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a  b  s t  r a  c t

In  this paper, a  new  method for the  design  of variable  bandwidth  linear-phase finite  impulse response
(FIR)  filters  using different polynomials  such as  shifted Chebyshev  polynomials,  Bernstein  polynomi-
als  and shifted  Legendre  polynomials  is  proposed.  For this purpose, the  transfer  function  of a  variable
bandwidth  filter, which  is a linear  combination of fixed-coefficient  linear-phase  filters and  the  above
polynomials  are  separately  exploited as tuning  parameters  to control bandwidth  of the  filter. In  order  to
determine the filter  coefficients,  mean  squared  difference between  the  desired variable  bandwidth  filter
and  the  practical filter  is minimized by  differentiating  it with  respect  to its coefficients  leading  to a  system
of linear  equations.  The matrix elements  can  be  expressed  in form of Toeplitz-plus-Hankel  matrix,  which
reduces the  computational  complexity.  Several  examples  are included to demonstrate effectiveness  of
the  proposed  method  in terms  of passband error (ep),  stopband error (es) and stopband  attenuation (As).

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

Digital filters are major basic building block of a  multirate
system, and are extensively exploited for numerous applications
such as speech processing, image processing, biomedical signal
processing, power quality measurement and multirate system
design [1–5]. Therefore, design of digital filter has been exten-
sively addressed over the past three decades. Among the various
types of digital filters, a variable bandwidth filter or tunable band-
width filter has received considerable attention because of its wide
applications in numerous fields such as telecommunications, digi-
tal audio equipment, medical electronics, radar, sonar and control
systems, adaptive and tracking systems, spectrum and vibration
analysis, format speech synthesizers [6,7]. All applications are
based on the efficient design of a  tunable bandwidth filter.

During last few decades, variable digital filters have received
considerable attention due to the increasing demand for reconfig-
urable systems required in  many applications such  as communica-
tion systems to  support several different standards and operation
modes, digital audio equipment, medical electronics, radar, sonar
and control systems, adaptive and tracking systems, spectrum and
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vibration analyses, formant speech synthesizers and in  numerous
laboratory instruments [8–14].  Variable band-pass and band-stop
filters are used for example to eliminate or retrieve some narrow-
band or sinusoidal signal embedded in  broad-band signal or  noise.
Other application is  sample rate converter that exploits differ-
ent sampling rates depending on the required signal quality and
the available bandwidth of the channel and the data  rate of the
interfaces [8–10].  The tunable bandwidth filters are filters with
variable bandwidth characteristics. These filters have controllable
spectral characteristics such as variable cutoff frequency response,
adjustable pass band and stop band width controllable fractional
delay [6–8,15].  For example, any required magnitude characteris-
tic can be obtained by varying a  tuning parameter embedded in
the filter structure, which is more flexible and efficient. For this
purpose, a generalized structure as shown in Fig. 1  is  employed
in  which overall transfer function is a  weighted linear combina-
tion of fixed linear-phase FIR sub filters. In this structure, only few
adjustable parameters (weights) that are directly determined by
the bandwidth are required. This results in a simple updating rou-
tine [5,15–17].  Because of this, they are extensively used in  various
engineering applications. Literature review on variable bandwidth
filters reflects that the extensive works have been done towards
the design and realization of tunable bandwidth filters.

In general, the design algorithms of variable bandwidth filters
can be classified into two groups: spectral transformation and spec-
tral approximation. In transformation based approach, initially a
prototype filter is  designed with desirable frequency character-
istics, and then a  variable bandwidth filter is derived from the
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Fig. 1. A typical implementation of a variable-bandwidth filter.

prototype using suitable transformation technique. This technique
is only suitable for the design of variable bandwidth filters with
variable cut-off frequencies, and it is  generally not used for vari-
able bandwidth filters variable fractional delay. In early stage of
the research, several methods based on transformation approach
[18–22] were developed. Originally, the authors in  [18,19] have
developed a technique based on transformation approach in which
a sub network of a  zero-phase odd-length prototype FIR filter is
changed by another network that performs frequency mapping of
the prototype filter response [6]. However, in these algorithms, it is
difficult to update, and are not exploited for designing complicated
filter due to limitation of variable frequency [6,15–17].

In the spectral approximation method, a  tunable bandwidth fil-
ter is considered as a weighted combination of fixed coefficient
filters. Here, either impulse response or poles and zeros of the fil-
ters are polynomials of certain spectral parameter. The transfer
function of a variable-bandwidth filter is a polynomial in tun-
ing parameter that decides the bandwidth. Therefore, initially the
fixed coefficient filter is designed, and then the bandwidth is con-
trolled directly by changing the tuning parameter. Therefore, in
spectral approximation approach, design of a tunable filter relies
on the fixed coefficient filters. In general, the fixed-coefficient fil-
ters are designed with different computer aided technique such
as linear programming [5] and the weighted least square (WLS)
methods [7,23]. Originally, the spectral approximation method was
proposed by Zarour and Fahmy [24].  In  this method, the filter
coefficients are expressed as analytical functions of the frequency
specifications by using a curve-fitting technique. Thereon, several
techniques [25,26] were developed based on the spectral approx-
imation technique. The different types of linear-phase filters are
presented in [27],  in  which the design problem has been formulated
in a quadratic form. A new technique [28] was proposed based on
Toeplitz and a Hankel matrix in which the fixed filter coefficients
are determined by solving a  system of linear equations involving
a block-symmetric positive-definite matrix. A  closed form method
for designing tunable filters is presented in [6]. This method gives
good performance and is  computationally efficient. However, this
method is more suitable for lower order.

In this work, a  new closed form method based on different poly-
nomials is presented for the design of linear-phase finite-impulse
response (FIR) filters with adjustable bandwidth and fixed phase
response. In the proposed method, different polynomials such as
shifted Chebyshev polynomials, Bernstein polynomials and shifted
Legendre polynomials are exploited as tuning parameters to con-
trol bandwidth of the filter. The error function is  formulated by
computing the difference between actual response and practical
response, which is the function of tuning parameter as well as fixed
coefficient filters. In the next section, an overview of the different
polynomials is discussed. Section 3 reviews the analysis of variable
bandwidth filter. In Section 4, the proposed method and its imple-
mentation for the design of variable bandwidth filter is presented.
Finally, the simulation results are discussed in  Section 5, followed
by the concluding remarks in  Section 6.

Fig. 2. First six  shifted Chebyshev polynomials of first kind.

2. Overview of different types of polynomials

Polynomials are the useful mathematical tools which are simply
defined. These can be  computed quickly on computer systems, and
represent a tremendous variety of functions. In this work, a poly-
nomial is used as tuning parameters to control bandwidth of  the
filter.

2.1. Chebyshev polynomials

Chebyshev polynomials are widely used in many appli-
cations [29].  If x  =  cos(�), for 0 ≤ � ≤ �, for the function
Tk(x) =  cos(k�) =  cos(k arccos x) is a  polynomial of x of degree
k  (k = 0, 1,  2, 3,  .  . .). Then, Tk(x) is called Chebyshev polynomial of
first kind of degree k. As � increases from 0 to � or x  decreases
from 1 to −1. Then, the interval [−1, 1]  is  the domain of definition
of Tk(x). Outside this interval, Tk(x) = 0.  Some important properties
of Chebyshev polynomials:

• Chebyshev polynomials of first kind can be defined in interval
[−1, 1] by following recursive relation defined as

Tk+1(x) =  2xTk(x) − Tk−1(x) (1)

• where, T0(x) =  0 and T1(x) =  x.
• Multiplication of two Chebyshev polynomials is  defined as

2Tm(x)Tn(x) =  Tm+n(x) + T|m−n|(x) (2)

• Chebyshev polynomial Tk(x) lies between −1 and 1, when
−1 ≤ x  ≤  1.

The Chebyshev polynomial of first kind can be defined to any
interval [a, b] by replacing x with (2x/(b − a) − ((b + a)/(b − a)) in
Tk(x) which is  said to be  shifted Chebyshev polynomial of first kind
in  the interval [a, b]. Hence, a  shifted Chebyshev polynomial is
defined as

Tk

(

2x

b  − a
−
b + a

b − a

)

(3)

For example, Tk(2x −  1) is  called shifted Chebyshev polynomials
which is  defined in  the interval [0, 1], where Tk(x) is  Chebyshev
polynomial defined in the interval [−1, 1]. The first six shifted
Chebyshev polynomial of first kind is depicted in Fig. 2. A detailed
discussion on  Chebyshev polynomial is  provided in  [29] and the
references therein.
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Fig. 3. First six basis Bernstein polynomials for n = 5.

2.2. Bernstein polynomial

Bernstein basis polynomial of degree n in the interval [0, 1] is
defined as [30,31]

Bk,n(t) =

(

n

k

)

tk(1 − t)(n−k),  for k = 0, 1, 2, . . ., n. (4)

where,

(

n
k

)

=
n!

k! (n  − k)!
. There are (n +  1) nth-degree Bernstein

polynomials. For mathematical convenience, Bk,n(t) is  considered
equal to zero if k  <  0 or k  >  n.  The Bernstein basis polynomials are

very easy expressed as the coefficients

(

n
k

)

are computed from

Pascal’s triangle. The Bernstein polynomials can also be  defined
recursively by blending together two Bernstein polynomials. For
example, the kth nth-degree Bernstein polynomial described by Eq.
(4) can be written as

Bk,n(t) = (1 −  t)Bk,n−1(t) + tBk−1,n−1(t). (5)

These polynomials show many important properties for various
applications. Some these properties are

• Bk,n(0) = ık0 and Bk,n(1) = ıkn, here ıkn is the Kronecker delta
function.[ıkn = 1 if k  =  n and ıkn = 0 if k /=  n].

• Bk,n(0) ≥ 0  for t ∈ [0, 1] and, Bk,n(1 − x) =  Bn−k,n(x).
• The Bernstein polynomials form a  partition of unity i.e.

∑n

k=0Bk,n(x) = 1.

The first six basis Bernstein polynomials for n =  5 are graphically
shown in Fig. 3. A detailed discussion on these polynomials is given
in [30,31] and the reference therein.

2.3. Legendre polynomials

Legendre polynomials of degree n in the interval [−1, 1] are
defined by the recursive relation [32]:

Pk+1(x) =
2k + 1

k + 1
xPk(x) −

k

k + 1
Pk−1(x), (6)

where P0(x) =  0 and P1(x) = 1.  Using Eq.  (6), different versions of
Legendre polynomials are  constructed. These polynomials satisfy
many important properties:

• Pk(x) = 1 at x =  1
• Pk(− x) = (−  1)kPk(x).
• −1 ≤ Pk(x) ≤ 1 when −1 ≤ x  ≤ 1.

When Legendre polynomials are defined in the interval [0, 1],
they are known as shifted Legendre polynomial Pk(2x  − 1), where
Pk(x) is the Legendre polynomials defined in  the interval [−1, 1].

Fig. 4. First six basis shifted Legendre polynomials in the interval [0, 1] for n = 5.

The first six Legendre polynomials for n =  5 is displayed in Fig. 4. A
detailed discussion on these polynomials is given [29,30] and the
reference therein.

3.  Analysis of variable bandwidth filter

Many applications require the use of digital filter with easily
tunable characteristics. Based on the spectral approximation, the
impulse response h(n, �) of a  digital filter having variable band-
width characteristics, whose typical implementation is  shown in
Fig. 1 [6,7],  can be  expressed by a  linear combination of  a function
 k(�) of the spectral parameter (�):

h(n, �) =

L
∑

k=0

hn,k k(�), (7)

where hn,k is the coefficients of expansion. Therefore, the design
problem of variable bandwidth filter is reduced to find out hn,k with
the specified  k(�) so that the given frequency response of h(n, �)
will approximate some desirable frequency response as a  function
of � which controls the bandwidth. The z-transform of h(n, �) can
be given as

H(z, �) =

N
∑

n=0

h(n,  �)z−n =

N
∑

n=0

L
∑

k=0

hn,k k(�)z−n, (8)

which can be rewritten as

H(z, �) =

L
∑

k=0

[

N
∑

n=0

hn,kz
−n

]

 k(�) =

L
∑

k=0

Hk(z) k(�) (9)

In Eq. (9), Hk(z) =
∑N−1

n=0 hn,kz
−n, is  the transfer function of the Kth

Nth order fixed coefficient linear phase digital filter symmetrical or
anti-symmetrical impulse response hn,k and  k(�) is tuning param-
eter or control parameter to  vary the bandwidth of the filter.

The frequency response of Hk(z) is  given by

Hk(e
jω) =

N
∑

n=0

hn,kz
−n = ej�(ω)Gk(ω), (10)

where Gk(ω) is  the zero-phase frequency response of the kth fixed-
coefficient linear phase digital filter. Therefore, the zero phase
frequency response of a  variable-bandwidth filter can be  defined
as

HR(ω, �) =

L
∑

k=0

 k(�)Gk(ω), (11)

where HR(ω, �) is real valued.
Generally, digital filters are categorized into two types: infi-

nite impulse response (IIR) filter and finite impulse response (FIR)
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filter [23]. Both types of filters are exploited for designing the
variable bandwidth filter. Some applications including channel
equalization, low-delay filtering, and seismic migration [6] require
filter with nonlinear phase, while others such as video process-
ing and communication systems employ filter with linear-phase.
It is always possible to  design an FIR filter with an exact linear-
phase response. However, IIR filter is impossible to  design with an
exact linear-phase. Recently, the design of variable bandwidth fil-
ter based on FIR  has received considerable attention due to  their
simple design procedure and good filter performance.

This work, therefore, is focused on the design of variable band-
width FIR digital filters using different polynomials. From the
analysis of variable bandwidth filter [6], it is  observed that the tun-
ing parameters or control parameters (�) vary as � ∈ [0, 1] where
as passband and stopband edge frequencies vary linearly as

ωp(�) = (ωp2 − ωp1 )� + ωp1 (12)

ωa(�) = (ωa2 − ωa1 )� + ωa1 (13)

where variable passband edge frequencies are defined in the range
[ωp1, ωp2], and the stopband edge frequencies have a  range [ωa1,
ωa2].  Thus, the tuning parameter is  defined in the same range
as polynomial. Hence, shifted Chebyshev, Bernstein and Legendre
polynomials can be used as tuning parameter.

4. Design of variable bandwidth filter using polynomial

approach

In digital filter design, FIR filters are classified into four types
based on symmetric/antisymmetic and length of the impulse
response. In Type I, the frequency response of filter is given by

Gk(e
jω)  = e−jωN/2Gk(ω), (14)

where Gk(ω) is the zero phase frequency response or amplitude
response defined as

Gk(ω) = (hk,N/2) +  2

N/2
∑

n=1

[hk,((N/2)−n)]  cos(ωn)

=

M
∑

n=0

ak(n) cos(ωn) (15)

where ak(n) = hk,((N/2)−n) and M = N/2.
Then, the zero phase frequency response of a variable band-

width linear phase filter can be rewritten as

HR(ω, �) =

k=L
∑

k=0

 k(�)

M
∑

n=0

ak(n) cos(ωn) = aTc (16)

where

a = [a0(0), a0(1),  . . ., a0(M),  a1(0), . . .,  a1(M), . .  ., ak(0), ak(1),

. . ., ak(M)]T , (17)

and

c = [ 0 (�) tTc ,  1 (�) tTc , . .  .,  L (�) tTc ]
T
. (18)

In  Eq. (18), tc are defined as,

tc = [1, cos(ω), . . ., cos(Mω)]T . (19)

In this work,  k(�) is taken as shifted Chebyshev polynomials
or  Bernstein polynomials or shifted Legendre polynomials such as

Shifted Chebyshev polynomial :  k(�) =  Tk(2x −  1),  (20)

Bernstein polynomial :  k(�)  =  Bk,n(�), (21)

and shifted Legendre polynomials :  k(�) = Pk(2x − 1).  (22)

If a low pass filter with variable bandwidth characteristic having
tunable passband and stopband edges is  designed, then its ideal
magnitude response is  given as

MI(ω, �) =

{

1, 0 ≤ ω  ≤ ωp(�)

0, ωa(�) ≤ ω ≤ �.
(23)

Therefore, in  the proposed method, a  low pass filter is designed
by  minimizing the quadratic measure of errors in  desired response
of the filter. Thus, the error function is computed from the dif-
ference between the desired variable bandwidth filter and the
practical filter represented as a  linear combination of  fixed-
coefficient filters defined as

E(ω, �) = MI(ω, �)  − aTc (24)

the mean-square error is defined as

Emse =

∫ �k

�l

∫ ˝p

˝s

W(ω,  �)(M2
I (ω, �) − 2MI(ω, �)aTc  + aTccTa) dωd�,

=

∫ �u

�l

[

∫ ωp(�)

0

Kp(M
2
I (ω, �) − 2MI(ω, �)aTc + aTccTa)

+

∫ �u

�l

∫ �

ωp(�)

Ka(M
2
I (ω, �) − 2MI(ω, �)aTc + aTccTa)]  dωd�,

(25)

where ˝s ∈ [0, ωp(�)] ∪ [ωa(�), �] and W(ω,  �) is the weighting
function defined as

W(ω,  �) =

{

Kp,  0 ≤ ω  ≤ ωp(�)

Ka, ωa(�) ≤ ω ≤ �.
(26)

So, Emse can be rewritten as,

Emse =

∫ �u

�l

[

∫ ωp(�)

0

Kp(M
2
I (ω,  �)  − 2MI(ω, �)aTc + aTccTa)

+

∫ �u

�l

∫ �

ωp(�)

Ka(M
2
I (ω, �) − 2MI(ω, �)aTc + aTccTa)]  dωd�,

(27)

Similar to algorithm given in  [6,7],  in this method, Emse is min-
imized by differentiating with respect to  the coefficients of each
Hk(z),

dEmse
da

=

∫ �u

�l

∫ ˝p

˝s

W(ω, �)(−2MI(ω, �)c(a′)T + [(a′)T ccTa  + aT ccTa′] dωd�

=

∫ �u

�l

∫ ˝p

˝s

W(ω, �)(−2MI(ω, �)c(a′)T +  [accT (a′)T +  accT (a′)T ] dωd�,

(28)
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where a′ is the differentiation of coefficients w.r.t. each coefficients.
For minimization dEmse/da = 0, of leads to,

∫ �u

�l

∫ ˝p

˝s

W(ω, �)[(−2MI(ω, �))c + ccTa  + ccTa] dωd� =  0

∫ �u

�l

∫ ˝p

˝s

W(ω, �)[ccTa +  ccTa] dωd� =

∫ �u

�l

∫ ˝p

˝s

W(ω, �)(2MI(ω, �))c dωd�

∫ �u

�l

∫ ˝p

˝s

2W(ω, �)(ccTa) dωd� =

∫ �u

�l

∫ ˝p

˝s

W(ω, �)(2MI(ω, �))c dωd�,

∫ �u

�l

∫ ωp(�)

0

Kp(cc
Ta) dωd� +

∫ �u

�l

∫ �

ωa(�)

Ka(cc
Ta) dωd� =

∫ �u

�l

∫ ˝p

˝s

W(ω, �)MI(ω, �)c dωd�

(29)

This results in  a  system of linear equations defined as Qa = b.
From a = Q−1b  and using Eq. (17),  the coefficient matrix can be
obtained. Here, Q and b are given, respectively as

Q [k(M + 1) + n, l(M +  1) + m]  =

∫ �u

�l

 k(�) l(�)

×

[

Kp

∫ ωp(�)

0

cos(nω) cos(mω) dω

+Ka

∫ �

ωa(�)

cos(nω)  cos(mω) dω

]

,  (30)

and

b[k(M + 1) + n] =

∫ �u

�l

 k(�)

[

Kp

∫ ωp(�)

0

MI(ω, �) cos(nω) dω

]

d�

(31)

where 0 ≤ n ≤ M, 0 ≤ m ≤ M and 0 ≤ k, l ≤ L.
The entries of matrix Q  can also be written in  Toeplitz-

plus-Hankel matrix, which reduces the computational complexity
because not all entries of the matrix need to be  evaluated.

Q[k(M + 1) +  n, l(M +  1) + m]  =
1

2
[T[tk,l(n, m)]  + H[gk,l(n), tk,l(n)],

(32)

For 0 ≤ m, n ≤  M and for 0 ≤ k, l ≤ L. In Eq. (32),  tk,l(n) is

tk,l(n) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Kp

∫ �l

�l

 k(�) l(�)[ωp(�)] d� + Ka

∫ �l

�l

 k(�) l(�)[� − ωa(�)] d�, for n = 0

Kp

∫ �l

�l

 k(�) l(�) sin[nωp(�)] d� −  Ka

∫ �l

�l

 k(�) l(�) sin[ωa(�)]d�,

n
for 1 ≤ n ≤ M

(33)

and

gk,l(n) =

Kp
∫ �u

�l
 k(�) l(�) sin[(n + M)(ωp(�))] d� −  Ka

∫ �u

�l
 k(�) l(�) sin[(n +  M)(ωp(�))] d�

n +  M
, (34)

For 0 ≤ n ≤ M.  In Eq. (32),  T  is  Toeplitz matrix whose elements
are arranged as the relation Tk,l = Tk+1,l+1.  Now for a  given vector t,
the Toeplitz matrix is  obtained from the entries of this vector as

T[t](n, m)  = t(|n − m|), for 0 ≤ n, m ≤ M.  (35)

In  Eq. (32),  Tk(x) =  cos(k�) =  cos(k  arccos x) is Hankel matrix
whose elements are arranged as Hk,l = Hk−1,l+1. Assume two  vectors
c  and r, a new vector p is constructed as

p  = [c(0)c(1). . .c(P)r(1)r(2). . .r(P)]T (36)

Then, Hankel matrix is obtained from the above vectors as

H[c, r](n, m)  = p(n + m)  for 0 ≤ n, m ≤ M.  (37)

Finally, the matrix a is  computed using Eqs. (29) and (30).
This method has been implemented in  MathCAD on Genuine

Intel (R) Core(TM) 2 Duo CPU T6670 @ 2.20 GHz, 4 GB RAM.

5. Results and discussion

In this section, the proposed methodology has been used for
designing the tunable bandwidth FIR filter using different poly-
nomials. To examine the efficacy of this algorithm for designing
tunable digital filters, several significant parameters such as stop
band energy (�s),  error in  passband (�p), and stopband attenuation
(As) are employed. These parameters are computed using following
equations:

Stopband error :  es =
1

�

∫ �

ωs(�)

[MI(ω, �) −  HR(ω, �)]2 dω,  (38)

Passband error : ep =
1

�

∫ ωa(�)

0

[MI(ω, �) − HR(ω, �)]2 dω, (39)

Stopband attenuation : As = −20 log10(HR(ω, �)) at ω =  ωa(�),

(40)

In Eqs. (38) and (39),

MI(ω, �) =

{

1, 0 ≤  ω ≤ ωp(�)

0, ωa(�) ≤ ω ≤  �.
(41)

First of all, performance comparison of the different polynomials
for designing tunable bandwidth filter is carried out. Thereon, the
comparison of the proposed method is done with the other known
methods.
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Fig. 5. Tunable bandwidth FIR filter designed using the proposed method with
shifted Chebyshev polynomials, N =  32: amplitude response of a low  pass filter Type
I in dB.

5.1. Design examples

A variable-bandwidth low pass filter with Type I has been
designed with the same design specifications as reported in  [6,7]
with ωp1 = 0.2�, ωp2 =  0.4�, ωa1 = 0.4�, ωa2 = 0.2�, � ∈ [0, 1], N = 32,
L = 5, Kp = 1 and Ka =  10 using the proposed methodology with
shifted Chebyshev polynomials, Bernstein polynomials and shifted
Legendre polynomials. Here, these polynomials are applied sep-
arately one by one as tuning parameter. Then, corresponding Q
and b  matrix is found for each. Finally, filter coefficients a =  Q−1b
is obtained in order to get magnitude response. The magnitude
response is simulated for different values of tuning parameter �  =  0,
� = 0.1, � = 0.2, .  . .,  � =  1, which clearly demonstrates the variable
bandwidth characteristics.

5.1.1. Using shifted Chebyshev polynomials
As discussed above, shifted Chebyshev polynomials are  used as

control or tuning parameter for varying the bandwidth of the fil-
ter  k(�) = Tk(2�  − 1). Since L =  5, hence first six shifted Chebyshev
polynomials are used. Then, the elements of the matrixes Q and b
are given as:

Q [k(M + 1) + n, l(M +  1) + m]  =

∫ �u

�l

Tk(2�  −  1)Tl(2� − 1)

×

[

Kp

∫ ωp(�)

0

cos(nω) cos(mω) dω

+ Ka

∫ �

ωa(�)

cos(nω)  cos(mω)dω d�, (42)

and

b[k(M + 1) + n] =

∫ �u

�l

Tk(2� − 1)

×

[

Kp

∫ ωp(�)

0

MI(ω, �)  cos(nω)dω

]

d� (43)

0 ≤ m,  n ≤ M and 0 ≤ k, l ≤ L. The simulation results obtained for
designing variable bandwidth filter with N =  32 when � ∈ [0, 1] are
graphically shown in  Fig. 5, and are also listed in  Table 2  for ready
reference. In this case, � is  divided into 11 equally spaced values
between 0 and 1 (�  = 0,  0.1, 0.2, . . .,  1). The method was also tested
for  tunable bandwidth filter with N = 64.  The design results obtained
are depicted in Fig. 6 and also given in Table 1 for ready reference.

5.1.2. Using Bernstein polynomials
In this subsection, the same examples are designed using

Bernstein polynomials discussed above in Section 2.2 as tuning
parameter for varying the bandwidth of the filter,  k(�) = Bk,5(�).

Fig. 6.  Tunable bandwidth FIR  filter designed using the proposed method with
shifted Chebyshev polynomials, N  = 64: amplitude response of a  low pass  filter Type
I in dB.

Fig. 7.  Tunable bandwidth FIR  filter designed using the proposed method with
Bernstein polynomials, N  =  32: amplitude response of a  low pass filter Type I in dB.

Fig. 8.  Tunable bandwidth FIR  filter designed using the proposed method with
Bernstein polynomials, N  =  64: amplitude response of a  low pass filter Type I in dB.

Here, the first six Bernstein polynomials are  exploited due to  L =  5.
In this case, the elements of matrix Q and b are  computed as

Q [k(M + 1) +  n, l(M + 1) +  m] =

∫ �u

�l

Bk,5(�)Bl,5(�)

×

[

Kp

∫ ωp(�)

0

cos(nω)  cos(mω) dω

+ Ka

∫ �

ωa(�)

cos(nω)  cos(mω) dω

]

d�, (44)

and b[k(M + 1) +  n] =

∫ �u

�l

Bk,5 (�)

×

[

Kp

∫ ωp(�)

0

MI(ω, �) cos(nω) dω

]

d�, (45)
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Table 1

Performance of the proposed algorithm for designing tunable bandwidth FIR filter with Type I.

Phi (�) N  =  32 N  =  64

Pass band  error
(ep)

Stop band  error
(es)

Stopband
attenuation (As)  in dB

Pass band error
(ep)

Stop band error
(es)

Stopband
attenuation (As)  dB

Shifted Chebyshev polynomial
0 6.21 ×  10−7 1.37 × 10−8 65.20 2.98 ×  10−9 2.52 × 10−9 77.42
0.1 3.70  ×  10−7 4.78 × 10−8 52.93 3.42 ×  10−10 3.31 × 10−10 69.04
0.2  3.98 ×  10−7 7.78 × 10−8 53.65 2.78 ×  10−10 1.85 × 10−10 71.33
0.3  2.59 ×  10−7 5.21 × 10−8 50.36 2.23 ×  10−10 5.44 × 10−11 78.03
0.4  3.27 ×  10−7 5.68 × 10−8 50.97 2.35 ×  10−10 1.55 × 10−11 87.69
0.5  5.37 ×  10−7 5.64 × 10−8 53.37 1.58 ×  10−10 1.79 × 10−11 100.60
0.6 4.64  ×  10−7 3.41 × 10−8 52.38 3.94 ×  10−10 1.40 ×  10−11 92.79
0.7 5.04 ×  10−7 2.61 × 10−8 53.70 6.25 ×  10−10 8.31 × 10−12 106.70
0.8  8.05 ×  10−7 3.31 × 10−8 56.50 2.50 × 10−9 8.41 × 10−12 98.62
0.9  4.77 ×  10−7 4.06 × 10−8 54.33 4.96 ×  10−9 6.48 × 10−12 91.98
1  9.12 ×  10−7 10  ×  10−8 70.15 3.48 ×  10−9 1.07 ×  10−10 111.06
Bernstein polynomials
0 6.21 ×  10−7 1.37 × 10−8 65.20 7.42 ×  10−9 2.77 × 10−9 78.86
0.1  3.70 ×  10−7 4.78 × 10−8 52.93 6.84 ×  10−10 3.52 × 10−10 70.27
0.2  3.98 ×  10−7 7.78 × 10−8 53.65 3.82 ×  10−10 1.56 × 10−10 73.80
0.3  2.59 ×  10−7 5.21 × 10−8 50.36 2.10 × 10−10 4.70 ×  10−11 87.33
0.4 3.27 ×  10−7 5.68 × 10−8 50.97 3.41 ×  10−10 3.92 × 10−11 90.32
0.5  5.37 ×  10−7 5.64 × 10−8 53.37 2.76 ×  10−10 4.90 ×  10−11 94.14
0.6 4.64 ×  10−7 3.41 × 10−8 52.38 5.14 ×  10−10 4.47 × 10−11 88.03
0.7  5.04 ×  10−7 2.61 × 10−8 53.70 8.87 ×  10−10 2.13 × 10−11 100.89
0.8  8.05 ×  10−7 3.31 × 10−8 56.50 2.05 × 10−9 2.28 × 10−11 92.90
0.9  4.77 ×  10−7 4.06 × 10−8 54.33 5.10 × 10−9 1.99 × 10−11 86.43
1  9.12 ×  10−7 10  ×  10−8 70.15 5.09 × 10−8 1.71 × 10−10 103.7
Shifted  Legendre polynomials
0  6.21 ×  10−7 1.37 × 10−8 65.20 2.98 ×  10−9 2.52 × 10−9 77.46
0.1  3.70 ×  10−7 4.78 × 10−8 52.93 3.43 ×  10−10 3.32 × 10−10 69.04
0.2  3.98 ×  10−7 7.78 × 10−8 53.65 2.78 ×  10−10 1.84 × 10−10 71.34
0.3  2.59 ×  10−7 5.21 × 10−8 50.36 2.23 ×  10−10 5.22 × 10−11 78.05
0.4 3.27  ×  10−7 5.68 × 10−8 50.97 2.35 ×  10−10 1.55 × 10−11 87.73
0.5  5.37 ×  10−7 5.64 × 10−8 53.37 1.58 ×  10−10 1.78 × 10−11 100.72
0.6  4.64 ×  10−7 3.41 × 10−8 52.38 3.94 ×  10−10 1.40 ×  10−11 92.80
0.7 5.04 ×  10−7 2.61 × 10−8 53.70 6.25 ×  10−10 8.36 × 10−12 106.53
0.8  8.05 ×  10−7 3.31 × 10−8 56.50 2.50 × 10−9 8.43 × 10−12 98.69
0.9  4.77 ×  10−7 4.06 × 10−8 54.33 4.96 ×  10−9 6.49 × 10−12 92.01
1  9.12 ×  10−7 10  ×  10−8 70.15 3.48 ×  10−8 1.08 ×  10−10 111.19

For 0 ≤ m, n ≤ M and 0 ≤ k, l ≤  L. The simulation results obtained in
the both cases are shown in Figs. 7 and 8,  respectively.

5.1.3. Using shifted Legendre polynomials
Similarly, in  this subsection, the shifted Legendre polynomials

discussed in Section 2.3 are  employed as tuning parameter for vary-
ing the bandwidth of filter  k(�) =  Pk(2�  − 1). In  this, the first six
shifted Legendre polynomials are used due to L  =  5. Therefore, the
elements of matrix Q  and b are determined as

Q[k(M + 1) +  n, l(M +  1) + m]  =

∫ �u

�l

Pk(2� − 1)Pl(2�  −  1)

×

[

Kp

∫ ωp(�)

0

cos(nω) cos(mω)  dω

+ Ka

∫ �

ωa(�)

cos(nω)nω cos(mω)nωdω

]

d�, (46)

and

b[k(M + 1) + n] =

∫ �u

�l

Tk(2� −  1)

×

[

Kp

∫ ωp(�)

0

MI(ω, �) cos(nω) dω

]

d�, (47)

For  0 ≤ m,n  ≤ M and 0 ≤ k,  l ≤ L. The design results obtained in
case of N = 32 and 64 are displayed in Figs. 9 and 10,  respectively.
The design results are also listed in Table 1.

5.2. Comparison of different polynomials

In Tables 1 and 2,  results of a comparative study of  the proposed
method with three polynomials such as shifted Chebyshev, Bern-
stein polynomials, and Shifted Legendre polynomials are depicted.
For this, variable bandwidth FIR filter with Types I  and II with simi-
lar specifications are designed. Here, � ∈ [0, 1] is equally divided in
11 subparts between 0 and 1 (� = 0, 0.1, . . .,  1). As it can be seen from
the tables, the proposed method yields good fidelity parameters
with all these polynomials. When they are compared, the shifted
Chebyshev polynomials give better overall performance as com-
pared to other two polynomials. Average AS obtained with shifted

Fig. 9.  Tunable bandwidth FIR  filter designed using the proposed method with
shifted Legendre polynomials, N  =  32:  amplitude response of a low pass filter Type I
in  dB.
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Table  2

Performance of the proposed algorithm for designing tunable bandwidth FIR filter with Type II.

Phi (�) N =  31 N = 63

Pass band error
(ep)

Stop band error
(es)

Stopband
attenuation (As) dB

Pass band error
(ep)

Stop band error
(es)

Stopband
attenuation (As)  dB

Shifted Chebyshev polynomial
0 8.71 ×  10−7 1.51 × 10−7 49.71 8.35 × 10−9 2.97 × 10−9 64.76
0.1 3.30 ×  10−7 4.76 × 10−8 52.67 6.43 × 10−10 2.53 × 10−10 69.82
0.2 6.30 ×  10−7 9.30 × 10−8 52.20 2.05 × 10−10 1.92 × 10−10 71.21
0.3 5.15 ×  10−7 8.39 × 10−8 50.11 2.01 × 10−10 6.89 × 10−11 77.50
0.4 4.02 ×  10−7 6.14 × 10−8 49.18 4.23 × 10−10 2.05  ×  10−11 85.90
0.5  6.47 ×  10−7 7.52 × 10−8 51.83 2.79 × 10−10 2.58 × 10−11 102.55
0.6 8.60 ×  10−7 6.09 × 10−8 53.26 2.94 × 10−10 2.36 × 10−11 92.93
0.7 6.76 ×  10−7 3.85 × 10−8 52.81 7.51 × 10−10 1.23 × 10−11 101.22
0.8 8.46 ×  10−7 3.30 × 10−8 52.87 2.63 × 10−9 2.58 × 10−11 98.77
0.9 9.19 ×  10−7 6.99 × 10−8 51.81 5.11 × 10−9 1.62 × 10−11 90.07
1 8.73 ×  10−7 1.22 × 10−7 88.05 2.96 × 10−8 4.48 × 10−10 111.73
Bernstein polynomials
0 8.71 ×  10−7 1.51 × 10−7 49.71 3.67 × 10−9 2.30  ×  10−9 66.97
0.1  3.30 ×  10−7 4.76 × 10−8 52.67 3.19 × 10−10 1.61 × 10−10 72.73
0.2 6.30 ×  10−7 9.30 × 10−8 52.20 3.40 × 10−10 1.51 × 10−10 73.55
0.3 5.15 ×  10−7 8.39 × 10−8 50.11 4.16 × 10−10 6.25 × 10−11 84.79
0.4 4.02 ×  10−7 6.14 × 10−8 49.18 3.61 × 10−10 4.27 × 10−11 88.95
0.5 6.47 ×  10−7 7.52 × 10−8 51.83 2.35 × 10−10 5.63 × 10−11 95.26
0.6 8.60 ×  10−7 6.09 × 10−8 53.26 5.35 × 10−10 6.19 × 10−11 86.65
0.7 6.76 ×  10−7 3.85 × 10−8 52.81 8.04 × 10−10 3.59 × 10−11 95.44
0.8 8.46 ×  10−7 3.30 × 10−8 52.87 3.48 × 10−9 6.27 × 10−11 99.75
0.9 9.19 ×  10−7 6.99 × 10−8 51.81 6.26 × 10−9 4.41 × 10−11 90.07
1 8.73 ×  10−7 1.22 × 10−7 88.05 4.60 × 10−8s 7.56 × 10−10 98.39
Shifted Legendre polynomials
0  8.71 ×  10−7 1.51 × 10−7 49.71 7.19 × 10−9 2.97 × 10−9 64.84
0.1 3.30 ×  10−7 4.76 × 10−8 52.67 6.39 × 10−10 2.37 × 10−10 70.08
0.2  6.30 ×  10−7 9.30 × 10−8 52.20 2.28 × 10−10 2.02  ×  10−10 71.12
0.3  5.15 ×  10−7 8.39 × 10−8 50.11 2.13 × 10−10 7.49 × 10−11 77.15
0.4 4.02 ×  10−7 6.14 × 10−8 49.18 4.27 × 10−10 2.20  ×  10−11 85.17
0.5  6.47 ×  10−7 7.52 × 10−8 51.83 2.81 × 10−10 2.87 × 10−11 100.18
0.6  8.60 ×  10−7 6.09 × 10−8 53.26 3.05 × 10−10 2.44 × 10−11 91.61
0.7 6.76 ×  10−7 3.85 × 10−8 52.81 7.75 × 10−10 1.14 × 10−11 106.11
0.8 8.46 ×  10−7 3.30 × 10−8 52.87 2.74 × 10−10 2.55 × 10−11 96.13
0.9 9.19 ×  10−7 6.99 × 10−8 51.81 5.05 × 10−9 1.76 × 10−11 89.32
1  8.73 ×  10−7 1.22 × 10−7 88.05 3.48 × 10−8 1.08  ×  10−10 111.19

Chebyshev polynomials is 55.77 dB and 54.95 dB  in Types I and II
for N = 32 and 31, respectively. While it is 89.57 dB and 87.51 dB
for N = 64 and 63. The average stopband error obtained with the
shifted Chebyshev polynomials for N = 32 and 31 is  4.89 ×  10−8 and
5.12 × 10−8, respectively in Types I and II. While for N =  64 and 63,
it is 9.956 × 10−11, and 3.64 × 10−10. The average passband error
obtained is 5.15 × 10−7 and 6.88 × 10−7 in Types I and II for N =  32
and 31. While for N =  64 and 63, it is 1.43 × 10−9, and 4.41 × 10−9. In
case of Bernstein polynomials, average AS obtained is 55.77 dB and

54.95 dB in Types I  and II  for the respective N = 32 and 31 and, it is
87.88 dB and 86.61 dB for N =  64 and 63.  The average errors in pass-
band and stopband are reduced to 5.15 × 10−7 and 4.89 × 10−8 with
Bernstein polynomials when N =  32,  while these are 6.88 ×  10−7 and
5.12 ×  10−8 in N =  31.

Average AS obtained with the shifted Legendre polynomials
is 55.77 dB and 54.95 dB in Types I and II for N =  32 and 31,
respectively. While it is  89.62 dB and 87.86 dB for N =  64 and 63.
The average stopband error obtained with the shifted Legendre

Table 3

Comparison of the proposed method with earlier published results.

Type of algorithm Phi (�) Pass band error (ep)  Stop band error (es) Stopband
attenuation (As)  dB

Proposed method shifted Chebyshev polynomials 0  2.98 ×  10−9 2.52 × 10−9 77.42
0.3  2.23 ×  10−10 5.44 × 10−11 78.03
0.6  3.94 ×  10−10 1.40 ×  10−11 92.79
0.9  4.96 ×  10−9 6.48 × 10−12 91.98

Proposed method Bernstein polynomials 0  7.42 ×  10−9 2.77 × 10−9 78.06
0.3  2.10 ×  10−10 4.70 ×  10−11 87.33
0.6  5.14 ×  10−10 4.47 × 10−11 88.03
0.9  5.10 ×  10−9 1.99 × 10−11 86.43

Proposed method shifted Legendre polynomials 0  2.98 ×  10−9 2.52 × 10−9 77.46
0.3  2.23 ×  10−10 5.22 × 10−11 78.05
0.6  3.94 ×  10−10 1.40 ×  10−11 92.08
0.9  4.96 ×  10−9 6.49 × 10−12 92.01

Algorithm in [6] 0  1.79 ×  10−7 3.24 × 10−8 57.04
0.3  2.00 ×  10−8 4.52 × 10−10 72.36
0.6  4.70 ×  10−8 1.45 × 10−10 89.12
0.9  7.99 ×  10−8 2.18 × 10−10 76.98
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Fig. 10. Tunable bandwidth FIR filter designed using the proposed method with shifted Legendre polynomials, N = 64: amplitude response of a  low pass filter Type I in dB.

polynomials for N =  32 and 31 is  4.89 × 10−8 and 5.12 ×  10−8 in
Types I and II. While for N = 64 and 63, it is  9.95 × 10−11, and
3.68 × 10−10.  The average passband error obtained is 5.15 × 10−7

and 6.88 × 10−7 in Types I and II,  respectively for N = 32 and 31.
While for N = 64 and 63, it is  1.43 × 10−9, and 4.47 ×  10−9.  Therefore,
this technique can be effectively utilized for the design of variable
bandwidth filters.

Similar to Chebyshev polynomials, the multiplication property
is also applicable for shifted Chebyshev polynomials, and defined
as

2Tk(x)Tl(x) = Tk+l(x) + T|k−l|(x) (48)

2Tk(2x  − 1)Tl(2x  − 1)  =  Tk+l(2x  − 1) + T|k−l|(2x  −  1),

for 0 ≤ k ≤ L, 0 ≤ l ≤ L. (49)

Due  to multiplication property, the computational complexity is
significantly reduced when shifted Chebyshev polynomial is used
as tuning parameter as all elements need not to be  computed.
Among these polynomials, shifted Chebyshev polynomial provides
least computational complexity while Bernstein polynomials pro-
vide maximum computational complexity.

5.3. Comparison of different algorithms

Results of the comparative studies given in  Table 3 clearly show
superiority of the proposed methodology over other exiting algo-
rithms [6]. For this, tunable bandwidth FIR filters with Type I with
same design specifications have been designed and compared. It
can  be seen that performance of the proposed method are signif-
icantly improved. The average errors in  passband and stopband
region obtained with the proposed method is 1.432 × 10−9 and
956 × 10−11 respectively in case of shifted Chebyshev polynomials,
1.706 × 10−9 and 1.159 × 10−11 in case of Bernstein polynomi-
als and 1.432 × 10−9 and 958 ×  10−11 in case of shifted Legendre
polynomials. While in  other algorithms [6],  it is  4.178 × 10−8 and
1.172 × 10−9.  The average stopband attenuation obtained in [6] is
79.53 dB, while with the proposed method; it is 89.57, 87.88, and
89.62, in respective polynomials. Similar behavior is obtained with
the shifted Legendre polynomials.

A comparative study of the performance of the proposed method
with algorithm given in  [6] is also graphically shown in  Fig. 11.  In

this figure, the variation of fidelity parameters are shown for the
proposed method and the algorithm given in [6] for different val-
ues of � ∈ [0, 1]. Here, ‘C(�)’, ‘B(�)’, and ‘L(�)’ denote the stopband
attenuation when the shifted Chebyshev polynomials, Bernstein
polynomials, and the shifted Legendre polynomials respectively
are used as tuning parameter. And ‘S(�)’ stands AS for the algo-
rithm given in [6].  The constants ‘epC(�)’, ‘epB(�)’ and ‘epL(�)’
represent the passband error when these polynomials are used
as tuning parameter. ‘epS(�)’ is the passband error for the algo-
rithm given in  [6]. Similarly, ‘esC(�)’, ‘esB(�)’ and ‘esL(�)’ stand for

Fig. 11. Variation of fidelity parameters obtained with the proposed method and
algorithm in [6] for different values of � ∈ [0, 1].
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the stopband error when the shifted Chebyshev polynomials, Bern-
stein polynomials and the shifted Legendre polynomials are  used
as tuning parameter. ‘esS(�)’ symbolizes the stopband error for the
algorithm given in  [6]. As  it is evident from this figure, the pro-
posed method gives better performance for the higher filter taps
as  compared to the algorithm given in [6]. For Type I: N = 32, the
worst case stopband attenuation in  algorithms [23,33] is 42.885 dB
and 43.03 dB, respectively, whereas in  the proposed method it is
50.36 dB (approximately for all the three polynomials). For Type II:
N  = 31, the worst case stopband attenuation is  46.1 dB in algorithm
[26],  while it is 49.71 dB in the presented method approximately
for all the three polynomials. Therefore, the proposed method can
be successfully and efficiently exploited for the design of variable
bandwidth filter for various applications. The proposed method
has more computational complexity as number of variables to be
optimized is more and has complex objective function.

6. Conclusion

A new method based on different polynomials such as shifted
Chebyshev polynomials, Bernstein polynomials and the shifted
Legendre polynomials is presented for the design of variable band-
width filters. These polynomials are  used as tuning parameter,
which controls the bandwidth. Simulation results demonstrate
the variable bandwidth characteristics of the designed filter. Good
fidelity parameters stopband attenuation, stopband energy and
error in passband are obtained by the proposed method. In addi-
tion, the proposed method also yields improved performance for
tunable bandwidth filters with larger filter taps as compared to
earlier published results.
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