybridization experiments as a whole;
2. Array design: each array used and each element (spot) on the array;
3. Samples: samples used, the extract preparation and labeling;
4. Hybridizations: procedures and parameters;
5. Measurements: images, quantitation, specifications;
6. Controls: types, values, specifications.

MAML is based on the Extendible Markup Language XML. MAML is independent of the particular experimental platform and provides a framework for describing experiments done on all types of DNA-arrays, including spotted and synthesized arrays, as well as oligo-nucleotide and cDNA arrays, and is independent of the particular image analysis and data normalization methods. MAML does not impose any particular image analysis or data normalization method, but instead provides format to represent microarray data in a flexible way, which allows to represent data obtained from not only any existing microarray platforms, but also many of the possible future variants, including protein arrays. The format allows representation of raw and processed
microarray data. The format is compatible with the definition of the "minimum information about a microarray experiment" (MIAME) proposed by the MGED group, see http://www.mged.org/.

The MGED group is an open discussion group initially established at the Microarray Gene Expression Database meeting MGED 1 (November, 1999, Cambridge, UK). The goal of the group is to facilitate the adoption of standards for DNA-array experiment annotation and data representation, as well as the introduction of standard experimental controls and data normalization methods. The underlying goal is to facilitate the establishing of gene expression data repositories, comparability of gene expression data from different sources and interoperability of different gene expression databases and data analysis software.
In the next two sections, we describe the MIAME standard, which describes the content of the information that has to be represented by a data format for microarray gene expression data representation (according to MGED recommendations), followed by the MAML DTD, which defines the actual XML based data format.

3. Minimum information about a microarray experiment - (MIAMI)

Endorsed by MGED steering committee meeting November 17, 2000
The goal of the MIAME is to specify the minimum information that must be reported about a microarray based gene expression monitoring experiment in order to ensure the interpretability of the results and their reproducibility by third parties. The background aim is to help establishing public repositories and data exchange format for microarray based gene expression data. Scientific journals will be encouraged to adopt editorial policies requiring data submissions to repositories, once MIAMI compliant repositories are established.

Introduction:

The definition of the minimum information is aimed at cooperative data providers, and not as a legal document meant to close possible loopholes in not providing the information.
Among the concepts in the definition is a list of "qualifier, value, source" triplets, where the "source" is either user defined, or a reference to an externally defined ontology or controlled vocabulary, such as the species taxonomy database at NCBI. Where necessary, the authors are encouraged to define their own qualifiers and provide the appropriate values so that the list as the whole gives sufficient information to interpret the particular part of the experiment. The judgement regarding the necessary level of detail is left to the submitters themselves. In future these `voluntary' qualifier lists may be gradually substituted by required fields, as the respective ontologies are developed.

Parts of the MIAME can be provided as a reference or link to an externally existing description. For instance, for commercial or other standard arrays all the required information should be normally provided only once by the array provider and referenced by the users. Standard protocols should also normally be provided only once.

Definition:

The minimum information about a published microarray based gene expression experiment should include the description of

1. Experimental design: the set of the hybridisation experiments as a whole
2. Array design: each array used and each element (spot) on the array
3. Samples: samples used, the extract preparation and labeling
4. Hybridisations: procedures and parameters
5. Measurements: images, quantitation, specifications
6. Controls: types, values, specifications

The following details should be provided for each array, each sample, hybridisation and measurement in the experiment set:

1. Experimental design: the set of the hybridisation experiments as a whole

a) author (submitter), laboratory, contact information, links (URL)
b) type of the experiment - maximum one line for instance:

- normal vs. diseased comparison
- treated vs. untreated comparison
- time course
- dose response
- effect of gene knock-out
- effect of gene knock-in (transgenics)
- shock
(multiple types possible)
c) experimental factors (e.g., time, dose, genetic variation),
d) the list of platforms used,
e) single or multiple hybridisations,

For multiple hybridisations:

- ordered/unordered
- serial (yes/no)
- type (e.g., time course, dose response)
- grouping (yes/no)
- type (e.g., normal vs. diseased, multiple tissue comparison)
- list of the samples and arrays used in the experiment and description of the relationship between them: each sample and each array should be assigned a unique id in the experiment set and all the relationships should be listed with appropriate comments
- which hybridisations are replicates
f) quality related indicators
- does a related peer-reviewed publication exist
- number of replicate hybridisations
- any other quality control steps taken (polya, unspecific binding etc.)
g) optional user defined "qualifier, value, source" list (see Introduction)
h) a free text description of the experiment set or a link to a publication

2. Array design: each array used and each element (spot) on the array.

a) array

- array design name (e.g., "Stanford Human 10K set")
- platform type: insitu synthesized or spotted
- provider (source)
- surface type: absortive/nonabsortive
- surface type name
- array dimensions
- number of elements on the array
- a reference system allowing to locate each element (spot) on the array (in the simplest case the number of columns and rows is sufficient)
- unique ID from the provider
- production protocol (obligatory if applicable)
- optional "qualifier, value, source" list (see Introduction)
b) element (spot) on the array - elements may be simple, i.e., containing only identical molecules, or composite, i.e., containing different oligonucleotides obtained from the same reference molecule; for each element the following must be given:
- position on the array allowing to identify the spot in the image (see 5. a) below);
- element type: synthesized oligo-nucleotides, PCR products, plasmids, colonies, other;
- clone information, obligatory for elements obtained from clones:
- clone ID, clone provider, date, availability
- sequence information, obligatory for synthetic elements:
- sequence accession number in DDBJ/EMBL/GenBank if known
- \quad sequence itself (if databases do not contain it)
- number of oligos and the reference sequence (or accession number) for multiple oligo-per-element type chips, plus the
- oligo-sequences, if given
- approximate lengths if exact sequence not known
- singe or double stranded
- element (spot) dimensions
- element generation protocol that includes sufficient information to reproduce the element;
- gene name and links to appropriate databases (e.g., SWISS-PROT, or organism specific databases), if known and relevant
- if the element can be used for normalization or control (e.g., element should have expected value)

3. Samples: samples used, extract preparation and labeling

a) sample source and treatment:

- organism (NCBI taxonomy)
- additional "qualifier, value, source" list; each qualifier in the list is obligatory if applicable; the list includes:
- cell source and type (if derived from primary sources (s))
- sex
- age
- development stage
- organism part (tissue)
- animal/plant strain or line
- genetic variation (e.g., gene knockout, transgenic variation)
- individual
- individual genetic characteristics (e.g., disease alleles, polymorphisms)
- disease state or normal
- target cell type
- cell line and source (if applicable)
- in vivo treatments (organism or individual treatments)
- in vitro treatments (cell culture conditions)
- treatment type (e.g., small molecule, heat shock, cold shock, food deprivation)
- compound
- separation technique (e.g., none, trimming, microdissection, FACS)
- laboratory protocol for sample treatment
b) hybridisation extract preparation
- laboratory protocol for extract preparation, including:
- extraction method
- whether total RNA, mRNA, or genomic DNA is extracted
- amplification (RNA polymerases, PCR)
- optional "qualifier, value, source" list (see Introduction)
c) labeling
- laboratory protocol for labelling, including:
- amount of nucleic acids labeled
- exogenous sequences (spikes) added
- label used (e.g., Cy3, Cy5, 33P)
- optional "qualifier, value, source" list (see Introduction)

4. Hybridisations: procedures and parameters

- laboratory protocol for hybridisation, including:
- the solution (e.g., concentration of solutes)
- blocking agent
- wash procedure
- quantity of labelled target used
- time, concentration, volume, temperature
- description of the hybridisation instruments
- optional "qualifier, value, source" list (see Introduction)

5. Measurements: images, quantitation, specifications:

a) hybridisation scan raw data:
a1) the scanner image file (e.g., TIFF) from the hybridised microarray scanning;
a2) scanning information:

- parsed header of the TIFF file, including laser power, spatial resolution, pixel space, PMT voltage;
- laboratory protocol for scanning, including:
- scanning hardware
- scanning software
b) image analysis and quantitation
b1) the complete image analysis output (of the particular image analysis software) for each element (or composit element - see 2.b)), for each channel;
b2) image analysis information:
- image analysis software specification and version, availability, and the description of the algorithm
- all parameters
c) summarized information from possible replicates
c1) derived measurement value summarizing related elements as used by the author (this may constitute replicates of the element on the same or different arrays or hybridisations, as well as different elements related to the same entity e.g., gene)
c2) reliability indicator for the value of c1) as used by the author (e.g., standard deviation); may be "unknown"
c3) specification how c1 and c2 are calculated; the specification should be bases on b1

6. Normalisation controls, values, specifications for hybridisations

a) Normalization strategy

- spiking
- "housekeeping gene"
- total array
- optional used defined "quality value"
b) Normalisation algorithm
- linear regression
- log-linear regression
- ratio statistics
- \log (ratio) mean/median centering
- nonlinear regression
- optional used defined "quality value"
c) Control array elements
- position (the abstract coordinate on the array)
- control type (spiking, normalization, negative, positive)
- control qualifier (endogenous, exogenous)
- optional used defined "quality value"
d) Hybridisation extract preparation
- spike type
- spike qualifier
- target element
- optional used defined "quality value"

4. MAML DTD

```
<!-- MAML DOCUMENT CLUSTER -->
<!ELEMENT maml (analysis_list?,
    array_platform_list?,
    contact_list?,
    creation_info,
    data_set_list?,
    experiment_set_list?,
    hardware_list?,
    protocol_list?,
    sample_list?,
    software_list?,
    publication_list) >
```


<!-- \(\quad \begin{aligned} & \text { Contact can specify either an individual } \\ & \text { researcher or an organization }\end{aligned}\)
<!ELEMENT contact_list (contact+) >
<!ELEMENT protocol_list (protocol+) >
<!ELEMENT hardware_list (hardware+) >
<!ELEMENT software_list (software+) >
<!ELEMENT contact (parameter*) >
<!ATTLIST contact
 id ID \#REQUIRED
 last_name CDATA \#IMPLIED
 first_name CDATA \#IMPLIED
 middle_name CDATA \#IMPLIED
 type CDATA \#IMPLIED
 lab CDATA \#IMPLIED
 department CDATA \#IMPLIED
 organization CDATA \#IMPLIED
 street CDATA \#IMPLIED
 city CDATA \#IMPLIED
 province_state CDATA \#IMPLIED
 country CDATA \#IMPLIED
 postal_code CDATA \#IMPLIED
 phone CDATA \#IMPLIED
 fax CDATA \#IMPLIED
 email CDATA \#IMPLIED
 uri CDATA \#IMPLIED >

\begin{tabular}{lll}
id & ID & \#REQUIRED \\
element_ids & IDREFS & \#REQUIRED >
\end{tabular}

```
<!ELEMENT experimental_factors (#PCDATA) >
<!ATTLIST experimental_factors
    xml:space preserved #FIXED >
    We understand that this is limited and
        insufficient, but we believe that quality
        control is an important issue -->
<!ELEMENT quality (replicates, quality_info*) >

<!ATTLIST quality
    has_replicates (true|false) #REQUIRED >
    peer_reviewed (true|false) false >
    <!ELEMENT replicates (description?) >
<!ELEMENT quality_info (#PCDATA) >
<!ELEMENT control_element_list (control_element+) >
<!ELEMENT control_element EMPTY >

<!ATTLIST control_element
    id ID #REQUIRED
    expected_value CDATA #REQUIRED
    quantitation_id IDREF #REQUIRED
    element_id IDREF #REQUIRED >
<!ELEMENT hybridization_list (hybridization+) >
<!ELEMENT hybridization (image+) >

<!ATTLIST hybridization
    name CDATA #REQUIRED
    protocol_ids IDREFS #IMPLIED
    labeled_extract_ids IDREFS #REQUIRED
    control_element_ids IDREFS #REQUIRED
    array_id IDREF #REQUIRED
    id ID #REQUIRED >
<!ELEMENT image EMPTY >

<!ATTLIST image
        protocol_id IDREF #REQUIRED
        labeled_extract_ids IDREFS #REQUIRED
        software_id IDREF #REQUIRED
        hardware_id IDREF #REQUIRED
        file_uri CDATA #REQUIRED
        file_header CDATA #IMPLIED
        microns_per_pixel CDATA #IMPLIED
        image_identifier CDATA #REQUIRED >
<!ELEMENT sample_list (primary_sample
                derived_sample) + >
<!ELEMENT derived_sample (treatment+) >

<!ATTLIST derived_sample
    id ID #REQUIRED
    parent_sample_ids IDREFS #REQUIRED >
<!ELEMENT treatment (measurement) >

<!ATTLIST treatment
    action CDATA #REQUIRED
    object CDATA #IMPLIED
```
```
protocol_id IDREF #IMPLIED
order CDATA #REQUIRED >
```
<!-- We don't yet have a full ontology so the primary sample
 should include the following kinds of values:
 organism_ncbi
 organism_other
 cell_source
 cell_type
 sex
 age
 development_stage
 organism_part (tissue)
 strain_or_line
 genetic_variation
 individual
 genotype
 disease_state
 target_cell_type
 cell_line_and_source
 in_vivo_treatments
 in_vitro_treatments
 treatment_type
 compound
 separation_technique -->
<!ELEMENT primary_sample (parameter|generic_measure)* >
<!ATTLIST primary_sample
 id ID \#REQUIRED >
<!ELEMENT extract_list (extract+) >
<!ELEMENT extract (description?,parameter*) >
<!ATTLIST extract
 id ID \#REQUIRED
 protocol_id IDREF \#REQUIRED
 type (total_rna|mrna|dna) \#REQUIRED
 sample_ids IDREFS \#REQUIRED
 label_name CDATA \#REQUIRED
 name CDATA \#IMPLIED >
<!ELEMENT labeled_extract_list (labeled_extract+) >
<!ELEMENT labeled_extract (description?,parameter*) >
<!ATTLIST labeled_extract
 id ID \#REQUIRED
 protocol_id IDREF \#REQUIRED
 extract_ids IDREFS \#REQUIRED
 name CDATA \#IMPLIED >

<!-- DESCRIPTIONS -->
<!ELEMENT description CDATA >

<!-- MEASUREMENT CLUSTER -->
<!ELEMENT time EMPTY >
```

<!ATTLIST time
    value CDATA #REQUIRED
    unit (years |
            months |
            weeks
            d
            h
            m
            S
            ms
            us
            other) #REQUIRED
    other_unit CDATA
<!ELEMENT vector (distance+) >
<!ELEMENT distance EMPTY >
<!ATTLIST distance
    value CDATA (fm #REQUIRED
            pm
            nm
            um
            mm
            cm
            other)
                                    #REQUIRED
    other_unit CDATA
<!ELEMENT temperature EMPTY >

<!ATTLIST temperature
    value CDATA #REQUIRED
    unit (C|F)
    mass EMPTY >
<!ELEMENT masS
    value CDATA #REQUIRED
        unit (kg |
                            g |
                            mg
                            ug
                            ng
                            pg
                    fg
                    other) #REQUIRED
    other_unit CDATA
<!ELEMENT volume EMPTY >

<!ATTLIST volume
    value CDATA
    unit (mL
                            CC
                            dL
                            L
                            uL
                            nL
            pL
            fL |
            other)
    other_unit CDATA
#REQUIRED >
```


```

