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Abstract. We give a new construction of overconvergent modular forms of arbitrary weights,
defining them in terms of functions on certain affinoid subsets of Scholze’s infinite-level modular
curve. These affinoid subsets, and a certain canonical coordinate on them, play a role in our
construction which is strongly analogous with the role of the upper half-plane and its coordinate
‘z’ in the classical analytic theory of modular forms. As one application of these ideas, we define
and study an overconvergent Eichler-Shimura map in the context of compact Shimura curves over
Q, proving stronger analogues of results of Andreatta-Iovita-Stevens.
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1. Introduction

Let N ≥ 5 be an integer, and let Y1(N)(C) be the usual analytic modular curve. A holomorphic
modular form f of weight k and level N admits two rather distinct interpretations, which one might
call the algebraic and analytic points of view:

Algebraic: f is a global section ω(f) of the line bundle ω⊗k = ω⊗k
E/Y1(N) on Y1(N)(C) (extending

to X1(N)(C)). Equivalently, f is a rule which assigns to each test object - an isomorphism class of
triples (S,E, η) consisting of a complex analytic space S, a (generalized) elliptic curve π : E → S
with level N structure, and η an OS-generator of ωE/S := (LieE/S)∗ - an element f(S,E, η) ∈ O(S)

such that f commutes with base change in S and satisfies f(S,E, aη) = a−kf(S,E, η) for any
a ∈ O(S)×. These two interpretations are easily seen to be equivalent (for simplicity we ignoring
cusps): for any test object, there is a canonical map s : S → Y1(N) realizing E/S as the pullback
of the universal curve over Y1(N), and one has s∗ω(f) = f(S,E, η)η⊗k.

Analytic: f is a holomorphic function on the upper half-plane h of moderate growth, satisfying
the transformation rule f(az+b

cz+d) = (cz + d)kf(z) for all γ ∈ Γ1(N).

How do we pass between these points of view? The key is that h may be identified with the

universal cover Ỹ1(N) of Y1(N), in the category of complex analytic spaces, and the pullback of

the line bundle ω to Ỹ1(N) is canonically trivialized. Precisely, Ỹ1(N) consists of pairs (E, β)
where E/C is an elliptic curve and β = {β1, β2} ∈ H1(E(C),Z) is an oriented basis1. This space

admits a left action of Γ1(N) by {β1, β2} 7→ {aβ1 + bβ2, cβ1 + dβ2}. Let p : Ỹ1(N) → Y1(N)
be the natural projection. Defining the period z(E, β) ∈ C by

∫
β1
η = z(E, β)

∫
β2
η, where

η 6= 0 ∈ H0(E(C),Ω1
E/C) is any nonzero holomorphic one-form on E, the map

Ỹ1(N)
∼
→ h

(E, β) 7→ z(E, β)

is a Γ1(N)-equivariant isomorphism of Riemann surfaces. The pullback p∗ω is then trivialized by
the differential ηcan characterized by

∫
β2
ηcan = 1. Defining f(z) by p∗ω(f) = f(z)η⊗k

can, a calculation

shows that ηcan(γz) = (cz + d)−1ηcan(z), from which the transformation law of f(z) follows.

In the p-adic setting a priori one only has the algebraic definition valid for integral weights.
Given the importance of non-integral weights, it seems natural to hope for a direct algebraic
definition of modular forms with non-integral weights. More precisely, given a continuous character
κ : Z×

p → L× for some L/Qp finite, one would like to define a “p-adic modular form of weight κ
and level N” as a rule which assigns to each test object an isomorphism class of triples (R,E, η)
consisting of a p-adically separated and complete ring R, a (generalized) elliptic curve E/SpecR
with level N structure, and η a generator of ωE/R - an element g(R,E, η) ∈ R ⊗Zp L such that

g commutes with base change in R and satisfies g(R,E, rη) = κ(r)−1g(R,E, η) for any r ∈ R×.

1One also requires that β2 generate the Γ1(N)-structure under H1(E(C),Z/NZ) ∼= E(C)[N ]
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The problem with this naive definition is that the expression κ(r) does not make sense in general.
In fact, the only characters for which this is unambiguously defined and functorial in R are the
power characters κ : r → rk, k ∈ Z. However, Andreatta-Iovita-Stevens and Pilloni ([AIS1, Pil])
discovered (independently) a remarkable fix to this problem, whereby for a given character κ one
only allows “certain elliptic curves” and, more importantly, “certain differentials” in the definition
of test objects. The admissible elliptic curves are those whose Hasse invariant has suitably small
valuation. The admissible η’s are defined using torsion p-adic Hodge theory and the theory of
the canonical subgroup; they are not permuted by all of R×, but only by a subgroup of elements
p-adically close enough to Z×

p so that κ(r) is defined.

Our first goal in this paper is to develop a p-adic analogue of the analytic picture above. Of

course, the most pressing question here is: what are the correct analogues of Ỹ1(N), h ⊆ P1
C and

z? The following theorem gives a partial answer.

Theorem 1.1. Given N and p ∤ N as above, let

X∞ ∼ lim
←−
n

Xad
K1(N)K(pn)

be the infinite-level perfectoid (compactified) modular curve of tame level N ([Sch4]), with its natural
right action of GL2(Qp). There is a natural family of K0(p)-stable open affinoid perfectoid subsets
X∞,w ⊆ X∞ parametrized by rationals w ∈ Q>0, with X∞,w′ ⊆ X∞,w for w ≤ w′, and there is a

canonical global section z ∈ O(X∞,w) (compatible under changing w) such that γ∗z = az+c
bz+d for all

γ ∈ K0(p). For any κ as above and any w ≫κ 0, the space

Mκ,w(N) :=
{
f ∈ O(X∞,w)⊗Qp L | κ(bz+ d) · γ∗f = f ∀γ ∈ K0(p)

}

is well-defined, and the module M †
κ(N) = limw→∞Mκ,w(N) is canonically isomorphic with the

modules of overconvergent modular forms of weight κ and tame level N defined by Andreatta-
Iovita-Stevens and Pilloni.

Thus, in our approach, the X∞,w plays the role of Ỹ1(N) and the fundamental period z plays
the role of z from the complex theory. Key to this theorem is that ω is trivialized over any X∞,w

(by one of the “fake” Hasse invariants constructed in [Sch4]), which is similar to the fact that ω
is trivialized over h. One reason why the latter is true is because the complex period map is not
surjective onto P1

C. By contrast, the p-adic period morphism πHT : X∞ → P1 constructed in [Sch4]
is surjective, but becomes non-surjective when restricted to any X∞,w. This is the reason that our
description works for overconvergent modular forms but not for classical modular forms.

The second goal of the paper is to apply our “explicit” point of view to redefine and analyze the
overconvergent Eichler-Shimura map of [AIS2], which compares overconvergent modular symbols
to overconvergent modular forms. Our perspective gives a short and transparent definition of these
maps, and (we believe) clarifies the ideas involved. We also make use of certain new filtrations on
overconvergent distribution modules to obtain a more “global” point of view on the Eichler-Shimura
maps: after first defining them in the setting of Coleman families, we glue them into a morphism
of coherent sheaves over the whole eigencurve.

We now describe these results in more detail.

1.1. Perfectoid modular curves and w-ordinarity. Let Yn denote the modular curve over Qp

with Yn(S) parametrizing elliptic curves E/S with a point P ∈ E(S)[N ] of exact order N together
with an isomorphism

αn : (Z/pnZ)2 ∼
→ E(S)[pn].



4 PRZEMYS LAW CHOJECKI, DAVID HANSEN AND CHRISTIAN JOHANSSON

Let Xn denote the usual compactification of Yn, and let Yn ⊆ Xn be the associated adic spaces over
Spa(Qp,Zp). These form compatible inverse systems (Xn)n≥1, (Yn)n≥1 with compatible actions
of GL2(Qp). Fundamental to all our considerations is Scholze’s construction of the infinite level
modular curves Y∞ ∼ lim

←−n
Yn, X∞ ∼ lim

←−n
Xn and the GL2(Qp)-equivariant Hodge-Tate period

map πHT : X∞ → P1 (a morphism of adic spaces over Qp).

Let us say a few more words about πHT. Let C/Qp be a complete algebraically closed field
extension with ring of integers OC , and let A be an abelian variety over C of dimension g, with
dual A∨. Set ωA = H0(A,Ω1

A/C)
∼= HomC(LieA,C), a C-vector space of rank g. Then we have

a natural linear map HTA : TpA ⊗Zp C ։ ωA∨ , the Hodge-Tate map of A, which fits into a short
exact sequence

0 −→ (LieA)(1)
HT∨

A∨ (1)
−→ Hom(TpA

∨, C(1)) = TpA⊗Zp C
HTA−→ ωA∨ −→ 0

where −(1) denotes a Tate twist. If E/C is an elliptic curve and α : Z2
p

∼
→ TpE is a trivialization,

then (E,α) defines a point in Y∞(C,OC) and πHT sends (E,α) to the line (α⊗ 1)−1(LieE) ⊆ C2.

Our first key definition is a new gauge for the ordinarity of an abelian variety, defined in terms
of the Hodge-Tate map HTA. Let FA = HTA(TpA⊗Zp OC). This is an OC-lattice inside ωA∨ .

Definition 1.2. Let w ∈ Q>0.

(1) An abelian variety A/C is w-ordinary if there is a basis b1, . . . , b2g of TpA such that
HTA(bi) ∈ p

wFA for all 1 ≤ i ≤ g.
(2) For A/C w-ordinary and 0 < n < w + 1, the pseudocanonical subgroup Hn of level n

is defined to be the kernel of the natural map

A[pn](C)→ FA ⊗OC
OC/p

min(n,w)OC

induced by HTA.
(3) For A/C w-ordinary, a trivialization α : Z2g

p
∼
→ TpA is strict if α(e1), . . . , α(eg)mod p ∈

A[p](C) form a basis for the pseudocanonical subgroup of level one.

Let u and v be the homogeneous coordinate with respect to the standard basis e1 = ( 1
0 ) and

e2 = ( 0
1 ) of Q

2
p. We define z = −v/u, a coordinate function on P1. For w ∈ Q>0 we let P1

w ⊆ P1 be
the locus

P1
w = {z | infa∈pZp |z − a| ≤ |p|

w}.

For γ ∈ K0(p) one sees that γ∗z = az+c
bz+d and that P1

w is a K0(p)-stable affinoid, where K0(p) is the

usual Iwahori subgroup of GL2(Zp). Define X∞,w = π−1
HT(P

1
w) and Y∞,w = X∞,w ∩ Y∞. These loci

are K0(p)-stable. Finally, define the fundamental period z = π∗HTz ∈ O
+
X∞

(X∞,w).

Theorem 1.3. A point (E,α) ∈ Y∞(C,OC) is contained in X∞,w if and only if E is w-ordinary
and α is strict. Furthermore, X∞,w is the preimage of a canonical affinoid Xw ⊆ XK0(p), and X∞,w

is affinoid perfectoid. The (C,OC)-points of Yw = Xw ∩ YK0(p) are the pairs (E,H) where E is
w-ordinary and H is the pseudocanonical subgroup of level one, and (Xw)w is a cofinal set of strict
neighbourhoods of the ordinary multiplicative locus in XK0(p).

Taking these infinite-level objects as our basic ingredients, we are able to give a short and explicit

construction (Definition 2.17) of sheaves of overconvergent modular forms ω†
κ,w on Xw whose global

sections yield the module Mκ,w(N) of Theorem 1.1. This construction also works in families of
weights. As a guide to our constructions so far, we offer the following table of analogies:
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C Qp

Y = Y1(N)(C), a complex analytic space Yw ⊂ YK0(p), an adic space

E/C an elliptic curve E/C a w-ordinary elliptic curve

(E, β), β = {β1, β2} ∈ H1(E(C),Z) an oriented basis (E,α), α : Z2
p

∼
→ TpE a strict trivialization

(E, β) ∈ Ỹ , the universal cover of Y x = (E,α) ∈ Y∞,w(C) ⊂ X∞,w(C)

Γ1(N) � Ỹ
∼
→ h ⊂ P1

/C πHT : X∞,w ։ P1
w ⊂ P1

/Qp
	 K0(p)

Ỹ = h and h are contractible X∞,w is affinoid perfectoid

z, the coordinate on h z ∈ O+(X∞,w), the fundamental period

z = z(E, β) characterized by z(x) ∈ C characterized by
∫

β1

η = z
∫

β2

η HTE(α(e1)) = z(x)HTE(α(e2))
∫

β2

ηcan = 1 s = HTE(α(e2))

ηcan(γz) = 1
cz+d

ηcan(z) γ∗s = (bz + d)s

(cz + d)k ∈ O(h) κ(bz + d) ∈ O(X∞,w) ⊗Qp
L (w ≥ wλ)

Mk(N) =
{

f ∈ O(h) | f(gz) = (cz + d)kf(z)
}

Mκ,w(N) =
{

f ∈ O(X∞,w) ⊗Qp
L | κ(bz + d)γ∗f = f

}

M†
κ = limw→∞ Mκ,w

Table 1.1: Analogies.

As we have already mentioned, sheaves of overconvergent modular forms have been constructed
previously by [AIS1] and [Pil], and their constructions (which appear slightly different on the
surface) are known to give equivalent notions of overconvergent modular forms. We prove (Theorem
2.30) that our definition is also equivalent to these previous constructions.

1.2. Modular curves vs. Shimura curves. While we have written this introduction so far in
the setting of modular curves, we have chosen to work with compact Shimura curves associated with
an indefinite quaternion division algebra B/Q split at (our fixed) p in body of the paper. There are
two reasons for this. The first reason is that the local p-adic geometry of these Shimura curves is
entirely analogous to the local p-adic geometry of modular curves, but the global geometry is simpler
without the presence of boundary divisors, compactifications, and their attendant complications.
We believe that working in a boundaryless setting helps to clarify the point of view adopted in this
paper.

Having said this, many of our ideas extend to the case of modular curves. In particular, all
the definitions and results in §2 have exact analogues for classical modular curves, and Theorems
1.1 and 1.3 are true as stated. The techniques we use for Shimura curves work over the open
modular curve, and one may extend over the boundary using “soft” techniques (one does not need
the advanced results of [Sch4, §2]).

The second reason is that our point of view on the overconvergent Eichler-Shimura map does not
immediately generalize to modular curves. While we believe that the underlying philosophy should
adapt, there are certain technical aspects of the construction (in particular Proposition 4.4) which
seem difficult to adapt. As far as we can tell, this is a purely technical issue with the pro-étale site
as defined in [Sch3]. In work in progress ([DT]), Diao and Tan are developing a logarithmic version
of the pro-étale site, and we believe that our constructions would work well in this setting.

1.3. The overconvergent Eichler-Shimura map. From now on we work with Shimura curves
attached to an indefinite quaternion division algebra B/Qp split at p and use the same notation
that we previously used for modular curves.

After Coleman’s construction of Coleman families and the globalization of these to the Coleman-
Mazur eigencurve ([Clm, CM]), different constructions of families of finite slope eigenforms and
eigencurves for GL2/Q were given by Stevens ([Ste], completed by Belläıche [Bel]) and Emerton
([Eme]). These constructions give the same eigencurve. Roughly speaking, each approach first
constructs a p-adic Banach/Fréchet space (or many such spaces) of ”overconvergent” objects
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interpolating modular forms/cohomology classes, and then creates a geometric object out of this
(these) space(s). All spaces have actions of certain Hecke algebras and the fact that these give
the same eigencurves amounts to saying that they contain the same finite slope systems of Hecke
eigenvalues. However, not much is known about the direct relation between these spaces. One
can rephrase the problem in the following way: each construction of the eigencurve remembers the
spaces it came from in the form of a coherent sheaf on it, and one may ask if there are relations
between these sheaves.

In [AIS2], Andreatta, Iovita and Stevens study the relationship between overconvergent modular
forms and overconvergent modular symbols. While Coleman’s overconvergent modular forms p-
adically interpolate modular forms, Stevens’s overconvergent modular symbols interpolate classical
modular symbols, i.e. classes in the singular cohomology groups H1(Y1(N), Symk−2H1), where
H1 is the first relative singular cohomogy of the universal elliptic curve. Classical Eichler-Shimura
theory, which one may view as an elaboration of Hodge Theory for these particular varieties and
coefficient systems, gives a Hecke-equivariant isomorphism

H1(Y1(N), Symk−2H1)⊗Z C ∼=Mk ⊕ Sk

where Mk is the space of weight k and level N modular forms and Sk is its subspace of cusp forms.
Faltings ([Fal]) constructed a p-adic Hodge-theoretic analogue of this isomorphism, replacing singu-
lar cohomology with étale cohomology. This construction was then adapted to the overconvergent
context in [AIS2].

Let us describe these ideas and our work in more detail. We refer to the main body of
the paper for exact definitions. Recall ([AS, Han1]) the overconvergent distribution modules Ds

κ

where κ is a character of Z×
p as above. It may be interpreted as a local system on XK0(p)(C).

The singular cohomology H1(XK0(p)(C),Ds
κ) is the space of overconvergent modular symbols.

Following [Han2], we construct a filtration on the integral distribution module D
s,◦
κ for which the

corresponding topology is profinite. From this one gets a sheaf on the pro-étale site of XK0(p) whose

cohomology is isomorphic to H1(XK0(p)(C),Ds
κ), but also carries a Galois action. To compare this

to overconvergent modular forms of weight κ, one introduces a “fattened” version ODs
κ of Ds

κ which
has the explicit description

V 7→ (Dκ⊗̂ÔXK0(p)
(V∞))K0(p)

for V ∈ XK0(p),proét quasi-compact and quasi-separated (qcqs), where V∞ := V ×XK0(p)
X∞ and

ÔXK0(p)
is the completed structure sheaf on XK0(p),proét. After restricting to Xw it turns out to be

easy to give a morphism to the completed version ω̂†
κ,w: for V ∈ Xw,proét qcqs there is a K0(p)-

equivariant morphism

Dκ⊗̂ÔXw(V∞)→ ÔXw(V∞)⊗Qp L

given on elementary tensors by

µ⊗ f 7→ µ(κ(1 + zx))f.

The formula is heavily inspired by a formula of Stevens for the comparison map between overcon-
vergent distributions and polynomial distributions (whose cohomology computes classical modular
symbols) which does not seem to be used a lot in the literature (see the paragraph before Definition
3.2). One then passes to K0(p)-invariants to obtain the desired morphism of sheaves. This is our
analogue of the maps denoted by δ∨κ (w) in [AIS2]. It induces a map on cohomology groups over Cp

which gives the desired map of spaces using that H1
proét(Xw,Cp , ω̂

†
κ,w) ∼= H0(Xw,Cp , ω

†
κ,w⊗OXw

Ω1
Xw

).

The strategy is the same as in [AIS2], except that they work with the so-called Faltings site instead
of the pro-étale site. It is the presence of infinite level Shimura curves in the pro-étale sites of
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finite level Shimura curves that accounts for the clean explicit formulas we obtain: they provide
the correct “local coordinates” for the problem at hand.

We analyze these maps by carrying out the above constructions in families of weights (as in
[AIS2]). To define Galois actions one needs to work with families parametrized by certain affine
formal schemes instead of the more commonly used affinoid rigid spaces. Whereas the filtrations
defined in [AIS2] only work when the formal scheme is an open unit disc near the center of weight
space, our filtrations are defined over arbitrary Spf R where R is finite over Zp[[X1, .., Xd]] for some
d. This enables us to glue the morphisms for different families of weights into a morphism of sheaves
over the whole eigencurve.

Denote by C the eigencurve and let CCp be its base change to Cp. It carries coherent sheaves V,

resp. M†, coming from overconvergent modular symbols resp. forms. We denote by VCp , resp.

M†
Cp
, their base changes to Cp, which may also be viewed as sheaves of OC⊗̂QpCp-modules on C.

In the latter point of view, one may think of Cp as a (rather primitive) period ring. After gluing,

the overconvergent Eichler-Shimura map is a morphism ES : VCp →M
†
Cp
(−1) of sheaves.

Theorem 1.4 (Theorem 5.11, Theorem 5.14). Let Csm be the smooth locus of C.

(1) V and M† are locally free over Csm, and the kernel K and image I of ES are locally
projective sheaves of OCsm⊗̂QpCp-modules (or equivalently locally free sheaves on Csm

Cp
). The

support ofM†
Cp
(−1)/I on CCp is Zariski closed of dimension 0.

(2) Let ǫCsm be the character of GQp defined by the composition

GQp

ǫ
−→ Z×

p
χW−→ O×

W −→ (O×
Csm⊗̂QpCp)

×

where ǫ is the p-adic cyclotomic character of GQp and χW is the universal character of Z×
p .

Then the semilinear action of GQp on the module K(ǫ−1
Csm) is trivial.

(3) The exact sequence

0→ K → VCp → I → 0

is locally split. Zariski generically, the splitting may be taken to be equivariant with respect
to both the Hecke- and GQp-actions, and such a splitting is unique.

These are stronger analogues of results in [AIS2], where the authors prove the analogous results
for modular curves in some small (unspecified) open neighbourhood of the set of non-critical classical
points.

We believe that our perspective on overconvergent modular forms and the overconvergent Eichler-
Shimura map should generalize to higher-dimensional Shimura varieties. In particular, it should be
reasonably straightforward to adapt the methods of this paper to (the compact versions of) Hilbert
modular varieties.

1.4. Notation, conventions and an outline of the paper. Throughout this text, we let p
denote a fixed prime.

For the purposes of this paper, a small Zp-algebra is a ring R which is reduced, p-torsion-free,
and finite as a Zp[[X1, ..., Xd]]-algebra for some (unspecified) d ≥ 0. Any such R carries a canonical
adic profinite topology, and is also complete for its p-adic topology. For convenience we will fix a
choice of ideal a = aR defining the profinite topology (a “canonical” example of such a choice is the
Jacobson radical). All constructions made using this choice will be easily verified to not depend
upon it.
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We will need various completed tensor product constructions, some of which are non-standard.
We will need to take a form of completed tensor product between small Zp-algebras and various
Banach spaces or other Zp-modules. These will always be denoted by an undecorated completed

tensor product ⊗̂. We explain our conventions for the unadorned ⊗̂ in Convention 2.2 and
Definitions 6.3 and 6.6 below. Any adorned ⊗̂A is a standard one, with respect to the natural
topology coming from A.

We will use Huber’s adic spaces as our language for non-archimedean analytic geometry in this
paper. In particular, a “rigid analytic variety” will refer to the associated adic space, and all open
subsets and open covers are open subsets resp. open covers of the adic space (i.e. we drop the
adjective “admissible” used in rigid analytic geometry). The pro-étale site of [Sch3] is key to our
constructions; we will freely use notation and terminology from that paper. For perfectoid spaces
we use the language of [KL] for simplicity (e.g. we speak of perfectoid spaces over Qp), but any
perfectoid space appearing is a perfectoid space is the sense of [Sch1] (i.e. it lives over a perfectoid
field).

Let us finish the introduction by briefly outlining the contents of the paper. In §2 we give our new
definitions of sheaves of overconvergent modular forms in families and prove their basic properties,
including a comparison with the definitions of [AIS1, Pil]. In §3 we recall the basic definitions from
the theory of overconvergent modular symbols and define the filtrations mentioned above. We make
some technical adjustments when defining slope decompositions. In particular, we do not need the
concept of a weak orthonormal basis used in [AIS2]; all slope decompositions can be defined using
standard orthonormal bases and formal operations. In §4 we define our overconvergent Eichler-
Shimura maps, and §5 glues them over the eigencurve and proves the properties stated above.

The paper concludes with an appendix, collecting various technical results and definitions that
are needed in the main text; some of these results may be of independent interest. In §6.1 we define
our non-standard completed tensor products and prove some basic properties. While we only need
this ⊗̂ for small Zp-algebras R, it turns out that the ring structure only serves to obfuscate the

situation. Accordingly, we define ⊗̂ for a class of Zp-module that we call profinite flat. Throughout

the text we will need to consider sheaves of rings like OX⊗̂R and ÔX⊗̂R on X where X is a rigid
space and R is a small Zp-algebra. We prove some technical facts about these sheaves of rings and
their modules in §6.2-6.3. Finally §6.4 discusses quotients of rigid spaces by finite group actions,
proving a standard existence result that we were not able to locate in the literature.
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2. Overconvergent modular forms

2.1. Weights and characters. In section we recall some basic notions about weights. We may
define weight space as the functor from affinoid (Zp,Zp)-algebras (A,A

+) to abelian groups given
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by
(A,A+) 7→ Homcts(Z×

p , A
×).

This functor is representable by (Zp[[Z×
p ]],Zp[[Z×

p ]]). The proof is well known. The key fact that
makes the arguments work in this generality is that A◦/A◦◦ is a reduced ring of characteristic p,
where A◦◦ is the set of topologically nilpotent elements in A. We define W = Spf(Zp[[Z×

p ]]) and

let W = Spf(Zp[[Z×
p ]])

rig be the associated rigid analytic weight space, with its universal character

χW : Z×
p → O(W)×.

We embed Z into W by sending k to the character χk(z) = zk−2.

Definition 2.1. (1) A small weight is a pair U = (RU , χU ) where RU is a small Zp-algebra and
χU : Z×

p → R×
U is a continuous character such that χU (1 + p)− 1 is topologically nilpotent

in RU with respect to the p-adic topology.
(2) An affinoid weight is a pair U = (SU , χU ) where SU is a reduced Tate algebra over Qp

topologically of finite type and χU : Z×
p → S×

U is a continuous character.
(3) A weight is a pair U = (AU , χU ) which is either a small weight or an affinoid weight.

We shall sometimes abbreviate AU by A when U is clear from context. In either case, we can
make AU [

1
p ] into a uniform Qp-Banach algebra by letting A◦

U be the unit ball and equipping it with

the corresponding spectral norm. We will denote this norm by | · |U . Note then that there exists a

smallest integer s ≥ 0 such that |χU (1 + p)− 1|U < p
− 1

ps(p−1) . We denote this s by sU . When U is
small, the existence uses that χU (1+ p)− 1 is p-adically topologically nilpotent. We will also make
the following convention:

Convention 2.2. Let U be a weight and let V be a Banach space over Qp. We define V ⊗̂AU as
follows:

(1) If U is small, then V ⊗̂RU is a mixed completed tensor product in the sense of the appendix.
(2) If U is affinoid, then V ⊗̂SU := V ⊗̂QpSU .

Remark 2.3. Many (though not all) of the results in this paper involving a choice of some weight U
make equally good sense whether U is small or affinoid. In our proofs of these results, we typically
give either a proof which works uniformly in both cases, or a proof in the case where U is small,
which is usually more technically demanding.

When U = (RU , χU ) is a small weight the universal property of weight space gives us a canonical
morphism

Spf(RU )→W,

which induces a morphism
Spf(RU )

rig →W.

When U = (SU , χU ) is an affinoid weight we get an induced morphism

Spa(SU , S
◦
U )→W.

We make the following definition:

Definition 2.4. (1) A small weight U = (RU , χU ) is said to be open if RU is normal and the
induced morphism Spf(RU )

rig →W is an open immersion.
(2) An affinoid weight U = (SU , χU ) is said to be open if the induced morphism Spa(SU , S

◦
U )→

W is an open immersion.
(3) A weight U = (AU , χU ) is said to be open if it is either a small open weight or an affinoid

open weight.
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Note that if U is a small weight such that Urig →W is an open immersion, then the normalization
of U is a small open weight.

Let B be any uniform Qp-Banach algebra. Let us say that a function f : Zp → B is s-analytic
for some nonnegative integer s if, for any fixed a ∈ Zp, there is some ϕf,a ∈ B 〈T 〉 such that
ϕf,a(x) = f(psx+a) for all x ∈ Zp. In other words, f can be expanded in a convergent power series
on any ball of radius p−s. This is naturally a Banach space which we denote by Cs−an(Zp, B).

Theorem 2.5 (Amice). The polynomials esj(x) = ⌊p−sj⌋!

(
x
j

)
form an orthonormal basis of

Cs−an(Zp, B) for any uniform Qp-Banach algebra B. Furthermore, we have esj(Zp + psB◦) ⊆ B◦.

Proof. This is well known, see e.g. [Col, Theorem 1.7.8] and its proof. �

We can now prove that characters extend over a bigger domain.

Proposition 2.6. Let U = (AU , χU ) be a weight and let B be any uniform Qp-Banach algebra.
Then for any s ∈ Q>0 such that s ≥ sU , χU extends canonically to a character

χU : B×
s → (A◦

U ⊗̂ZpB
◦)× ⊂ (AU ⊗̂B)×,

where B×
s := Z×

p · (1+p
s+1B◦) ⊆ (B◦)× and ps+1B◦ is shorthand for {b ∈ B◦ | |b| ≤ p−s−1} (where

| − | is the spectral norm on B).

Proof. Without loss of generality we may assume that s is an integer (e.g by replacing s with
⌊s⌋). We may decompose any b ∈ B×

s uniquely as b = ω(b) 〈b〉, with ω(b) ∈ µp−1 and 〈b〉 ∈
1+ pZp + ps+1B◦. We will show that for any s ≥ sU and b ∈ B×

s , the individual terms of the series

f(b) = χU (ω(b))
∞∑

j=0

(χU (1 + p)− 1)j
(

log〈b〉
log(1+p)

j

)

“ = ” χU (ω(b)) · χ(1 + p)
log〈b〉
log 1+p

lie in A◦
U ⊗Zp B

◦ and tend to zero p-adically, so this series converges to an element of A◦
U ⊗̂ZpB

◦

and a fortiori to an element of AU ⊗̂B. We claim this series defines a canonical extension of χU .

Using the well known formula for the p-adic valuation of factorials we see that vp(⌊p
−sj⌋!) ≤ j

ps(p−1) .

In particular, writing

χU (ω(b))

∞∑

j=0

(χU (1 + p)− 1)j
(
x
j

)
= χU (ω(b))

∞∑

j=0

(χU (1 + p)− 1)j

⌊p−sj⌋!
esj(x),

our assumption on s implies that |χU (1 + p)− 1|U < p
− 1

ps(p−1) , so we see that this series converges

to an element of A◦
U ⊗̂ZpB

◦ for any x ∈ B such that esj(x) ∈ B
◦ for all j. By Theorem 2.5 it then

suffices to verify that if b ∈ B×
s then x = log〈b〉

log 1+p ∈ Zp + psB◦. But we know that the function

η(b) = log〈b〉
log 1+p defines a homomorphism from 1 + pZp + ps+1B◦ to Zp + psB◦, so we are done. The

character property follows by calculating directly from the definitions. Finally, to show that this
character extends χU , note that for b ∈ µp−1 × (1 + p)Z≥0 , f(b) becomes a finite sum which equals
χU (b) by the binomial theorem, so f |Z×

p
= χU by continuity. �
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2.2. Geometry at infinite level. We write C for an algebraically closed field containing Qp,
complete with respect to a valuation v : C → R ∪ {+∞} with v(p) = 1 (so v is nontrivial), and we
write OC for the valuation subring. Fix an embedding Cp ⊆ C. We fix a compatible set of pn-th
roots of unity in Cp and use this choice throughout to ignore Tate twists (over any C). We let B
denote an indefinite non-split quaternion algebra over Q, with discriminant d which we assume is
prime to p. We fix a maximal order OB of B as well as an isomorphism OB ⊗Z Zp

∼=M2(Zp), and
write G for the algebraic group over Z whose functor of points is

R 7→ (OB ⊗Z R)
×,

where R is any ring. We fix once and for all a neat compact open subgroup Kp ⊆ G(Ẑp) such that

Kp =
∏

ℓ6=pKℓ for compact open subgroups Kℓ ⊆ GL2(Zℓ) and (for simplicity) det(Kp) = (Ẑp)×.

Recall (e.g. from [Buz1, §1]) that a false elliptic curve over a Z[1d ]-scheme S is a pair (A/S, i)
where A is an abelian surface over S and i : OB →֒ EndS(A) is an injective ring homomorphism.
We refer to [Buz1] for more information and definitions regarding false elliptic curves, in particular
the definition of level structures. Let XGL2(Zp) be the moduli space of false elliptic curves with Kp-
level structure as a scheme over Zp. We denote by XGL2(Zp) the Tate analytification of its generic
fibre, viewed as an adic space over Spa(Qp,Zp). For any compact open subgroup Kp ⊆ GL2(Zp) we
use a subscript −Kp to denote the same objects with a Kp-level structure added. We will mostly
use the standard compact open subgroups K0(p

n) or K(pn), for n ≥ 1. Since we will mostly work
with the Shimura curves with K0(p)-level structure, we make the following convention:

Convention 2.7. We define X := XK0(p), X = XK0(p), et cetera. A Shimura curve with no level
specified has K0(p)-level at p.

The following striking theorem of Scholze is key to all constructions in this paper.

Theorem 2.8 (Scholze). There exist a perfectoid space X∞ over Spa(Qp,Zp) such that

X∞ ∼ lim
←−
n

XK(pn).

It carries an action of GL2(Qp) and there exists a GL2(Qp)-equivariant morphism

πHT : X∞ → P1

of adic spaces over Spa(Qp,Zp). Let P1 = V1 ∪ V2 denote the standard affinoid cover. Then

V1 = π−1
HT(V1) and V2 = π−1

HT(V2) are both affinoid perfectoid, and there exists an N and affinoid
opens S1, S2 ⊆ XK(pN ) such that Vi is the preimage of Si. Moreover we have ω = π∗HTO(1) on X∞,

where ω is obtained by pulling back the usual ω (defined below) from any finite level XK(pn).

A few remarks are in order. For the definition of ∼ we refer to [SW, Definition 2.4.1]. This
theorem is essentially a special case of [Sch4, Theorem IV.1.1] except for the difference in base field
and the target of πHT; there one obtains a perfectoid space over some algebraically closed complete
C/Qp and πHT takes values in a larger (partial) flag variety. The version here is easily deduced in
the same way; we now sketch the argument. The tower (XK(pn))n embeds into the tower of Siegel
threefolds (over Qp), and the same argument as in the proof of [Sch4, Theorem IV.1.1] gives the
existence of X∞ and a map πHT which takes values in the partial flag variety F l of GSp4 with
respect to the Siegel parabolic. Using the M2(Zp)-action (see below) one sees that it takes values
in P1 ⊆ F l (such results will appear in large generality in the forthcoming work of Caraiani and
Scholze [CS]). Finally, one easily sees that the standard affinoid opens of P1 come by pullback
from standard affinoid opens of P5 via the map P1 ⊆ F l ⊆ P5 (where F l ⊆ P5 is the Plücker
embedding). This finishes the sketch. Alternatively, one may follow the argument used to prove
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[Sch4, Theorem III.3.18] in the case g = 1 to prove Theorem 2.8 (the situation here is slightly easier
due the compactness of the XK(pn)).

Let us now discuss some standard constructions and define the sheaf ω mentioned in Theorem
2.8. For any false elliptic curve A over some Zp-scheme S the p-divisible group A[p∞] carries an
action OB ⊗Z Zp

∼=M2(Zp). Put GA = eA[p∞], where e ∈M2(Zp) is an idempotent that we will fix
throughout the text (take e.g. ( 1 0

0 0 )). This is a p-divisible group over S of height 2 and we have

A[p∞] ∼= G⊕2
A functorially; we will fix this isomorphism. For all purposes GA behaves exactly like

the p-divisible group of an elliptic curve and we may use it to define ordinarity, supersingularity,
level structures et cetera. We will often just write G instead of GA if the false elliptic curve A is clear
from the context. The line bundle ω is the dual of e(Lie(Auniv/X)), where Auniv is the universal
false elliptic curve. We will also write Guniv = GAuniv . The same definitions and conventions apply
to the adic versions, and to other level structures.

Next, we specify the right action of GL2(Qp) on (C,OC)-points on both sides of the Hodge-Tate
period map X∞ → P1. First we consider P1: g ∈ GL2(Qp) acts from the left on C2 (viewed as
column vectors) and a line L ⊆ C2 is sent by g to g∨(L), where g 7→ g∨ is the involution

g =

(
a b
c d

)
7→ g∨ = det(g)g−1 =

(
d −b
−c a

)
.

This defines a right action. A (C,OC)-point of X∞ consists of a false elliptic curve A/C and an
isomorphism α : Z2

p → TpG (and the Kp-level structure which we ignore). Let g ∈ GL2(Qp) and

fix n ∈ Z such that png ∈ M2(Zp) but p
n−1g /∈ M2(Zp). For m ∈ Z≥0 sufficiently large the kernel

of png∨ modulo pm stabilizes and we denote the corresponding subgroup of G[pm] under α by H.
We define (A,α).g to be (A/H⊕2, β), where β is defined as the composition

Z2
p

png
−→ Q2

p
α
−→ VpG

(f∨)−1
∗

−→ Vp(G/H).

Here H⊕2 is viewed as a subgroup scheme of A[p∞] via the functorial isomorphism A[p∞] ∼= G⊕2,
Vp(−) denotes the rational Tate module and (f∨)∗ : Vp(G/H) → VpG is the map induced from
the dual of the natural isogeny f : G → G/H (note that β is isomorphism onto Tp(G/H)).
In particular, if g ∈ GL2(Zp), then (A,α).g = (A,α · g) where (α · g)(e1) = aα(e1) + cα(e2),
(α · g)(e2) = bα(e1)+dα(e2). Here and everywhere else in the text e1 and e2 are the standard basis
vectors ( 1

0 ) and ( 0
1 ) of Z

2
p.

2.3. w-ordinary false elliptic curves. Let H be a finite flat group scheme over OC killed by
pn. We let ωH denote the dual of Lie(H). It is a torsion OC-module and hence isomorphic to⊕

iOC/aiOC for some finite set of ai ∈ OC . The degree deg(H) of H is defined to be
∑

i v(ai).
The Hodge-Tate map HTH is the morphism of fppf abelian sheaves H → ωH∨ over OC defined on
points by

f ∈ H = (H∨)∨ 7→ f∗(dt/t) ∈ ωH∨

where we view f as a morphism f : H∨ → µpn , dt/t ∈ ωµpn
is the invariant differential and −∨

denotes the Cartier dual. We will often abuse notation and use HTH for the map on OC-points,
and there one may identify the OC-points of H with the C-points of its generic fibre.

Now let G be a p-divisible group over OC . Taking the inverse limit over the Hodge-Tate
maps for the G[pn] we obtain a morphism HTG : TpG → ωG∨ , which we will often linearize
by tensoring the source with OC . Taking this morphism for G∨ and dualizing it we obtain a
morphism Lie(G)→ TpG⊗Zp OC . Putting these morphisms together we get a sequence

0→ Lie(G)→ TpG⊗Zp OC → ωG∨ → 0
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which is in fact a complex with cohomology groups killed by p1/(p−1) ([FGL, Théorème II.1.1]). We
will let Hdg(G) denote the Hodge height of G, which is defined to be the truncated (by 1) valuation
of the Hasse invariant of G.

Let A/C be a false elliptic curve. Then A has good reduction and we will denote its unique
model over OC by A. We have the Hodge-Tate sequence of GA[p

∞]:

0→ Lie(GA)→ TpG ⊗Zp OC → ωG∨
A
→ 0.

Here we have dropped the subscript −A in the notation of the Tate module for simplicity; this
should not cause any confusion. We will write HTA for HTGA[p∞] and Hdg(A) for Hdg(GA[p

∞]).

The image and kernel of HTA are free OC-modules of rank 1 that we will denote by FA and F 1
A

respectively. Note that p1/(p−1)ωG∨
A
⊆ FA ⊆ ωG∨

A
.

Recall that e1 and e2 are the standard basis vectors of Z2
p and let w be a positive rational number.

Definition 2.9. Let A/C be a false elliptic curve with model A/OC . Let w ∈ Q>0.

(1) Let α be a trivialization of TpG. We say that α is w-ordinary if HTA(α(e1)) ∈ p
wFA.

(2) A is called w-ordinary if there is a w-ordinary trivialization of TpG.

Note that if A is w-ordinary, then it also w′-ordinary for all w′ < w. Note also that A is ordinary
(in the classical sense) if and only if it is ∞-ordinary (i.e. A-ordinary for all w > 0).

Definition 2.10. Let A/C be a w-ordinary false elliptic curve and assume that n ∈ Z≥1 is such

that n < w + 1. Then the kernel of the morphism G[pn](C) → FA/p
min(n,w)FA induced by HTA

is an étale subgroup scheme Hn of GA[p
n] isomorphic to Z/pnZ which we call the pseudocanonical

subgroup of level n.

We will use the notation Hn to denote the pseudocanonical subgroup of level n (when it exists)
whenever the false elliptic curve A is clear from the context. When there are multiple false elliptic
curves in action we will use the notation Hn,A. Since Hn is naturally equipped with an inclusion
into GA[p

n] we may take its schematic closure inside GA[p
n]. This is a finite flat group scheme of

rank pn over OC with generic fibre Hn and we will abuse notation and denote it by Hn as well.

When n = 1 we will refer to H1 simply as the pseudocanonical subgroup and drop ”of level
1”. Note that if α : TpG → Z2

p is a w-ordinary trivialization with n − 1 < w ≤ n then

(α−1 mod pn)|Z/pnZ⊕0 trivializes the pseudocanonical subgroup. We record a simple lemma:

Lemma 2.11. Let A/C be a false elliptic curve and let α be a w-ordinary trivialization of TpG.

Assume that w > n ∈ Z≥1 and let m ≤ n be a positive integer. Then A/H⊕2
m,A is (w−m)-ordinary,

and for any m′ ∈ Z with m < m′ ≤ n, Hm′−m,A/H⊕2
m

= Hm′,A/Hm,A.

Proof. Let g ∈ GL2(Qp) denote the matrix
(

1 0
0 pm

)
. Then (A,α).g = (A/H⊕2

m,A, β) where β is

defined by this equality. Let f denote the natural isogeny G → G/Hm. From the definitions we get
a commutative diagram

Z2
p

g∨

��

α // TpG

f∗

��

HTA // FA

(f∨)∗

��
Z2
p

β // Tp(G/Hm)
HT

A/H⊕2
m// FA/H⊕2

m

and direct computation gives that pmHTA/H⊕2
m

(β(e1)) = (f∨)∗HTA(α(e1)). Since HTA(α(e1)) ∈

pwFA we see that HTA/H⊕2
m

(β(e1)) ∈ pw−mFA/H⊕2
m

which proves the first assertion. For the
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second assertion, observe that by definition Hm′−m,A/H⊕2
m

and Hm′,A/Hm,A are generated by

β(e1)mod pm
′−m and f(α(e1))mod pm respectively, and that these are equal. �

Remark 2.12. The commutativity of the diagram in the proof above is also what essentially proves
the GL2(Qp)-equivariance of the Hodge-Tate period map πHT, and the first assertion may be viewed
more transparently as a direct consequence of this equivariance for the element g. Note also that
the second assertion of the Lemma mirrors properties of the usual canonical subgroups of higher
level.

Next we recall some calculations from Oort-Tate theory, cf. §3.2 of [Pil] where the same facts are
stated or §3.1 of [AIP] where they are used. For the first half of the last statement, see Proposition
3.1.2 of [AIP].

Lemma 2.13. Let H be a finite flat group scheme over OC of degree p. Then H is isomorphic
to Spec(OC [Y ]/(Y p − aY )) for some a ∈ OC and determined up to isomorphism by v(a), and the
following holds:

(1) ωH = (OC/aOC).dY and hence deg(H) = v(a).
(2) The image of the (linearized) Hodge-Tate map HTH∨ : H∨(C) ⊗ OC → ωH is equal to

(cOC/aOC).dY , where v(c) = (1− v(a))/(p− 1).

Moreover, if A/C is a false elliptic curve such that H ⊆ GA[p] and deg(H) > 1/2, then H is the
canonical subgroup of GA and Hdg(A) = 1− deg(H).

We will use these properties freely in this section. Using this we can now show that the
pseudocanonical subgroup coincides with the canonical subgroup for sufficiently large w (as a
qualitative statement this is implicit in [Sch4], cf. Lemma III.3.8).

Lemma 2.14. Let A/C be a w-ordinary false elliptic curve and assume that p/(2p− 2) < w ≤ 1.
Then H1 is the canonical subgroup of GA.

Proof. Consider the commutative diagram

0 // H1(C)

HTH1

��

// GA[p](C)

HTGA[p]

��
0 // ωH∨

1

// ωGA[p]∨

with exact rows. We have ωGA[p]∨ = ωG∨
A
/pωG∨

A
. Note that H1 is an Oort-Tate group scheme and

hence isomorphic to Spec(OC [Y ]/(Y p − aY )) for some a ∈ OC with v(a) = deg(H1) and H∨
1 is

isomorphic to Spec(OC [Y ]/(Y p − bY )) with ab = p. Fix a generator s ∈ H1(C). By choosing
generators the inclusion ωH∨

1
→ ωGA[p]∨ may be written as OC/bOC → OC/pOC where the map

is multiplication by a, and HTH∨
1
(s) has valuation v(a)/(p − 1). Since A is w-ordinary we have

aHTH∨
1
(s) = HTA[p](s) ∈ p

wωA[p]∨ and hence pv(a)/(p − 1) ≥ w, i.e. deg(H1) ≥ (p − 1)w/p. By

our assumption on w we deduce deg(H1) > 1/2 and hence that H1 is the canonical subgroup. �

We will now, somewhat overdue, discuss the interpretation of w-ordinarity in terms of the Hodge-
Tate period map. Define a coordinate z on P1 by letting z correspond to the line spanned by ( xy )
with z = −y/x and for w ∈ Q>0 define Uw ⊆ P1 to be the locus |z| ≤ |pw|. If w ≤ n, then this
locus is K0(p

n)-stable. It is a rational subset of V1. Now define

U∞,w = π−1
HT(Uw).
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This is a K0(p
n)-stable open subspace of X∞. In fact, U∞,w is affinoid perfectoid since Uw is

a rational subset of V1 ⊆ P1 and therefore U∞,w is a rational subset of V1 since πHT is adic.
The conclusion follows from [Sch1, Theorem 6.3(ii)]. Note that, directly from the definition, the
(C,OC)-points of U∞,w are exactly the pairs (A,α) for which α is w-ordinary.

In this article we will want to vary w in order to capture all weights when defining overconvergent
modular forms. A minor disadvantage of the loci U∞,w is that they are stable under different
compact open subgroups as w varies. We will instead define related loci that have the advantage
that they all stable under the action of K0(p) (independent of w).

Definition 2.15. Let w ∈ Q>0 and let A be a w-ordinary false elliptic curve over C. Let α be a
trivialisation of TpG. We say that α is strict if (α mod p)|Z/pZ⊕0 trivializes the pseudocanonical
subgroup.

Note that if α is w-ordinary then it is strict. Given (A,α) with A w-ordinary and α strict, the
orbit of (A,α) in X∞ under K0(p) consists exactly of the pairs (A, β) for which β is strict. We
define P1

w ⊆ V1 to be the rational subsets whose (C,OC)-points correspond to

{z ∈ OC | ∃s ∈ pZp : |z − s| ≤ |pw|}.

One checks directly that if γ ∈ K0(p) and |z|, |s| < 1, then |γ∨z − γ∨s| = |z − s|. Thus P1
w is

stable under K0(p) and moreover P1
w = Uw.K0(p). We then define

X∞,w = π−1
HT(P

1
w).

By the discussion above these are K0(p)-stable and a (C,OC)-point (A,α) of X∞ is in X∞,w if and
only if A is w-ordinary and α is strict.

Theorem 2.16. Let w ∈ Q>0.

(1) There is a unique affinoid open rigid subspace Xw ⊆ X whose (C,OC)-points are exactly
the pairs (A,H) with A a w-ordinary false elliptic curves (with Kp-level structure) and H
its pseudocanonical subgroup.

(2) Let q : X∞ → X denote the projection map. Then X∞,w = q−1(Xw).
(3) The sets (Xw)w form a cofinal set of open neighbourhoods of the closure of the ordinary-

multiplicative locus in X .

Proof. Write, for any level Kp ⊆ GL2(Zp), qKp for the projection map X∞ → X . We prove (1) and
(2) together. Indeed, we define Xw := q(X∞,w). Since q is pro-étale, Xw is open and quasicompact
([Sch3], Lemma 3.10(iv)) and the characterization of the (C,OC)-points of Xw follows directly from
the characterization of the (C,OC)-points of X∞,w. Note that uniqueness is clear since quasicompact
open subsets of quasiseparated rigid analytic varieties (viewed as adic spaces) are determined by
their classical points (cf. [Sch1, Theorem 2.21]).This also finishes the proof (1), except that we
need to show that Xw is affinoid.

By the definition of the inverse limit topology we may find m and a quasicompact open subset
W ⊆ XK(pm) such that q−1

K(pm)(W ) = X∞,w. We claim that W = qK(pm)(X∞,w). Indeed, both

sets are determined by their (C,OC)-points and qK(pm) is surjective on (C,OC)-points. Thus it

remains to see that if r is the natural map XK(pm) → X , then r
−1(Xw) = W , which we can check

on (C,OC)-points. This follows from the surjectivity of qKp on (C,OC)-points for arbitrary Kp and
the fact that any trivialization that maps down to the pseudocanonical subgroup is automatically
strict (in the sense that one/any lift to a trivialization of the whole Tate module is strict). This
proves (2). Finally we finish the proof of (1) by showing that Xw is affinoid. To see this we use
X∞,w = q−1(Xw). Since X∞,w is a rational subset of V1 we may find some large N and an affinoid
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S ⊆ XK(pN ) such that X∞,w = q−1
K(pN )

(S) (this follows from Theorem 2.8 and the fact that rational

subsets come from finite level). Then Xw is the quotient of S by the finite group K0(p
n)/K(pN )

and hence affinoid by Corollary 6.27.

We now prove (3). As a qualitative result it follows by general topology arguments using the
constructible topology, cf. [Sch4] Lemma III.3.8. Here we deduce a quantitative version using the
Lubin-Katz theory of the canonical subgroup. For a statement of the results we need phrased in
terms of the degree function see Proposition 1.2.8 of [Kas] (for further reference see Remark 1.2.7
of loc.cit and §3 of [Buz2]; note that these references treat modular curves but the result carry over
verbatim). Without loss of generality we restrict our attention to w = 1, 2, 3, .... On X1, H1 is the
canonical subgroup and deg(H1) ≥ (p− 1)/p. Let h =

(
p 0
0 1

)
∈ GL2(Qp). Then h(X∞,w) = X∞,w+1

for all w. Moreover, if (A,α) ∈ XK(p∞),1(C,OC) and (A,α).h = (A/H⊕2, β), thenH is anticanonical
and hence of degree (1−deg(H1))/p. Hence deg(G[p]/H) = 1− (1−deg(H1))/p > 1/2 and G[p]/H
is the canonical subgroup. Write δn for the degree of the canonical subgroup of (hn).A. Then we
get the recurrence relation δn+1 = (p− 1)/p+ δn/p and from δ1 ≥ (p− 1)/p we deduce that

δn ≥ δ
′
n :=

p− 1

p

n−1∑

i=0

1

pi
.

Put ǫn = 1 − δ′n. We have proved that if A ∈ Yn(C,OC) then Hdg(A) ≤ ǫn. Since ǫn → 0, the
result follows. �

2.4. The fundamental period and a non-vanishing section. Recall the coordinate z on P1

defined earlier. The action of g =
(
a b
c d

)
∈ GL2(Qp) is

z.g = g∨z =
az + c

bz + d
.

Below, whenever we have a matrix g ∈ GL2 we will use a, b, c, d as above to denote its entries.
Note that z defines a function in H0(V1,O

+
P1) and by composing with πHT we obtain a function

z ∈ H0(V1,O
+
X∞

) which we will call the fundamental period. We will use the same notation to

denote its restriction to X∞,w for any w > 0; by definition z ∈ H0(X∞,w, pZp + pwO+
X∞

). Note that

if γ =
(
a b
c d

)
∈ K0(p) then

γ∗z =
az+ c

bz+ d

as functions on X∞,w. Next we wish to trivialize O(1) over S = {z 6= ∞} ⊆ P1 by defining a
non-vanishing section. Everything we write in this section is standard but we repeat it since we
will need some explicit formulas. The section we are after is algebraic so we will momentarily
work in the realm of algebraic geometry. Explicitly it is given by the following formula: The line
bundle O(1) has a geometric incarnation with total space (GL2×A1)/B where B denotes the lower
triangular Borel in GL2 and acts on A1 by g.x = d−1x (this equivariant structure may differ from
the canonical one, but it is the one corresponding to the Hodge-Tate sequence on X∞). Global
sections correspond to functions f : GL2 → A1 satisfying f(gh) = d(h)−1f(g) for g ∈ GL2, h ∈ B.
There is a morphism of equivariant vector bundles

(GL2/B)× A2 → (GL2 × A1)/B,

given by (
g,

(
x
y

))
7→ (g, dx− by) .
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Here the left hand side has the GL2-action g.(h, v) = (gh, (g∨)−1v). Then the global section of
(GL2/B)× A2 given by the constant function g 7→ e2 maps to global section of O(1) given by the
function

s : GL2 → A1;

s(g) = −b(g).

Note that s = 0 if and only g ∈ B so s is invertible on S. Let us now return to the rigid analytic
world and let W ⊆ S be an open subset such h∨(W ) ⊆ W for some h ∈ GL2(C). Then by direct
calculation

(sh∨)(g) = d(g)b(h)− b(g)d(h).

Thus
s ◦ h∨

s
(g) =

d(h)b(g)− b(h)d(g)

b(g)
.

This is a function on W . Taking g = gz =
(

0 −1
1 z

)
we see that

s ◦ h∨

s
(z) = b(h)z + d(h).

We may then pull s back via πHT to get (compatible) non-vanishing sections s ∈ H0(X∞,w, ω) for
all w satisfying

γ∗s

s
= bz+ d

for all γ ∈ K0(p). We remark that s is one of the ”fake” Hasse invariants constructed in [Sch4].

2.5. A perfectoid definition of overconvergent modular forms. We will give definitions
of sheaves of overconvergent modular forms with prescribed small or affinoid weight. Recall the
forgetful morphism q : X∞,w → Xw ⊆ X .

Definition 2.17. Let U be a weight and let w ∈ Q>0 be such that w ≥ 1 + sU . We define a sheaf

ω†
U ,w on Xw by

ω†
U ,w(U) =

{
f ∈ OX∞,w(q

−1(U))⊗̂AU | γ
∗f = χU (bz+ d)−1f ∀γ ∈ K0(p)

}

where U ⊆ Xw is a qcqs open subset.

We remark that, since bz + d ∈ Z×
p (1 + pwO+

X∞,w
), the assumption w ≥ 1 + sU ensures that

χU (bz+ d) is well defined (by Proposition 2.6). Define

∆0(p) = {( a b
c d ) ∈ M2(Zp) ∩GL2(Qp) | c ∈ pZp, d ∈ Z×

p }.

This is a submonoid of GL2(Qp) containing K0(p), and it stabilizes X∞,w for all w. We can form a

sheaf F on X∞,w by F(U∞) = OX∞,w(U∞)⊗̂AU for U∞ ⊆ X∞,w qcqs (not necessarily of the form

q−1(U)), and we may equip it with a ∆0(p)-equivariant structure by the rule

γ ·U − : F(U∞)→ F(γ−1U∞);

γ ·U f = χU (bz+ d)γ∗f

for γ ∈ ∆0(p). Then ω
†
U ,w = (q∗F)

K0(p) and we obtain an action of the double cosets K0(p)γK0(p)

for γ ∈ ∆0(p) on ω
†
U ,w, given by the following standard formula:

[K0(p)γK0(p)] : ω
†
U ,w(V )→ ω†

U ,w(U);

[K0(p)γK0(p)].f =
∑

i

χU (biz+ di)γ
∗
i f
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where U ⊆ Xw is qcqs, V ⊆ Xw is the image of U under [K0(p)γK0(p)] viewed as a correspondence
on Xw, and K0(p)γK0(p) =

∐
i γiK0(p) is a coset decomposition. This gives us the Hecke action at

p for ω†
U ,w. As in the complex case, we may also view this action as an action by correspondences.

We give a few remarks on this for Hecke operators at primes ℓ 6= p below; the action at p is similar.
The statements analogous to Proposition 2.18 that are needed follow from Proposition 4.7.

For the Hecke actions at ℓ 6= p, let us momentarily introduce the tame level into our notation,

writing ω†
U ,w,Kp for the sheaf on Xw,Kp ⊂ XK0(p)Kp . The construction of Hecke operators is then

immediate from the following proposition.

Proposition 2.18. (1) For any g ∈ G(Ap
f ) with g : Xw,Kp

∼
→ Xw,g−1Kpg the associated isomor-

phism of Shimura curves, there is a canonical isomorphism g∗ω†
U ,w,g−1Kpg

∼= ω†
U ,w,Kp.

(2) For any inclusion Kp
2 ⊂ Kp

1 of tame levels with π : Xw,Kp
2
→ Xw,Kp

1
the associated finite

étale projection of Shimura curves, there is a canonical isomorphism

π∗ω
†
U ,w,Kp

2

∼= ω†
U ,w,Kp

1
⊗OX

w,K
p
1

π∗OX
w,K

p
2

In particular there is a canonical OX
w,K

p
1

-linear trace map

π∗ω
†
U ,w,Kp

2
→ ω†

U ,w,Kp
1

Proof. (1) follows immediately from the definition of the sheaves together with the fact that g∗z = z;
the latter follows from [Sch4, Theorem IV.1.1(iv)].

For (2) we consider the pullback diagram

X∞,w,Kp
2

q2 //

π∞

��

Xw,Kp
2

π

��
X∞,w,Kp

1

q1 // Xw,Kp
1

of adic spaces. Given a rational subset U ⊂ Xw,Kp
1
, we then have

O(q−1
2 π1U) = O(π−1

∞ q−1
1 U)

∼= O(q−1
1 U)⊗̂O(U)O(π

−1U)

∼= O(q−1
1 U)⊗O(U) O(π

−1U)

where in the final line we use the fact that O(π−1U) is a finite projective O(U)-Banach module.
Applying −⊗̂AU and making use of Lemma 6.7, we get a canonical isomorphism

O(q−1
2 π−1

1 U)⊗̂AU
∼=
(
O(q−1

1 U)⊗̂AU

)
⊗O(U) O(π

−1U).

Since π∗∞z = z, this isomorphism is equivariant for the χU -twisted action ofK0(p). Passing toK0(p)-

invariants for the twisted action, the left-hand side then becomes ω†
U ,w,Kp

2
(π−1U) = (π∗ω

†
U ,w,Kp

2
)(U),

while the right-hand side becomes ω†
U ,w,Kp

1
(U)⊗O(U) (π∗OX

w,K
p
2

)(U), so (2) follows. �

We now define our spaces of overconvergent modular forms.

Definition 2.19. Let U be a weight and let w ∈ Q>0 be such that w ≥ 1 + sU .

(1) We define the space of w-overconvergent modular formsM†,w
U of weight U by

M†,w
U = H0(Xw, ω

†
U ,w ⊗OXw

Ω1
Xw

).
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(2) We define the space of overconvergent modular formsM†
U ,w of weight U by

M†
U = lim
−→
w

M†,w
U .

The spacesM†,w
U are Qp-Banach spaces, andM†

U is an LB-space. Using the functoriality of Ω1
X

one may define Hecke operators onM†
U ,w in the same way that we did for ω†

U ,w.

Remark 2.20. The reason we have formulated the definition in this way is because it fits naturally
with our discussion of the overconvergent Eichler-Shimura map in §4-5. It would be more fitting
with our desire to be “explicit” to consider the space

H0(Xw, ω
†
U+2,w)

where U + 2 is the weight (RU , z 7→ χU (z)z
2). Note that this shift by 2 is forced upon us by our

convention to associate k ∈ Z with the character z 7→ zk−2. Since ω is trivialized over X∞,w by

s one sees that ω†
U+2,w

∼= ω†
U ,w ⊗OXw

ω2. By the Kodaira-Spencer isomorphism Ω1
X
∼= ω2 we then

have that ω†
U+2,w

∼= ω†
U ,w ⊗OXw

Ω1
Xw

. Thus the two definitions give the same spaces. However, it
is well known that the Kodaira-Spencer isomorphism fails to be equivariant for the natural Hecke
actions on both sides. Indeed it is customary in the theory of modular forms to renormalize the
natural Hecke action on ω⊗k by multiplying Tℓ by ℓ−1 (more precisely one multiplies the action of
any double coset by det−1). The Kodaira-Spencer isomorphism is then Hecke-equivariant. Thus, by

definingM†
U ,w the way we have we can use the natural Hecke actions; there is no need to normalize.

For a discussion of how the normalized Hecke action on ω⊗k corresponds to the natural Hecke
action on ω⊗k−2 ⊗OX

Ω1
X , see [FC, p. 257-258].

2.6. Locally projective of rank one. In this subsection we prove that ω†
U ,w is locally projective

of rank one as a sheaf of OXw⊗̂AU -modules.

First we prove a general lemma. Let A∞ be a uniformQp-Banach algebra equipped with an action
of a profinite group G by continuous homomorphisms. Let A = AG

∞. We record the following easy
facts:

Proposition 2.21. A is a closed subalgebra of A∞, hence carries an induced structure of a uniform
Qp-Banach algebra, and A◦ = (A◦

∞)G.

We then have:

Lemma 2.22. Keep the above notations and assumptions.

(1) Let M be any profinite flat Zp-module (in particular M could be a small Zp-algebra). We

equip M with the trivial G-action. Then (A∞⊗̂M)G = A⊗̂M .
(2) Let V be a Banach space over Qp (in particular V could be a reduced affinoid Qp-algebra

topologically of finite type). Equip V with the trivial G-action. Then (A∞⊗̂QpV )G =

A⊗̂QpV .

Proof. To prove (1), we choose a pseudobasis (ei)i∈I ofM and follow the computation in Proposition
6.4 to see that the natural map A◦⊗̂M → A◦

∞⊗̂M is the inclusion
∏

i∈I

A◦ei ⊆
∏

i∈I

A◦
∞ei

with the action of G on the right hand side being coordinate-wise. Thus the natural map A⊗̂M →
A∞⊗̂M is the inclusion of bounded sequences in A indexed by I into bounded sequences in A∞
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indexed by I, with the G-action on the latter being coordinate-wise. The desired statement now
follows from the definition of A as AG

∞.
The proof of (2) is similar, using an orthonormal basis instead of a pseudobasis. �

We will also need the following:

Lemma 2.23. Let Kp ⊆ GL2(Zp) be an open compact subgroup and let U ⊆ XKp be an open subset.

Put U∞ = q−1
Kp

(U) ⊆ X∞. Then O+
XKp

(U) = O+
X∞

(U∞)Kp, and hence OXKp
(U) = OX∞(U∞)Kp.

Proof. U∞ → U is a perfectoid object of Uproét which is Galois with group Kp, and the Cartan-

Leray spectral sequence then implies that (O+
XKp

/pm)(U) = (O+
X∞

/pm)(U∞)Kp for all m. Taking

the inverse limit we get the desired result (note that Ô+
XKp

(U) = O+
XKp

(U) by [Sch3, Corollary

6.19]). �

Now let U ⊆ Xw be any rational subset, Un its preimage in XK(pn) and put U∞ = q−1(U) ⊆ X∞,w.
Note that Un → U is finite étale and so OXK(pn)

(Un) is a finite projective OX (U)-module since

OX (U) is Noetherian. Suppose that ω|U is free, and choose a nowhere vanishing section (i.e.
generator) ηU ∈ H

0(U, ω). Define tU ∈ OX∞(U∞) by the equality

s = tU · q
∗ηU .

Proposition 2.24. We have γ∗tU = (bz+ d)tU for any γ ∈ K0(p), and tU is a unit. Furthermore,
for any m ∈ Z≥1 we may choose some large n = n(m) and elements

t
(n)
U ∈ 1 + pmO+

X∞
(U∞),

sU,n ∈ OXK(pn)
(Un)

×,

such that tU = t
(n)
U sU,n.

Proof. Since neither s nor q∗ηU vanish, tU is a unit, and

(bz+ d)tUq
∗ηU = (bz+ d)s = γ∗s = (γ∗tU )q

∗ηU

since γ∗q∗ηU = q∗ηU , hence γ
∗tU = (bz + d)tU . For the second sentence, first choose M,N ∈ Z≥0

such that |pM | ≤ |pN tU | ≤ 1 (possible by quasicompactness of U∞ and invertibility of tU ). Since
O+

X∞
(U∞) = (lim

−→
O+

XK(pn)
(Un))

∧ (p-adic completion) we may find an n = n(m) and s ∈ O+
XK(pn)

(Un)

such that pN tU − s ∈ p
M+mO+

X∞
(U∞). Then we set sU,n = p−Ns and t

(n)
U = tU/sU,n and these do

the job. �

This has several consequences - in particular, since sU,n is fixed by K(pn) and t
(n)
U is p-adically

close to 1, the element χU (t
(n)
U ) ∈ (OX∞(U∞)⊗̂AU )

× is well-defined (for m large enough) and

satisfies γ∗(χU (t
(n)
U )) = χU (bz+ d)χU (t

(n)
U ) for all γ ∈ K(pn). Recall that

ω†
U ,w(U) :=

{
f ∈ OX∞(U∞)⊗̂AU | γ

∗f = χU (bz+ d)−1f ∀γ ∈ K0(p)
}
.

Thus, given any f ∈ ω†
U ,w(U), the element f ·χU (t

(n)
U ) ∈ OX∞(U∞)⊗̂AU lies in (OX∞(U∞)⊗̂AU )

K(pn),

which is equal to OXK(pn)
(Un)⊗̂AU by Lemma 2.22 and Lemma 2.23.
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Furthermore, for any γ ∈ Gn := K0(p)/K(pn), we have

γ∗(f · χU (t
(n)
U )) = χU (bz+ d)−1 · f · χU (γ

∗t
(n)
U )

= f · χU (t
(n)
U ) · χU

(
γ∗t

(n)
U

(bz+ d)t
(n)
U

)

= f · χU (t
(n)
U ) · χU

(
sU,n
γ∗sU,n

)

= f · χU (t
(n)
U ) · χU (jU,n(γ))

−1

where jU,n is the cocycle

jU,n(γ) : Gn → Z×
p ·
(
1 + pmin(w,m)OXK(pn)

(Un)
◦
)

γ 7→
γ∗sU,n
sU,n

.

In summary, we find that the map f 7→ f · χU (t
(n)
U ) defines an OX (U)-module isomorphism of

ω†
U ,w(U) onto the subspace of functions f0 ∈ OXK(pn)

(Un)⊗̂AU fixed by the twisted action

γ : OXK(pn)
(Un)⊗̂AU → OXK(pn)

(Un)⊗̂AU

f0 7→ χU (jU,n(γ)) · γ
∗f0

of Gn. Since Gn is a finite group, the usual idempotent

en =
1

|Gn|

∑

γ∈Gn

χU (jU,n(γ))
−1γ

in the group algebra (OXK(pn)
(Un)⊗̂AU )[Gn] defines anOX (U)⊗̂AU -module splitting of the inclusion

ω†
U ,w(U) ⊆ OXK(pn)

(Un)⊗̂AU . This realizes ω†
U ,w(U) as a direct summand of a finite projective

OX (U)⊗̂AU -module, and therefore ω†
U ,w(U) is finite projective over OX (U)⊗̂AU as desired. We

may now prove the main result of this section:

Theorem 2.25. We have ω†
U ,w = Loc(ω†

U ,w(Xw)) and ω
†
U ,w(Xw) is a finite projective OX (Xw)⊗̂AU -

module of rank 1. Moreover, ω†
U ,w is étale locally free.

Proof. To prove that ω†
U ,w = Loc(ω†

U ,w(Xw)) and that it is locally projective of finite rank it suffices,

by Theorem 6.20, to prove that ω†
U ,w is a coherent OX ⊗̂AU -module (it is then locally projective

by the above). To do this, we work locally using the U above. We wish to show that for V ⊆ U
(without loss of generality assume V rational) the natural map

(OX (V )⊗̂AU )⊗(OX (U)⊗̂AU ) ω
†
U ,w(U)→ ω†

U ,w(V )

is an isomorphism. To see this, note that by applying Lemma 6.7 twice the natural map

(OX (V )⊗̂AU )⊗(OX (U)⊗̂AU ) (OXK(pn)
(Un)⊗̂AU )→ OXK(pn)

(Vn)⊗̂AU

is an isomorphism (note that OX (V ) ⊗OX (U) OXK(pn)
(Un) ∼= OXK(pn)

(Vn)). This isomorphism
matches up the idempotents on both sides, giving us the desired isomorphism. To prove that the
rank is one note that OX (U)→ OXK(pn)

(Un) is Galois with group Gn and by applying Lemma 6.7

twice we may deduce that OX (U)⊗̂AU → OXK(pn)
(Un)⊗̂AU is also Galois with group Gn. Moreover,

the twisted action whose invariants give ω†
U ,w(U) is a Galois descent datum, so we see that ω†

U ,w(U)
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is the descent of a rank 1 free module, hence rank 1 projective as desired. Finally, note that this
also proves that ωU ,w becomes trivial over Un, which gives the final statement of the theorem. �

The techniques of this proof also yield the following result.

Lemma 2.26. Let U = (AU , χU ) be a weight, and let i : AU → AZ be a surjection such that
Z = (AZ , χZ = i ◦ χU ) is also a weight and such that ker(i) is generated by a regular element
x ∈ AU . Then we have a natural exact sequence of sheaves

0→ ω†
U ,w

·x
→ ω†

U ,w → ω†
Z,w → 0

on Xw, and an exact sequence of global sections

0→ H0(Xw, ω
†
U ,w)

·x
→ H0(Xw, ω

†
U ,w)→ H0(Xw, ω

†
Z,w)→ 0.

Proof. There is certainly a (not necessarily exact) sequence of sheaves

0→ ω†
U ,w

·x
→ ω†

U ,w → ω†
Z,w → 0,

and we check exactness of this sequence on a basis of suitably small open subsets U ⊂ Xw as in the
proof of Theorem 2.25. By assumption we have a short exact sequence

0→ AU
·x
→ AU → AZ → 0

of AU -modules. Tensoring this sequence over AU with AU ⊗̂OXK(pn)
(Un), we obtain by the flatness

of AU ⊗̂OXK(pn)
(Un) over AU (proved in the same way as Lemma 6.13(2)) a short exact sequence

0→ AU ⊗̂OXK(pn)
(Un)

·x
→ AU ⊗̂OXK(pn)

(Un)→ AZ⊗̂OXK(pn)
(Un)→ 0.

Applying the idempotent en as above gives a short exact sequence

0→ ω†
U ,w(U)

·x
→ ω†

U ,w(U)→ ω†
Z,w(U)→ 0

as desired.
Taking cohomology, we note that H1(Xw, ω

†
U ,w) = 0 by Theorem 2.25 and Proposition 6.16, and

the lemma follows. �

2.7. Comparison with other definitions of overconvergent modular forms. In this section
we take V = (SV , χV) to be an open affinoid weight, and we will compare our definition of
overconvergent modular forms of weight V with those in the literature (all known to be equivalent).
More specifically we will compare it to that of [Pil], trivially modified to our compact Shimura
curves.

We now recall the definition of the ”Pilloni torsor”. This is the object denoted by F×
n in [Pil] but

we will use the notation T (n, v). For any n ≥ 1 and any v < p−1
pn , T (n, v) is a rigid space equipped

with a smooth surjective morphism pr : T (n, v) → X (v), where X (v) ⊆ X is the locus where the
Hodge height is ≤ v. For any point x ∈ X (v)(C,OC), the (C,OC)-points in the fiber pr−1(x)
consists of the differentials η ∈ ωGA

that reduce to an element in the image of the Hodge-Tate map
(H∨

n )
gen → ωHn , where Hn is the canonical subgroup of G of level n and (H∨

n )
gen ⊆ H∨

n denotes

the subset of generators. The set pr−1(x) is a torsor for the group Z×
p (1 + p

n− pn−1
p−1

Hdg(x)
OC), and

we think of T (n, v) as an open subspace of T , where T is the total space of e(0∗Ω1
Auniv/X (v)

) (here

0 : X (v)→ Auniv is the zero section; this is a line bundle on X (v)). We remark that the canonical
action of Z×

p on T preserves T (n, v) (as should be clear from the description of the fibres above).
This induces an action on functions.

If we fix w = n − pn−1
p−1 v, then X (v) ⊆ Xw; this follows for example from [AIP, Proposition

3.2.1]. We will compare our construction of w-overconvergent modular forms over X (v) to the
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notion defined in [Pil]. For the purpose of the comparison, a Pilloni form of weight V over a quasi-
compact open U ⊆ X (v) is defined to be an element f ∈ OT (n,v)(pr

−1(U))⊗̂QpSV (i.e a function on

pr−1(U)×V ⊆ T (n, v)×W. Here we abuse notation and write V also for the image of the natural
map into W induced by V) such that z.f = χ−1

V (z)f for all z ∈ Z×
p .

Now fix U ⊆ X (v) as used in the previous section, such that we have a nowhere vanishing
ηU ∈ ω(U). We freely use the notation of the previous section with one exception: we use r instead

of the already used letter n. Thus we have functions t
(r)
U ∈ 1+pmO+

X∞
(U∞) and sU,r ∈ OXK(pr)

(Ur)
×

such that
s = t

(r)
U sU,rηU .

Let TU,r(n, v) = T (n, v) ×U Ur. It is an open subset of TU,r := T ×U Ur. It inherits commuting
actions of Gr := K0(p)/K(pr) and Z×

p .

Lemma 2.27. Assume that m ≥ n and r ≥ n. Then sU,rηU trivializes TU,r(n, v).

Proof. We think of sU,rηU as a section Ur → TU,r and we wish to show that the image lands inside
TU,r(n, v), for which it is enough to argue on geometric points. Take a (C,OC)-point x̄ and lift it
to a (C,OC)-point x of X∞. Then we see that

(sU,rηU )(x̄) = ((t
(r)
U )−1s)(x).

If x̄ = (A, ᾱ) ∈ Ygd
K(pr) we put x = (A,α). Then s(A,α) = HTA(α(e2)) by definition and this maps

to a generator of H∨
n via the canonical map G[pn] ∼= G[pn]∨ → H∨

n , so s(A,α) lies in the fibre of
TU,r(n, v) over (A, ᾱ). This proves that s(x) lies in the fibre of TU,r(n, v) over x̄ for all x. The result

follows since t
(r)
U is small. �

The assumption m ≥ n and r ≥ n will be in force throughout the rest of this section so that the
Lemma applies. Recall what we proved in the process of proving Theorem 2.25: w-overconvergent

modular forms f of weight V over U identifies, via the map f 7→ f0 := χV(t
(r)
U )f , with functions

f0 ∈ OX (pr)(Ur)⊗̂QpSV such that

γ∗f0 = χV(jU,r(γ))
−1f0

for all γ ∈ Gr.

Proposition 2.28. (1) The space of Pilloni forms of weight V over U is isomorphic, via
pullback, to the space of functions g on TU,r(n, v) × V such that z.g = χV(z)

−1g for all
z ∈ Z×

p and γ∗g = g for all γ ∈ Gr.
(2) The space of w-overconvergent modular forms of weight V over U is isomorphic to the

space of functions g0 on TU,r(n, v) × V such that z.g0 = g0 for all z ∈ Z×
p and γ∗g0 =

χV(jU,r(γ))
−1g0 for all γ ∈ Gr. The isomorphism is the map f 7→ f0 above composed with

pullback from Ur × V to TU,r(n, v)× V.

Proof. (1) follows from the fact that pr−1(U)×V is the quotient of TU,r(n, v)×V by Gr. The proof
of (2) is a similar descent. �

To identify the two spaces, it remains to go from one kind of function on TU,r(n,w) × V to the
other. The key lies in trivializing the cocycle χV(jU,r(γ)). Note that sU,rηU , as a nowhere vanishing
section of TU,r also canonically defines a function on TU,r minus the zero section which we will

denote by (sU,rηU )
∨. The same applies to ηU itself and we have (sU,rηU )

∨ = s−1
U,rη

∨
U . By restriction

we obtain functions on TU,r(n, v).

Lemma 2.29. (sU,rηU )
∨ ∈ Z×

p .(1 + pwO+
TU,r

(TU,r(n, v))).
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Proof. This follows directly from Lemma 2.27. �

This implies that we may apply χV to (sU,rηU )
∨, and we may therefore define a OX (v)(U)⊗̂QpSV -

module isomorphism

Φ : OTU,r
(TU,r(n, v))⊗̂QpSV → OTU,r

(TU,r(n, v))⊗̂QpSV

which is simply multiplication by χV((sU,rηU )
∨):

Φ(h) = χV((sU,rηU )
∨)h.

Theorem 2.30. The image of the space of functions in part (1) of Proposition 2.28 under Φ is
the space of functions in part (2) of Proposition 2.28. Moreover, the induced isomorphism between
the space of w-overconvergent modular forms of weight V over U and the space of Pilloni forms
of weight V over U is independent of all choices and hence the isomorphisms for varying U glue
together to an isomorphism of sheaves over Xw.

Proof. For the first part, the key thing to notice is that

jU,r(γ) =
(sU,rηU )

∨

γ∗(sU,rηU )∨

and hence that

χV(jU,r(γ))
−1 =

χV(γ
∗(sU,rηU )

∨)

χV((sU,rηU )∨)
.

The rest is then a straightforward computation. For the second part we remark that the composite
isomorphism from w-overconvergent modular forms to Pilloni forms is given by

f 7→ χV(t
(r)
U )χV((sU,rηU )

∨)−1f

and then descending the right hand side to pr−1(U) × V. Morally, the right hand side is equal to

χV(s
∨)−1f (recall that t

(r)
U sU,rηU = s) and hence independent of the choices made. To turn this

into a rigorous argument is straightforward but tedious and notationally cumbersome. We leave
the details to the interested reader. �

3. Overconvergent modular symbols

We will recall some material on overconvergent modular symbols in the form we need. Most
of these constructions are probably well known with the exception of certain filtrations defined in
[Han2].

3.1. Basic definitions and the filtrations. Let As be the affinoid ring over Qp defined by

As = {f : Zp → Qp | f analytic on each p
sZp − coset}.

We let As,◦ denote the subring of powerbounded elements of As. Given a weight U , consider the
module

A
s,◦
U = As,◦⊗̂ZpA

◦
U

where the completion is the p-adic completion. Recall the Amice basis (esj)j≥0 of As,◦ from Theorem

2.5. Using it we may write A
s,◦
U as

A
s,◦
U =

⊕̂
j≥0

A◦
Ue

s
j
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and hence view elements of As,◦
U as functions Zp → A◦

U . For any s ≥ sU and any d ∈ Z×
p , c ∈ pZp,

x 7→ χU (cx + d) defines an element of As,◦
U (by calculations very similar to those in the proof of

Proposition 2.6), and we then consider As,◦
U endowed with the right ∆0(p)-action

(f ·U γ)(x) = χU (cx+ d)f

(
ax+ b

cx+ d

)
;

one checks without too much trouble that f ·U γ ∈ A
s,◦
U . We set D

s,◦
U = HomA◦

U
(As,◦

U , A◦
U ) and

Ds
U = D

s,◦
U [1p ], with the dual left action. It is the continuous AU [

1
p ]-dual of the AU [

1
p ]-Banach

module As
U := A

s,◦
U [1p ]. Note that

D
s,◦
U = HomZp(A

s,◦, A◦
U ).

The Amice basis gives an orthonormal AU [
1
p ]-basis of A

s
U and induces an isomorphism

Ds
U −̃→

∏

j≥0

A◦
U

given by
µ 7→ (µ(esj))j≥0.

Proposition 3.1. Let U = (RU , χU ) be a small weight and let s ≥ 1 + sU .

(1) D
s,◦
U admits a decreasing ∆0(p)-stable filtration by sub-RU -modules

D
s,◦
U = Fil0Ds,◦

U ⊃ Fil1Ds,◦
U ⊃ · · · ⊃ FiliDs,◦

U ⊃ · · ·

such that each quotient D
s,◦
U /FilkDs,◦

U is a finite abelian group of exponent pk, the group

K(ps+k) acts trivially on D
s,◦
U /FilkDs,◦

U , and D
s,◦
U
∼= lim
←−k

D
s,◦
U /FilkDs,◦

U .

(2) D
s,◦
U , with the topology induced by the submodules (FilkDs,◦

U )k≥0, is a profinite flat Zp-
module.

Proof. We will only recall how the filtrations are constructed and refer to [Han2, §2.2] for the

details (note that (2) is a consequence of (1)). The module FilkDs,◦
U is defined to be the kernel of

the natural map
D

s,◦
U → D

s−1,◦
U /akUD

s−1,◦
U ,

where we recall that aU is our fixed choice of ideal of definition for the profinite topology on RU . �

Let k ≥ 2 be an integer and let A be a ring. We let Lk(A) denote the module of polynomials
A[X]deg≤k−2 with left M2(A)-action

(δ ·k p)(X) = (d+ bX)k−2p

(
c+ aX

d+ bX

)
,

and set in particular Lk = Lk(Qp) and L ◦
k = Lk(Zp). By direct calculation, the map

ρk : Ds,◦
k → L

◦
k

µ 7→

∫
(1 +Xx)k−2µ(x) =

=

k−2∑

j=0

(
k − 2
j

)
µ(xj)Xj

is ∆0(p)-equivariant.

Definition 3.2. The integration map in weight k, denoted ik, is the ∆0(p)-equivariant map ik :
D

s,◦
U → L ◦

k defined by ik = ρk ◦ σk.
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3.2. Slope decompositions. We will recall material from [AS] and [Han1] in order to define slope
decompositions on the spaces of overconvergent modular symbols that we are interested in. We
will mildly abuse notation by writing X(C) for the complex Shimura curve of level K := KpK0(p)
(viewed as a Riemann surface). Any K0(p)-module M defines a local system on X(C) which we
will also denote by M . If M in addition is a ∆0(p)-module then we get induced Hecke actions as
well. The spaces of overconvergent modular symbols that we are interested in are

H1(X(C),Ds
U )

for open weights U . We will give these spaces slope decompositions using the methods of [Han1].
Almost everything goes through verbatim and we will content ourselves with a brief discussion.
Throughout this section, h will denote a non-negative rational number. For definitions and gener-
alities on slope decompositions we refer to [AS, §4] and [Han1, §2.3].

Let us start by recalling the general setup from [Han1, §2.1]. We have the functorial adelic
(co)chain complexes Cad

• (K,−) and C•
ad(K,−) whose (co)homology functorially computes homology

and cohomology of local systems attached to ∆0(p)-modules, respectively. Fix once and for all a
choice of triangulation of X(C). This choice gives us functorial complexes C•(K,−) and C

•(K,−),
called Borel-Serre complexes, which are chain homotopic to Cad

• (K,−) and C•
ad(K,−) respectively.

We fix such a chain homotopy once and for all. The key features of the Borel-Serre complexes are
that there are non-negative integers r(i) such that r(i) = 0 for i < 0 and for i sufficiently large,
and such that for any R[∆0(p)]-module M (where R is any commutative ring),

Ci(K,M) ∼=M r(i)

functorially as R-modules (and similarly for C•(K,−), with the same integers r(i)). Therefore the
total complex

⊕
iCi(K,M) inherits properties of M , such as being Banach if R is a Qp-Banach

algebra (and also orthonormalizability). In this case, we have a canonical and functorial topological
duality isomorphism

C•(K,HomR,cts(M,P )) ∼= HomR,cts(C•(K,M), P )

where M and P are Banach R-modules.

We now follow [Han1, §3.1] using the orthonormalizable AU [
1
p ]-module As

U , where U = (AU , χU )

is an open weight. Our Up-operator is given by the double coset K0(p)
(
p 0
0 1

)
K0(p) and the

formalism gives us lifts to our Borel-Serre complexes that we denote by Ũ . We note that Ũ ∈
EndAU [ 1

p
](C•(K,A

s
U )) is compact and we denote its Fredholm determinant by FU (X) ∈ AU [

1
p ][[X]].

The proof of [Han1, Proposition 3.1.1] goes through for small weights to show that this definition is
independent of s. Thus the existence of a slope ≤ h-decomposition of C•(K,A

s
U ) is equivalent to the

existence of a slope ≤ h-factorization of FU (X). If V is another open weight with Vrig ⊆ U rig, then
the relation As

V
∼= As

U ⊗̂AU [ 1
p

]AV [
1
p ] implies that the FU glue to a power series F (X) ∈ OW (W )[[X]].

Also [Han1, Proposition 3.1.2] goes through in this more general setting: the slope ≤ h-subcomplex
C•(K,A

s
U )≤h of C•(K,A

s
U ) is independent of s (if it exists) and if Vrig ⊆ U rig then we have a

canonical isomorphism

C•(K,A
s
U )≤h ⊗AU [ 1

p
] AV [

1

p
] ∼= C•(K,A

s
V)≤h.

We say that (U , h) is a slope datum if C•(K,A
s
U ) has a slope ≤ h-decomposition or equivalently

if FU has a slope ≤ h-factorization. We have the following version of [Han1, Proposition 3.1.3]:
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Proposition 3.3. Assume that (U , h) is a slope datum and that V = (SV , χV) is an open affinoid
weight with V ⊆ U rig. Then there is a canonical isomorphism

H∗(X(C),As
U )≤h ⊗AU [ 1

p
] SV
∼= H∗(X(C),As

V)≤h

for any s ≥ sU .

Proof. When U is affinoid this is exactly [Han1, Proposition 3.1.3], so assume without loss of
generality that U = (AU , χU ) is small. The same proof will go through if we can verify that
AU [

1
p ] → SV is flat. This is standard. One proof goes as follows: Consider the adic space

Spa(AU , AU ) and pick a rational subset V in its generic fibre which contains V. Then O(V )→ SV
is flat since it corresponds to an open immersion of affinoids in rigid geometry, and AU → O(V ) is
flat since it is a rational localization in the theory of adic spaces when the rings of definition are
Noetherian. �

We may then give the analogue of the above proposition for H∗(X(C),Ds
U ) (cf. [Han1, Propo-

sition 3.1.5]).

Proposition 3.4. Assume that (U , h) is a slope datum. Then C•(K,Ds
U ), and hence H∗(X(C),Ds

U ),
admit slope ≤ h-decompositions. If furthermore V ⊆ U rig is an open affinoid weight, then there are
canonical isomorphisms

C•(K,Ds
U )≤h ⊗AU [ 1

p
] SV
∼= C•(K,Ds

V)≤h

and
H∗(X(C),Ds

U )≤h ⊗AU [ 1
p

] SV
∼= H∗(X(C),Ds

V)≤h.

Proof. Using the duality C•(K,Ds
U )
∼= HomAU [ 1

p
],cts(C•(K,A

s
U ), AU [

1
p ]) and the flatness of AU [

1
p ]→

SV the proof of [Han1, Proposition 3.1.5] goes through verbatim. �

4. Sheaves on the pro-étale site

In the next two sections we will often consider Shimura curves over Cp as well as Qp. Any rigid
analytic variety we have defined may be base changed from Qp to Cp, and we will denote this base
change by a subscript −Cp , e.g. XCp . The space XCp may be considered as an object of Xproét

using the pro-étale presentation XCp = lim
←−K

XK , where K/Qp is finite and XK denotes the base

change of X to K. Note that the slice Xproét/XCp is equivalent to XCp,proét as sites (use [Sch3,
Proposition 3.15] and [Sch1, Proposition 7.4]). We define X∞ := lim

←−K
X∞,K (with K as above)

where the inverse limit is taken in the category of perfectoid spaces. Equivalently, we may define
it as (the perfectoid space corresponding to) the perfectoid object lim

←−K
X∞,K in Xproét; it lives in

Xproét/XCp
∼= XCp,proét. Similar remarks apply to Xw, X∞,w et cetera.

4.1. A handy lemma. Let X be a rigid analytic variety over Spa(Qp,Zp), G a profinite group,
and X∞ a perfectoid space with X∞ → X a pro-étale G-covering of X, i.e. X∞ ∼ lim

←−j
Xj where

(Xj)j∈J is an inverse system of rigid analytic varieties finite étale over X equipped with a right
action of G, such that each Xj → X is a finite étale G/Gj-covering for Gj ⊆ G a cofinal sequence
of normal open subgroups. We can and often will view X∞ as an object in the pro-étale site of X.
Let M be a profinite flat Zp-module equipped with a continuous left G-action. Define a sheaf on
the pro-étale site of X by

(M⊗̂OX)(V ) =
(
M⊗̂ÔX(V ×X X∞)

)G
,

where V is a qcqs object in Xproét. Here the right action of G on the tower (Xi)i induces a left

action on ÔX(V∞), and the action indicated is the diagonal left action g · (m⊗ f) = gm⊗ g∗f .
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Lemma 4.1. Given any presentation M = lim
←−i

Mi, Mi = M/Ii as in Definition 6.3 with each Ii

preserved by G, the sheaf M⊗̂OX coincides with the sheaf

Q̂p ⊗Ẑp
lim
←−
i

(
ν∗M̃i ⊗Zp O

+
X

)
,

where M̃i is the locally constant sheaf on Xet associated withMi, and we recall that ν : Xproét → Xét

is the canonical morphism of sites.

Proof. We may check this on affinoid perfectoid V ∈ Xproét since these form a basis of Xproét (and
are qcqs). Set V∞ = V ×X X∞, this is also affinoid perfectoid (see e.g. the proof of [Sch3, Lemma
4.6]). Each Mi is finite abelian group of p-power exponent. The key observation is then that there
is an almost equality

Mi ⊗Zp Ô
+
X(V∞) =a (ν∗M̃i ⊗Zp O

+
X)(V∞)

using [Sch3, Lemma 4.10]. Taking G-invariants we see that, since V∞ → V is a G-cover,
(
Mi ⊗Zp Ô

+
X(V∞)

)G
=a (ν∗M̃i ⊗Zp O

+
X)(V )

by the Cartan-Leray spectral sequence. Now take inverse limits and invert p, and use that these
operations commute with taking G-invariants. �

4.2. Sheaves of overconvergent distributions. We introduce certain pro-étale sheaves that
compute overconvergent modular symbols and carry a Galois action. When L is a locally constant
constructible sheaf on the étale site of a rigid analytic variety, we may pull it back to a sheaf ν∗L on
the pro-étale site. We will often abuse notation and denote ν∗L by L as well; by [Sch3, Corollary
3.17] there is little harm in this. For the rest of this section we will let U = (RU , χU ) be a small

weight. Note that the K0(p)-modules D
s,◦
U /FilkDs,◦

U define locally constant constructible sheaves
on the étale site Xét.

Definition 4.2. Let U be a small weight and let s ≥ 1 + sU . Set

V
s,◦
U = lim

←−
k

H1
ét(XCp ,D

s,◦
U /FilkDs,◦

U )

= lim
←−
k

H1
proét(XCp ,D

s,◦
U /FilkDs,◦

U )

and

V
s,◦
U ,OCp

= lim
←−
k

(
H1

proét(XCp ,D
s,◦
U /FilkDs,◦

U )⊗Zp OCp

)
.

We also define Vs
U = V

s,◦
U [1p ] and Vs

U ,Cp
= V

s,◦
U ,OCp

[1p ].

These objects carry natural global Galois actions. We have the following comparison:

Proposition 4.3. There is a canonical Hecke-equivariant isomorphism Vs
U
∼= H1(X(C),Ds

U ).

Proof. Artin’s comparison theorem between étale and singular cohomology gives us canonical Hecke-
equivariant isomorphisms

H1
ét(XCp ,D

s,◦
U /FilkDs,◦

U ) ∼= H1(X(C),Ds,◦
U /FilkDs,◦

U )

for all k. Now take inverse limits and invert p. For this to do the job we need to be able to commute
the inverse limit and the H1 on the right hand side. But we may do this since the relevant higher
inverse limits vanish, by finiteness of Ds,◦

U /FilkDs,◦
U and by applying [Sch3, Lemma 3.18]. �

We now introduce a sheaf on Xproét that computes overconvergent modular symbols.
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Proposition 4.4. Let U be a small weight. There is a canonical Hecke- and Galois-equivariant
isomorphism

Vs
U ,Cp

∼= H1
proét(XCp ,OD

s
U )

where ODs
U is the sheaf on Xproét defined by

ODs
U :=

(
lim
←−
k

(
(Ds,◦

U /FilkDs,◦
U )⊗Zp O

+
XCp

))[1
p

]
.

Proof. By [Sch3, Theorem 5.1]), we have an almost isomorphism

H1
proét(XCp ,D

s,◦
U /FilkDs,◦

U )⊗Zp OCp

a
∼= H1

proét(XCp , (D
s,◦
U /FilkDs,◦

U )⊗Zp O
+
XCp

)

of OCp-modules. Passing to the inverse limit over k, note that on one hand, the higher inverse limits

of any H i
proét(XCp ,D

s,◦
U /FilkDs,◦

U )⊗Zp OCp vanish since H i
proét(XCp ,D

s,◦
U /FilkDs,◦

U ) is finite (by the

finiteness properties of Fil•Ds,◦
U ), thus H i

proét(XCp ,D
s,◦
U /FilkDs,◦

U )⊗ZpOCp satisfy the Mittag-Leffler
condition. On the other hand the higher inverse limit

Ri lim
←−
k

((Ds,◦
U /FilkDs,◦

U )⊗Zp O
+
X)

vanishes for i > 0. This follows from [Sch3, Lemma 3.18] upon noting that (in the notation of
Lemma 4.1, with X = XCp , X∞ = X∞,Cp and G = K0(p)) objects of the form V∞ give a basis of
XCp,proét satisfying the hypotheses of that lemma. Thus we may commute the inverse limit with
taking cohomology on the right hand side. Inverting p we get the result. �

Let V = lim
←−i

Vi → X be a pro-étale presentation of an affinoid perfectoid object of Xproét, and
let V∞ = V ×X X∞. This is still affinoid perfectoid and V∞ → V is pro-étale. The following is
immediate from Lemma 4.1:

Lemma 4.5. Let U be a small weight. The sheaf ODs
U admits the following explicit description on

qcqs V ∈ Xproét:

ODs
U (V ) =

(
D

s,◦
U ⊗̂ÔX (V∞)

)K0(p)
.

We remark that the sheaf V∞ 7→ D
s,◦
U ⊗̂ÔX (V∞) on Xproét/X∞ is ∆0(p)-equivariant and the

induced Hecke action on ODs
U agrees with the natural action by correspondences.

4.3. Completed sheaves of overconvergent modular forms. Let q : X∞ → X be the natural

projection as before. Recall that for any weight U and any w ≥ 1 + sU , we have the sheaf ω†
U ,w of

overconvergent modular forms of weight U on the analytic site of Xw, whose sections over a rational
subset U ⊆ Xw are given by

ω†
U ,w(U) =

{
f ∈ OX∞(U∞)⊗̂AU | γ

∗f = χU (bz+ d)−1f ∀γ ∈ K0(p)
}
.

We may similarly define a sheaf ω†
U ,w,Cp

on the analytic site of Xw,Cp by

ω†
U ,w,Cp

(U) =
{
f ∈ OX∞,Cp

(U∞)⊗̂AU | γ
∗f = χU (bz+ d)−1f ∀γ ∈ K0(p)

}

with U ⊆ Xw,Cp quasi-compact. We now define completed versions of these sheaves.

Definition 4.6. We define a sheaf ω̂†
U ,w on Xw,proét by

ω̂†
U ,w(V ) =

{
f ∈ ÔXw(V∞)⊗̂AU | γ

∗f = χU (bz+ d)−1f ∀γ ∈ K0(p)
}
,
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where V ∈ Xw,proét is qcqs and V∞ = V ×Xw X∞,w. We let ω̂†
U ,w,Cp

denote the restriction of ω̂†
U ,w

to the slice Xw,proét/Xw,Cp
∼= Xw,Cp,proét.

Let us write η for the canonical morphism of sites from the étale site to the analytic site, and
put λ = η ◦ ν.

Proposition 4.7. There are canonical isomorphisms

ω̂†
U ,w
∼= λ∗ω†

U ,w ⊗OXw ⊗̂AU
(ÔXw⊗̂AU )

and

ω̂†
U ,w,Cp

∼= λ∗ω†
U ,w,Cp

⊗OXw,Cp
⊗̂AU

(ÔXw,Cp
⊗̂AU ).

This has the following consequences:

(1) We have a canonical isomorphism

ω̂†
U ,w
∼= ν∗ω†

U ,w ⊗OXw ⊗̂AU
(ÔXw⊗̂AU )

and similarly for the Cp-sheaves, where we abuse the notation and write ω†
U ,w also for the

étale sheaf η∗ω†
U ,w ⊗OXw,an ⊗̂AU

(OXw,ét
⊗̂AU ) (where we have written out ”an” and ”et” for

clarity).

(2) ω†
U ,w,Cp

is the base change of ω†
U ,w from Xw to Xw,Cp (see Lemma 6.21) and hence ω†

U ,w,Cp
=

Loc(ω†
U ,w,Cp

(Xw,Cp)).

(3) We have a canonical isomorphism ν∗ω̂
†
U ,w,Cp

∼= ω†
U ,w,Cp

and

R1ν∗ω̂
†
U ,w,Cp

= ω†
U ,w,Cp

⊗OXw,Cp
Ω1
Xw,Cp

(−1).

Furthermore, Riν∗ω̂
†
U ,w,Cp

vanishes for i ≥ 2.

Proof. The isomorphisms are proven by repeating much of the proof of Theorem 2.25 (including
the preliminary lemmas). We focus on the Qp-sheaves; the case of the Cp-sheaves is identical. Let
V ∈ Xw,proét be an affinoid perfectoid with image U in Xw and assume without loss of generality
that U is a rational subset of Xw and that ω|U is trivial. We use the notation of the proof of
Theorem 2.25 freely. Arguing in the same way we obtain isomorphisms

ω̂†
U ,w(V ) ∼= (ÔXw(Vn)⊗̂AU )

Gn

and

(ν∗ω†
U ,w ⊗OXw ⊗̂AU

(ÔXw⊗̂AU ))(V ) ∼= (ÔXw(Un)⊗̂AU )
Gn ⊗

ÔXw (U)⊗̂AU
(ÔXw(V )⊗̂AU )

where Vn = Un ×U V and Gn acts by the twisted action f0 7→ χU (jU,n(γ))γ
∗f0. Applying Lemma

6.7 twice one obtains a Gn-equivariant isomorphism

ÔXw(Vn)⊗̂AU
∼= (ÔXw(Un)⊗̂AU )⊗ÔXw (U)⊗̂AU

(ÔXw(V )⊗̂AU ).

Taking invariants we obtain we desired isomorphism.

Assertion (1) then follows by transitivity of pullbacks. To prove (2), first evaluate the isomorphism

for ω̂†
U ,w on U ⊆ Xw,Cp to see that ω̂†

U ,w,Cp
restricted to the analytic site of Xw,Cp is the base change

of ω†
U ,w, and then restrict the second isomorphism to the analytic site of Xw,Cp to get the first part

(2). The second then follows from Lemma 6.21.
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To prove (3) we apply the projection formula to the isomorphism in (1) to get

Riν∗ω̂
†
U ,w,Cp

∼= ω†
U ,w,Cp

⊗(OXw,Cp
⊗̂AU ) R

iν∗(ÔXw,Cp
⊗̂AU ),

and the result then follows from Corollary 6.9. �

Corollary 4.8. The Leray spectral sequence

H i
ét(Xw,Cp , R

jν∗ω̂
†
U ,w,Cp

)⇒ H i+j
proét(Xw,Cp , ω̂

†
U ,w,Cp

)

induces a canonical Hecke- and Galois-equivariant isomorphism

H1
proét(Xw,Cp , ω̂

†
U ,w,Cp

) ∼= H0(Xw,Cp , ω
†
U ,w,Cp

⊗OXw,Cp
Ω1
Xw,Cp

)(−1)

Proof. By Proposition 4.7 Rjν∗ω̂
†
U ,w,Cp

is a locally projective OXw,Cp
⊗̂AU -module for all j and hence

has no higher cohomology by (the étale version of) Proposition 6.15. Therefore the Leray spectral
sequence degenerates at the E2-page, giving us isomorphisms

H0
ét(Xw,Cp , R

jν∗ω̂
†
U ,w,Cp

) ∼= Hj
proét(Xw,Cp , ω̂

†
U ,w,Cp

)

for all j. Now apply Proposition 4.7 again.

For Hecke-equivariance we focus on the Hecke operators away from p; the Hecke equivariance
at p follows by the same arguments but is notationally slightly different. We will only check
compatibility for the trace maps (compatibility for pullbacks follow from functoriality), and we put
ourselves in the situation of Proposition 2.18. By the first isomorphisms in Proposition 4.7, the
trace map t of Proposition 2.18(2) induces a trace map

t̂ : fproét,∗ω̂
†
U ,w,Cp,K

p
2
→ ω̂†

U ,w,Cp,K
p
1
.

We need to check that the diagram

H1
proét(Xw,Cp,K

p
2
, ω̂†

U ,w,Cp,K
p
2
) //

t̂
��

H0(Xw,Cp,K
p
2
, ω†

U ,w,Cp,K
p
2
⊗ Ω1)(−1)

��

H1
proét(Xw,Cp,K

p
1
, ω̂†

U ,w,Cp,K
p
1
) // H0(Xw,Cp,K

p
1
, ω†

U ,w,Cp,K
p
1
⊗ Ω1)(−1)

commutes, where the left hand vertical arrow is induced by t̂ as in Lemma 4.9(2) and the right
hand vertical arrow is induced by t in the obvious way. We do this in two steps. For the first step,
we note that Lemma 4.9(3) gives a commutative diagram

H1
proét(Xw,Cp,K

p
2
, ω̂†

U ,w,Cp,K
p
2
) //

t̂
��

H0(Xw,Cp,K
p
2
, R1ν∗ω̂

†
U ,w,Cp,K

p
2
)

R1ν∗ t̂
��

H1
proét(Xw,Cp,K

p
1
, ω̂†

U ,w,Cp,K
p
1
) // H0(Xw,Cp,K

p
1
, R1ν∗ω̂

†
U ,w,Cp,K

p
1
).

For the second step, we claim that the diagram

R1ν∗ω̂
†
U ,w,Cp,K

p
2

//

R1ν∗ t̂
��

ω†
U ,w,Cp,K

p
2
⊗ Ω1(−1)

t

��

R1ν∗ω̂
†
U ,w,Cp,K

p
1

// ω†
U ,w,Cp,K

p
1
⊗ Ω1(−1)
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commutes, where the horizontal arrows are the isomorphisms of Proposition 4.7(3); this follows
upon combining the first isomorphism of Proposition 4.7, the pullback-pushforward adjunction of
ν, and Lemma 4.10. �

Lemma 4.9. Let f : X → Y be a finite étale morphism of rigid analytic varieties.

(1) The functor fproét,∗ is exact.
(2) Suppose we are given abelian sheaves F and G on Xproét and Yproét, respectively, together

with a “trace” map t : fproét,∗F → G of abelian sheaves on Yproét. Then t induces a
canonical map t : Hn

proét(X,F) → Hn
proét(Y,G) together with derived trace maps Riν∗t :

fét,∗R
iνX,∗F → RiνY,∗G of abelian sheaves on Yét.

(3) The maps in (2) are compatible with the Grothendieck spectral sequences for RΓproét =
RΓét ◦Rν∗, i.e. the maps t and Riν∗t fit into compatible morphisms

H i
ét(X,R

jνX,∗F) +3

Rjν∗t

��

H i+j
proét(X,F)

t
��

H i
ét(Y,R

jνY,∗G) +3 H i+j
proét(Y,G)

of pro-étale cohomology groups and of the spectral sequences computing them.

Proof. To prove right-exactness of fproét,∗ we need to check that it preserves surjections. For this
we may work étale locally on Y , so we may pick an étale cover which splits f and the assertion is
then trivial.

For (2) and (3), we argue as follows. By (1), the Leray spectral sequence gives an isomorphism
Hn

proét(X,F)
∼= Hn

proét(Y, fproét,∗F), so composing this with the evident map Hn
proét(Y, fproét,∗F)→

Hn
proét(Y,G) gives the claimed map on pro-étale cohomology. On the other hand, a direct calculation

gives a natural isomorphism fét,∗νX,∗
∼= νY,∗fproét,∗ as functors Sh(Xproét)→ Sh(Yét). Indeed, both

functors send a sheaf F to the sheaf associated with the presheaf U 7→ F(U×Y X) (where U×Y X is
regarded as an element of Xproét). Since all these functors preserve injectives, we may pass to total
derived functors, getting Rfét,∗RνX,∗

∼= RνY,∗Rfproét,∗ as functors D+(Sh(Xproét))→ D+(Sh(Yét)).
Since fproét,∗ and fét,∗ are both exact functors, this becomes fét,∗RνX,∗

∼= RνY,∗fproét,∗. Applying
this to F and composing with the evident map RνY,∗fproét,∗F → RνY,∗G induced by t gives a map
Rν∗t : fét,∗RνX,∗F → RνY,∗G, and we obtain the maps Riν∗t upon passing to cohomology sheaves.
Finally, (3) follows by applying RΓY,ét to the map Rν∗t, in combination with the isomorphism
RΓX,étRνX,∗

∼= RΓY,étfét,∗RνX,∗. �

Lemma 4.10. Maintain the setup of the previous lemma, and suppose X and Y are smooth and are

defined over a complete algebraically closed extension C/Qp. Take F = ÔX and G = ÔY , and let t

be the natural ÔY -linear trace map t̂r : fproét,∗ÔX → ÔY . Then R
iν∗t̂r : fét,∗R

iνX,∗ÔX → RiνY,∗ÔY

coincides with the composite map

fét,∗R
iνX,∗ÔX

∼= fét,∗Ω
i
X(−i) ∼= Ωi

Y (−i)⊗OY
fét,∗OX

1⊗tr
−→ Ωi

Y (−i)
∼= RiνY,∗ÔY .

Proof. This follows from a careful reading of the proof of Lemma 3.24 of [Sch2]. Let us give a very
brief outline of the argument. One considers a short exact sequence SX

0→ Ẑp(1)→ lim
←−
×p

O×
X → O

×
X → 0

as in Lemma 3.24 of [Sch2]. We have also an analogous short exact sequence SY on Y and a norm
map fproét,∗SX → SY on Yproét. To both SX and SY we can associate commutative diagrams as
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in [Sch2, Lemma 3.24] and one shows that they fit together into a commutative cube. Chasing
through this cube gives us a lemma for i = 1. The general case follows from this as in [Sch2,
Proposition 3.23] by taking exterior products. �

4.4. The overconvergent Eichler-Shimura map. Working with the pro-étale site of Xw has the
advantage of allowing us to define the overconvergent Eichler-Shimura map at the level of sheaves
explicitly, using the cover X∞,w and the fundamental period z.

Fix a small weight U . The following proposition is the key step in the construction of the
overconvergent Eichler-Shimura map.

Proposition 4.11. Let w ≥ 1 + sU and s ≥ 1 + sU . Let V∞ ∈ Xw,proét/X∞,w be qcqs. We have a
map

βU : Ds,◦
U ⊗̂ÔXw(V∞)→ RU ⊗̂ÔXw(V∞)

defined on pure tensors by βU : µ ⊗ f 7→ µ(χU (1 + zx))f . This defines a morphism of sheaves on
Xw,proét/X∞,w. βU satisfies the equivariance relation

βU (γ
∗h) = χU (bz+ d)γ∗βU (h)

for any γ ∈ ∆0(p), V∞ ∈ Xw,proét qcqs and h ∈ D
s,◦
U ⊗̂ÔXw(γ

−1V∞). In particular, pushing forward
to Xw,proét and passing to K0(p)-invariants, βU induces an RU -linear and Hecke equivariant map

δU : ODs
U → ω̂†

U ,w

of abelian sheaves on Xw,proét.

Here we are interpreting χU (1+ zx) as an element of As,◦
U ⊗̂ÔXw(V∞), and extending µ by linearity

and continuity to an RU ⊗̂ÔXw(V∞)-linear map A
s,◦
U ⊗̂ÔXw(V∞)→ RU ⊗̂ÔXw(V∞).

Proof. First we check that βU is well defined, i.e. that the description on pure tensors extends by
continuity. To do this, note that the description on tensors define compatible maps

(Ds−1,◦
U /akUD

s−1,◦
U )⊗Zp ÔXw(V∞)→ (RU/a

k
U )⊗Zp ÔXw(V∞)

for all k. By the definition of the filtrations we then get compatible maps

(Ds,◦
U /FilkDs,◦

U )⊗Zp ÔXw(V∞)→ (RU/a
k
U )⊗Zp ÔXw(V∞).

Taking limits and inverting p we get the desired map. It is then enough to check equivariance on
pure tensors h = µ⊗ f . We compute

βU (γh) = (γ ·U µ)(χU (1 + zx))γ∗f

= µ

(
χU (cx+ d)χU (1 + z

ax+ b

cx+ d
)

)
γ∗f

= µ (χU (cx+ d+ z(ax+ b))) γ∗f

= µ

(
χU (bz+ d)χU (1 + x

az+ c

bz+ d
)

)
γ∗f

= χU (bz+ d)µ

(
χU (1 + x

az+ c

bz+ d
)

)
γ∗f

= χU (bz+ d)γ∗ (µ (χU (1 + zx)) f)

= χU (bz+ d)γ∗βU (h)

and arrive at the desired conclusion. We leave the Hecke equivariance away from p to the reader. �

The map δU is our version of the map δ∨k (w) from [AIS2, §4.2]. We may then define the
overconvergent Eichler-Shimura map at the level of spaces in the same way as in [AIS2]:
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Definition 4.12. Let U be a small weight. The weight U overconvergent Eichler-Shimura map
ESU is given as the composite

Vs
U ,Cp

∼= H1
proét(XCp ,OD

s
U )

res
→ H1

proét(Xw,Cp ,OD
s
U )

δU→ H1
proét(Xw,Cp , ω̂

†
U ,w,Cp

) ∼=

∼= H0(Xw,Cp , ω
†
U ,w,Cp

⊗ Ω1
Xw,Cp

)(−1) =:M†,w
U ,Cp

(−1)

where the first map is induced by restricting cohomology classes along the inclusion Xw ⊆ X . ESU
is Hecke- and GQp-equivariant by Propositions 4.3, 4.4, 4.11 and Corollary 4.8.

The above definition gives also a map ESκ for any individual point κ ∈ W(Qp), since any such
weight is both small and affinoid. Note also that the construction of ESU is functorial in U : if we
have a morphism U → U ′ compatible with the characters, then we have a commutative diagram

Vs
U ′,Cp

ESU′//

��

M†,w
U ′,Cp

(−1)

��

Vs
U ,Cp

ESU//M†,w
U ,Cp

(−1)

where the vertical maps are the natural ones. In particular, when U is a small open weight and
κ ∈ U rig, we have a commutative diagram

Vs
U ,Cp

ESU//

��

M†,w
U ,Cp

(−1)

��

Vs
κ,Cp

ESκ//M†,w
κ,Cp

(−1).

4.5. Factorization for weights k ≥ 2. To gain some control of the overconvergent Eichler-
Shimura map we will prove that it factors through the p-adic Eichler-Shimura map defined by
Faltings ([Fal]) for integral weights k ∈ Z≥2. The key step is to prove this factorization on the level
of sheaves, which is the goal of this section. In our setup, this factorization turns out to be rather
transparent.

Let V ∈ Xproét be qcqs and put V∞ = V ×X X∞. Let k ≥ 2. By Lemma 4.5 we know that

ODs
k(V ) = (Ds

k⊗̂QpÔX (V∞))K0(p).

Let Guniv be the universal p-divisible group over X . We define T to be the relative Tate module of
Guniv viewed as a sheaf on Xproét. Let ω be as before. We then define variants of those sheaves on
Xproét by

T̂ = T ⊗Ẑp
ÔX ;

ω̂ = λ∗ω ⊗OX
ÔX .

Let us write V̂k = Symk−2(T ) ⊗Ẑp
ÔX = Symk(T̂ ) and identify L ◦

k with Symk−2(Z2
p) via the

isomorphism sending Xi to ei1e
k−2−i
2 (0 ≤ i ≤ k−2). This identifies the M2(Zp)-action on L ◦

k with

the standard left action on Symk−2(Z2
p).

Lemma 4.13. For any V ∈ Xproét qcqs, we have V̂k(V ) ∼= (Lk ⊗Qp ÔX (V∞))K0(p).
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Proof. Follows from Lemma 4.1 upon noting that T (V∞) ∼= L ◦
1 functorially in V and ∆0(p)-

equivariantly via the universal trivialization over X∞. �

The above lemma and Lemma 4.5 gives us a map

ODs
k(V )→ V̂k(V )

induced by the integration map
ik : Ds

k → Lk

defined in Definition 3.2.

Let s ∈ H0(X∞,w, ω) be the non-vanishing section defined in §2.4. Recall that

ω̂†
k,w(V ) = {f ∈ ÔXw(V∞)|γ∗f = (bz+ d)−kf}

for V ∈ Xw,proét qcqs.

Lemma 4.14. We have
ω̂†
k,w
∼= (ω̂⊗k−2)|Xw

via the map
f 7→ f · s⊗k−2

Proof. For V qcqs the map induces an isomorphism between ω̂†
k,w(V ) and the set {η ∈ ω̂⊗k−2(V∞) |

γ∗η = η} using the transformation rule for s. By an argument using the Cartan-Leray spectral
sequence the latter is functorially isomorphic to ω̂⊗k−2(V ). �

Recall the linearized Hodge-Tate map

T̂ → ω̂

as a map of sheaves of Xproét. Taking (k − 2)-th symmetric powers we get a map

V̂k → ω̂⊗k−2.

Restricting to Xw and using Lemma 4.14 we get a map

vk : V̂k → (ω̂⊗k−2)|X∞,w
∼= ω̂†

k,w

which we want to describe explicitly:

Lemma 4.15. Let k ≥ 2 and let V∞ ∈ Xw,proét/X∞ be qcqs. Define a map

Lk ⊗Qp ÔXw(V∞)→ ÔXw(V∞)

by Xi 7→ zi for 0 ≤ i ≤ k− 2. This is an ÔX -linear and ∆0(p)-equivariant morphism of sheaves on

Xw,proét/X∞. Pushing forward to Xw,proét and taking K0(p)-invariants we get a map V̂k → ω̂†
k,w.

Evaluating this on V ∈ Xw,proét qcqs and putting V∞ = V ×X X∞,w, we obtain a map

(Lk ⊗Qp ÔXw(V∞))K0(p) → ω̂†
k,w(V ).

which is equal to vk (using Lemma 4.13).

Proof. We describe the map V̂k → ω̂⊗k−2 and then use the isomorphism of the previous lemma.
Over V∞, the sheaf ω̂⊗k−2 is trivialized by s⊗k−2, so vk is morphism

Lk ⊗Qp ÔXw(V∞)→ ÔXw(V∞)s⊗k−2.

From the definitions we see that it sends Xi to HT(α(e1))
iHT(α(e2))

k−2−i where α denotes the
trivialization of T over V∞ and HT denotes the Hodge-Tate map. By definition, s = HT(α(e2))
and over Xw we have the relation HT(α(e1)) = zHT(α(e2)). Thus Xi is sent to zis⊗k−2. Finally
observe that the isomorphism of Lemma 4.14 sends s⊗k−2 to 1. �
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We can now prove the factorization theorem at the level of sheaves for our overconvergent Eichler-
Shimura map.

Proposition 4.16. For k ≥ 2 we have a commutative diagram:

ODs
k

µ 7→ µ((1 + zx)k−2)
//

µ 7→ µ((1 +Xx)k−2)

��

ω̂†
k,w

V̂k

Xi 7→ zi

66

Proof. It follows from our prior discussion and Lemma 4.15. �

Remark 4.17. This diagram, which is a diagram of sheaves over Xw, may be viewed as the
restriction of the following diagram of sheaves over X :

ODs
k

µ 7→ µ((1 + zx)k−2)s⊗k−2
//

µ 7→ µ((1 +Xx)k−2)

��

ω̂⊗k−2

V̂k

Xi 7→ zis⊗k−2

55

using the isomorphism of Lemma 4.14. Note that although z and s do not extend to X∞, the products
zis⊗k−2 do extend to X∞ for all 0 ≤ i ≤ k − 2, so the formulas in the diagram make sense. This
will cause our overconvergent Eichler-Shimura maps to have very large kernels at classical weights
k ≥ 2 (see §5.2).

5. The overconvergent Eichler-Shimura map over the eigencurve

In this section we prove our main results concerning the overconvergent Eichler-Shimura map.
These results are analogous to the main results of [AIS2]. However, the payoff for working with
arbitrary small open weights is that we may glue our overconvergent Eichler-Shimura maps for
different small open weights into a morphism of coherent sheaves over the eigencurve. This allows
us to work over rather arbitrary regions of weight space and with general slope cutoffs, as opposed
to the rather special open discs inside the analytic part of weight space used in [AIS2].

5.1. Sheaves on the eigencurve. Let U be a small weight and let s ≥ 1 + sU . Recall we have
defined the modules

Vs
U = H1

proét(XCp ,D
s
U );

Vs
U ,Cp

∼= H1
proét(XCp ,OD

s
U );

M†,w
U = H0(Xw, ω

†
U ,w ⊗OXw

Ω1
Xw

);

M†,w
U ,Cp

= H0(Xw,Cp , ω
†
U ,w,Cp

⊗OXw,Cp
Ω1
Xw,Cp

).

In this subsection we spread the finite-slope pieces of these modules into sheaves on the whole
eigencurve C = CKp , and we glue our Eichler-Shimura maps into a morphism of sheaves.

Recall the rigid analytic weight space W = Spf(Zp[[Z×
p ]])

rig, with its universal character χW :

Z×
p → O(W)×. If U is an open weight, we write Obd(U rig) for the ring of bounded functions on
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U rig. This is a Banach Qp-algebra equal to AU [
1
p ] as a dense subring, and with a natural map

O(W)→ O(U rig). Recall that we have defined the Fredholm determinant

FU (T ) = det(1− ŨT |C•(K,A
s
U ))

in §3.2. It is an element of O(U rig)bd{{T}}, the ring of entire power series with coefficients in
Obd(Urig){{T}}, and we showed that it glues to a Fredholm series F (T ) ∈ O(W){{T}} (see e.g.
[Han1, Definition 4.1.1] for the definition of a Fredholm series). Now let V = (SV , χV) be an open

affinoid weight. Arguing as in [Pil, §5.2] we see thatM†,w
V satisfies Buzzard’s property (Pr) over SV

(i.e. it is a direct summand of an orthonormalizable SV -module, see the paragraph before Lemma
2.11 of [Buz3]). Since Up is compact we get a Fredholm determinant

GV(T ) = det(1− UpT |M
†,w
V )

in O(V){{T}} and these glue to a Fredholm series G(T ) ∈ O(W){{T}}. Let us set H(T ) =
F (T )G(T ), this is also a Fredholm series. Recall ([Han1, §4.1]) that a Fredholm hypersurface
is a closed subvariety of W × A1 cut out by a Fredholm series. Given a Fredholm series f we
write Z (f) for the corresponding Fredholm hypersurface. Recall that, if h ∈ Q≥0 and W ⊆ W
is open, then f has a slope ≤ h-decomposition in Obd(W ){{T}} if and only if the natural map
ZW,h(f) := Z (f) ∩ (W × B[0, h]) → B[0, h] is finite flat, where B[0, h] ⊆ A1 is the closed disc

around 0 of radius ph. We say that (W,h) is slope-adapted for f if these equivalent conditions hold.
We have the following key result:

Lemma 5.1. There exists a collection of pairs (Vi, hi), with V ⊆ W open and affinoid and hi ∈ Q≥0,
such that (Vi, hi) is slope-adapted for H for all i and the (ZVi,hi

(H))i form an open (admissible)

cover of Z (H). Moreover, for each i we may find a small open weight Ui such that Vi ⊆ U
rig
i and

(U rig
i , hi) is slope-adapted for H.

Proof. See [Han2, Lemmas 2.3.1-2.3.4] (the first part is a theorem of Coleman-Mazur and Buzzard
and is the key step in the ”eigenvariety machine”, cf. [Buz3, Theorem 4.6]). �

Fix collections Vi, Ui and hi satisfying the conclusions of Lemma. For now, let h ∈ Q≥0 and let
U be any small open weight such that (Urig, h) is slope-adapted for H, and let V ⊆ U rig be an open
affinoid weight. Recall our overconvergent Eichler-Shimura map

ESU : Vs
U ,Cp

→M†,w
U ,Cp

(−1).

Since (U rig, h) is slope-adapted for H (and hence for F and G) and ESU is Hecke-equivariant we
may take slope ≤ h-parts on both sides to obtain an RU [

1
p ]-linear map

ESU ,≤h : Vs
U ,Cp,≤h →M

†,w
U ,Cp,≤h(−1)

of finite projectiveRU [
1
p ]-modules. We may compose with this map the natural mapM†,w

U ,Cp,≤h(−1)→

M†,w
V,Cp,≤h(−1) and tensor the source with SV to obtain an SV -linear map

ESV,≤h : Vs
V,Cp,≤h

∼= Vs
U ,Cp,≤h ⊗RU [ 1

p
] SV →M

†,w
V,Cp,≤h(−1)

where the first isomorphism is that of Proposition 3.4.

Let us now recall the eigencurves for B× of tame level Kp constructed out of overconvergent
modular forms resp. overconvergent modular symbols, using the perspective of [Han1, §4]. Let
Σ0 denote the finite set of primes ℓ for which Kℓ 6∼= GL2(Zℓ) and let Σ = Σ0 ∪ {p}. We let T
denote the abstract Hecke algebra generated by commuting formal variables Tℓ, Sℓ for ℓ /∈ Σ and
Up. Then T acts on all spaces of modular forms and modular symbols used in this article. We
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may construct two eigenvariety data ([Han1, Definition 4.2.1]) DM† = (W,Z (H),M†,T, ψM†)
and DV = (W,Z (H),V,T, ψV). HereM† and V are the coherent sheaves on Z (H) obtained by

gluing the lim
−→w

M†,w
Vi,≤hi

resp. the lim
←−s

Vs
Vi,≤hi

over the ZVi,hi
(H) (see [Han1, Proposition 4.3.1]

and the discussion following it for the construction of V; the construction of M† is similar but
easier). Given these, [Han1, Theorem 4.2.2] allows us to construct the eigenvarieties CM† and CV
together with coherent sheaves M† on CM† resp. V on CV (this is a mild abuse of notation; we
will have no further reason to consider the sheaves with the same name over Z (H)). Since the
following proposition is well known we only give a brief sketch of the proof:

Proposition 5.2. There is a canonical isomorphism CM†
∼= CV compatible with the projection

maps down to W and the actions of T.

Proof. This follows by applying [Han1, Theorem 5.1.2] twice (once in each direction), upon noting
that both eigencurves are reduced and equi-dimensional (of dimension 1; they are ”unmixed” in the
terminology of [Han1]). For these applications one should modify the eigenvariety data, replacing
Z (H) inDM† with the support ofM† and similarly forDV. The relevant very Zariski dense subsets
are then constructed using the control/classicality theorems of Stevens and Coleman together with
the usual Eichler-Shimura isomorphism (see [Han1, Theorem 3.2.5] for a general version of the
control theorem for overconvergent modular symbols, and see e.g. [Joh, Theorem 4.16] for a proof
of Coleman’s control theorem in the context of the compact Shimura curves used here). �

In light of this we will identify the two eigencurves and simply denote it by C. It carries two
coherent sheavesM† and V which are determined by canonical isomorphisms

M†(CVi,hi
) ∼= lim
−→
w

M†,w
Vi,≤hi

∼=M
†,w
Vi,≤hi

;

V(CVi,hi
) ∼= lim
←−
s

Vs
Vi,≤hi

∼= Vs
Vi,≤hi

for all i and sufficiently large w resp. s, where CVi,hi
is the preimage of ZVi,hi

(H) in C. We form the

sheavesM†
Cp

:=M†⊗̂QpCp and VCp := V⊗̂QpCp. They are determined by canonical isomorphisms

M†
Cp
(CVi,hi

) ∼= lim
−→
w

M†,w
Vi,Cp,≤hi

∼=M
†,w
Vi,Cp,≤hi

;

VCp(CVi,hi
) ∼= lim
←−
s

Vs
Vi,Cp,≤hi

∼= Vs
Vi,Cp,≤hi

for any sufficiently large w resp. s. We may also naturally view these sheaves as coherent sheaves
on the base change CCp of C from Qp to Cp. They are then determined by the obvious modifications
of the above canonical isomorphisms.

With these preparations we may now state the main theorem of this section which glues the
maps ESVi,≤hi

:

Theorem 5.3. There exists a canonical Hecke and Galois-equivariant morphism

ES : VCp →M
†
Cp
(−1)

of coherent sheaves of OC⊗̂QpCp-modules on C (or coherent sheaves of OCCp
-modules on CCp), which

glues (ESVi,≤hi
)i.

Proof. The ESVi,≤hi
induce maps over the cover (CVi,hi

)i using the canonical isomorphisms. Check-
ing that they glue is tedious but straightforward, using the functoriality of the maps ESU in the
small open weight U as well as the naturality of the construction of ESV,≤h for V ⊆ Urig, V open
affinoid and U small open such that (Urig, h) is slope-adapted for H. We leave the remaining details
to the reader. �
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The morphism ES is our main object of study in this section. Our main technique to study it is
via specialization to non-critical classical points of C (recall that a classical point x is non-critical
if h < k− 1, where h is the slope and k is the weight of x). Let κ ∈ W(L) with L/Qp finite and let
(V, h) be slope-adapted with V connected and affinoid and κ ∈ V(L). By [Han1, Theorem 3.3.1]
there is a second quadrant spectral sequence (with s big enough)

Epq
2 = Tor

OW (V)
−p (Hq(K,Ds

V)≤h, L) =⇒ Hp+q(K,Ds
κ)≤h

which degenerates at the E2-page since OW(V) is a Dedekind domain. This gives us a short exact
sequence

0→ V(CV,h)⊗OW (V) L→ H1(K,Ds
κ)≤h → Tor

OW (V)
1 (H2(K,Ds

V)≤h, L)→ 0.

Now assume that x ∈ C(L′) is a classical non-critical point of weight k = κ (with L′/L a finite field
extension). After localizing the above short exact sequence at x it becomes an isomorphism

(V(CV,h)⊗OW (V) L)x ∼= (H1(K,Ds
k)≤h)x.

This follows from the fact that x does not occur in H2(K,Ds
V)≤h, which by [Han1, Proposition

4.5.2] follows from the fact that it does not occur in H2(K,Ds
k)≤h, which in turn follows from

the control theorem. Using the control theorem again, the right hand side of the isomorphism is
canonically isomorphic to H1

ét(XCp ,Vk)x. From this we deduce that the fiber of V at x is the largest

semisimple quotient of the generalized eigenspace in H1
ét(XCp ,Vk) associated with x.

By a similar but simpler analysis (using Lemma 2.26) one sees that the fibre of M† at an
arbitrary point x ∈ C(Qp) is equal to the largest semisimple quotient of the generalized eigenspace

in H0(Xw, ω
†
κ,w⊗OXw

Ω1
Xw

) associated with x where w is sufficiently large. One may of course apply
the control theorem if x is non-critical and classical to gain a further refinement. Similarly, the
analogous statements apply to the same objects based changed from Qp to Cp.

We will need a few extras fact about C before we proceed to analyze ES.

Lemma 5.4. Let κ ∈ W(Qp) be a weight and let s ≥ sκ. Then H0(K,Ds
κ) = 0.

Proof. Write G1 for the closed subgroup of G of elements of reduced norm one. Under our fixed
isomorphism G(Zp) ∼= GL2(Zp) we have G

1(Zp) ∼= SL2(Zp). To prove the lemma, it suffices to show
that H0(Γ,Ds

κ) = 0 for any congruence subgroup Γ ⊂ G1(Z) contained in K0(p). By the p-adic
continuity of the Γ-action on Ds

κ, we have

H0(Γ,Ds
κ) = H0(Γp,D

s
κ),

where Γp denotes the p-adic closure of Γ in GL2(Zp). By [Rap, Lemma 2.7] and the Zariski density
of Γ in G1 (see e.g. [PR, Theorem 4.10]), Γp contains an open subgroup of SL2(Zp), and in particular

contains a nontrivial element u =

(
1 a
0 1

)
for some a ∈ Zp, a 6= 0. Note that u acts on µ ∈ Ds

κ by

(u · µ)(f(x)) = µ(f(x + a)); in particular this action does not depend on κ. Since any element of
H0(Γp,D

s
κ) ⊆ Ds

κ = Ds ⊗Qp L (L the residue field of κ) is fixed by u, it now suffices to show that
no nonzero element of Ds is fixed by u. To see this, note that the Amice transform

µ 7→ Aµ(T ) =

∫
(1 + T )xµ(x) ∈ Qp[[T ]]

defines a Qp-linear injection of Ds (regarded as a ring under convolution) into a subring of Qp[[T ]]
(cf. [Col, §1.8] for more detailed statements). An easy calculation shows that Au·µ(T ) = (1 +
T )aAµ(T ), so if u ·µ = µ then ((1 + T )a − 1) ·Aµ(T ) = 0, and since Qp[[T ]] is a domain this implies
Aµ(T ) = 0 and then µ = 0 as desired. �
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Lemma 5.5. The sheavesM† and V are torsion free.

Proof. We start withM†. This is a local statement so we may work over some CV,h coming from
a slope-adapted (V, h) with V affinoid. Then OC(CV,h) is finite over OW(V), so it suffices to show
torsion freeness over OW(V), which is clear by definition.

We now prove torsion-freeness for V. Working locally as above it is enough to show that
H1(K,Ds

V)≤h is a torsion-free OW(V)-module, where V ⊆ W is affinoid and (V, h) is slope-adapted.

Let κ ∈ V(Qp) be a weight, cutting out a maximal ideal mκ and let L := OW(V)/mκ. It is enough to

show to that the mκ-torsion vanishes for all κ. This torsion is equal to Tor
OW (V)
1 (H1(K,Ds

V)≤h, L).
Using the Tor-spectral sequence ([Han1, Theorem 3.3.1]) one sees that this Tor-group is a subquo-
tient of H0(K,Ds

κ)≤h, which vanishes by the previous Lemma. �

Next, assume that our tame level is of the form K1(N) for some N with (N, dp) = 1. Let
Cnc ⊂ C denote the set of non-critical classical crystalline points for which the roots of the pth
Hecke polynomial are distinct.2 For each positive divisor M |N , let Cnc

M−new denote the set of points
x in Cnc for which the tame Artin conductor of the Galois representation ρx associated to x is
exactly Md. Note that the tame Artin conductor is sometimes just called the tame conductor; see
the discussion in [Bel] before Lemma IV.4.3. Let CM−new denote the Zariski-closure of Cnc

M−new in
C. The following lemma was stated without proof for modular curves in [Han2].

Lemma 5.6. Assume that the tame level is of the form K1(N). For any M |N , CM−new is a union
of irreducible components of C, and C = ∪M |NCM−new.

Proof. Adapting the proof of [Bel, Lemma IV.4.7], one shows that Cnc
M−new is an accumulation subset

of C: each point x ∈ Cnc
M−new has a neighborhood basis of affinoids U ⊂ C for which U ∩ Cnc

M−new
is Zariski-dense in U . This property implies that each irreducible component of the Zariski-closure
CM−new has positive dimension. Since C is equidimensional of dimension one, we deduce from [Con,
Corollary 2.2.7] that CM−new is a union of irreducible components of C. Since Cnc = ∪M |NC

nc
M−new

is a Zariski-dense accumulation subset of C, the remainder of the lemma is clear. �

5.2. Faltings’s Eichler-Shimura map. In this section we adapt Faltings’s construction ([Fal])
of the p-adic Eichler-Shimura morphism to our setting, and use it to give a precise description of
ESk at weights k ≥ 2. Fix k ∈ Z≥2. Recall the morphism

V̂k → ω̂⊗k−2

defined in §4.5. It induces a map

H1
proét(XCp , V̂k)→ H1

proét(XCp , ω̂
⊗k−2).

Note that we have an exact sequence

(1) 0→ H1
ét(XCp , ω

⊗k−2)→ H1
proét(XCp , ω̂

⊗k−2)→ H0
ét(XCp , ω

⊗k−2 ⊗ Ω1
XCp

)(−1)→ 0

coming from the spectral sequence H i
ét(XCp , R

jν∗ω̂
⊗k−2)⇒ H i+j

proét(XCp , ω̂
⊗k−2), which degenerates

at the E2-page by an argument similar to (but simpler than) the proof of Proposition 4.7.

Proposition 5.7. The composite map

H1
proét(XCp , V̂k)→ H1

proét(XCp , ω̂
⊗k−2)→ H0

ét(XCp , ω
⊗k−2 ⊗ Ω1

XCp
)(−1)

is surjective, and the kernel is isomorphic to H0
ét(XCp , ω

⊗k−2 ⊗ Ω1
XCp

)(k) as a Hecke- and Galois

module.

2This last condition is conjecturally automatic.
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Proof. Recall the Hodge-Tate sequence

0→ ω̂⊗−1(1)→ T̂ → ω̂ → 0

for Guniv. Since the morphism V̂k → ω̂⊗k−2 comes from the map T̂ → ω̂ by taking (k − 2)-th
symmetric powers, we see that its kernel Kerk sits in a short exact sequence

0→ ω̂⊗2−k(k − 2)→ Kerk → Q→ 0

where Q is simply defined to be the quotient. We get exact sequences

H1
proét(XCp ,Kerk)→ H1

proét(XCp , V̂k)→ H1
proét(XCp , ω̂

⊗k−2);

H1
proét(XCp , ω̂

⊗2−k(k))→ H1
proét(XCp ,Kerk)→ H1

proét(XCp , Q).

We have an isomorphism H1
proét(XCp , V̂j)

∼= H1
ét(XCp , Sym

j T ) ⊗Zp Cp for all j ≥ 0. From the

Hodge-Tate sequence one deduces that Q carries a filtration with non-zero graded pieces ω̂⊗i for
i = 4−k, 6−k, ..., k−4 (up to twists). Using this filtration and the sequences (1) with k−2 replaced
by i = 4− k, 6− k, ..., k − 4 together with the usual Eichler-Shimura isomorphism for quaternionic

Shimura curves one sees that H1
proét(XCp , V̂k) and H

1
proét(XCp , Q) do not have any Hecke eigenvalues

in common. Thus, looking at the second exact sequence above, we see that any generalized Hecke

eigenvector in H1
proét(XCp ,Kerk) that is not killed by the map H1

proét(XCp ,Kerk)→ H1
proét(XCp , V̂k)

must come from H1
proét(XCp , ω̂

⊗2−k(k − 2)).

Hence we have an exact sequence

H1
proét(XCp , ω̂

⊗2−k(k − 2))→ H1
proét(XCp , V̂k)→ H1

proét(XCp , ω̂
⊗k−2).

By the exact sequence (1) and looking at Hecke eigenvalues again we get an exact sequence

H1
proét(XCp , ω̂

⊗2−k(k − 2))→ H1
proét(XCp , V̂k)→ H0

ét(XCp , ω
⊗k−2 ⊗ Ω1

XCp
)(−1).

We now apply a similar argument to H1
proét(XCp , ω̂

⊗2−k(k − 2)). Replacing k − 2 with 2− k in (1)
we have the exact sequence

0→ H1
ét(XCp , ω

⊗2−k)→ H1
proét(XCp , ω̂

⊗2−k)→ H0
ét(XCp , ω

⊗2−k ⊗ Ω1
XCp

)(−1)→ 0.

Arguing with Hecke eigenvalues as above and using Serre duality we get a sequence

(2) 0→ H1
ét(XCp , ω

⊗2−k(k − 2))→ H1
proét(XCp , V̂k)→ H0

ét(XCp , ω
⊗k−2 ⊗ Ω1

XCp
)(−1)→ 0

which is exact in the middle. By Serre duality

H1
ét(XCp , ω

⊗2−k(k − 2)) ∼= H0
ét(XCp , ω

⊗k−2 ⊗ Ω1
XCp

)(k − 2).

Counting dimensions, we see that (2) is a short exact sequence as desired. �

We have a diagram

H1
proét(XCp ,OD

s
k)

ESk //

��

H1
proét(Xw,Cp , ω̂

†
k,w)

∼// H0
ét(Xw,Cp , ω

†
k,w ⊗ Ω1

Xw,Cp
)(−1)

H1
proét(XCp , V̂k)

// H1
proét(XCp , ω̂

⊗k−2) //

OO

H0
ét(XCp , ω

⊗k−2 ⊗ Ω1
XCp

)(−1)

OO

which commutes by Remark 4.17 and the functoriality of the remaining maps. Note that the right
vertical map is injective by analytic continuation. Its image is, by definition, the space of classical
modular forms. We then have:
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Proposition 5.8. Let k ≥ 2. The image of ESk is contained in the space of classical modular
forms. Moreover ESk is surjective on slope ≤ h-parts when h < k − 1.

Proof. The first statement is clear from the diagram. To see the second, note that both the
left and right vertical maps in the diagram above are isomorphisms on slope ≤ h-parts when
h < k − 1 by the control theorems of Stevens and Coleman. To conclude, use that the map

H1(XCp , V̂k)→ H0
ét(XCp , ω

⊗k−2 ⊗ Ω1
XCp

)(−1) is surjective by Proposition 5.7. �

Note that the kernel of ESk is big: it is infinite-dimensional with finite codimension.

5.3. Results. In this section we deduce some properties of our overconvergent Eichler-Shimura
map ES and the sheaves V and M†. The results are very similar to those of [AIS2, §6], but we
are able to prove them in a more global form. Let us denote by Csm the smooth locus of C. It
contains the étale locus C ét of the weight map, and both these loci are Zariski open. Furthermore
C ét contains the set Cnc of non-critical classical crystalline points for which the roots of the p-Hecke
polynomial are distinct. Let us explicitly record a lemma in rigid geometry that makes arguments
involving Zariski density simpler. We will (sometimes implicitly) apply it in the remainder of this
section.

Lemma 5.9. Let X be a smooth rigid space over a non-archimedean field K, and assume that
(Vn)

∞
n=1 is an increasing cover of X by affinoids. Assume that S ⊆ X is a very Zariski dense set

of points. Then we may find an increasing cover (Un) of X by affinoids such that S ∩ Un is very
Zariski dense in Un for all n.

Proof. We define Un to be the Zariski closure of S ∩ Vn in Vn. By definition Un is a union of
components of Vn, hence affinoid, and it remains to show that X =

⋃∞
n=1 Un. For this it suffices

to show that, for fixed n and a fixed component C of Vn, there exists m ≥ n such that C ⊆ Um.
Fix n and C. C is a subset of a (global) component D of X, so by Zariski density we pick a point
s ∈ S ∩D. If m ≥ n, let Cm denote the component of Vm such that C ⊆ Cm. Define, for m ≥ n,

Tm = {x ∈ Vm | ∃k ≥ m : ikm(x) ∈ Ck}

where ikm : Vm → Vk is the inclusion map. Then Tm is a union of components and we claim that
s ∈ Tm for some m. To see this, note that Tm = Vm ∩ Tm+1 for all m ≥ n, so T :=

⋃
m≥n Tm is an

open subset of X with open complement. Hence if s /∈ T , s could not lie on the same component as
C. Therefore there is some m for which s ∈ Tm, and hence some k for which s ∈ Ck, which implies
that C ⊆ Uk by the very Zariski density of S. �

Remark 5.10. Note that Csm may be covered by an increasing union of affinoids. To see this
note first that this is true for C since it is finite over W × A1, which is quasi-Stein. If we pick
an increasing affinoid cover (Vn) of C, then Csm =

⋃
n V

sm
n and V sm

n is Zariski dense in Vn, with

complement cut out by the functions fn,1, ..., fn,kn say. We may choose ǫn ∈ p
Q tending to 0 such

that

{|fn,1|, ..., |fn,kn | < ǫn} ∩ Vm ⊆ {|fm,1|, ..., |fm,km | < 2n−mǫm}

for all m ≤ n, where we use a general fact that the sets ({|gi| ≤ ǫ})ǫ∈pQ define a cofinal system of
neighbourhoods of {|gi| = 0}. Then we claim that the sets

Un = {|fn,1|, ..., |fn,kn | ≥ ǫn}

are affinoid and cover Csm. Indeed, they cover Csm by definition, and they are affinoid since they
are rational subsets of the Vn.

With this we state a simple consequence of Proposition 5.8:
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Theorem 5.11. View ES as a morphism of coherent sheaves on CCp. Then ES is surjective outside
a Zariski-closed subset of CCp of dimension 0, and the support of coker(ES) is disjoint from the set
of non-critical points.

Proof. Since coker(ES) is coherent its support is Zariski-closed. Hence the first statement follows
from the second: if the support is not of dimension 0, then it must contain some component of C and
hence non-critical points. To prove the second statement it suffices to prove that ES is surjective
on fibres at non-critical points. Let x be such a point, with weight k. By the computation of
the fibres in §5.1 and the computation of ES we see that it amounts to the Eichler-Shimura map
ESk restricted to maximal semisimple quotients of the generalized eigenspaces for x. Since x is
non-critical this map is surjective by Proposition 5.8. �

Let us raise the following question:

Question: Is the support of coker ES precisely the set of x with weight k ∈ Z≥2 such that ESk
fails to be surjective on generalized eigenspaces for x?

Next let us state some results on the structure of V andM† over Csm. For any n ∈ Z≥1 we let
τ(n) denote the number of positive divisors of n.

Theorem 5.12. Assume, for simplicity, that that the tame level Kp is of the form
∏

ℓ∤disc(B)K1(N)×∏
ℓ|disc(B)O

×
Bℓ

for some N ≥ 3. Let M ∈ Z≥1 be a divisor of N .

(1) V and M† are locally free on Csm. The rank of V over Csm
M−new is 2τ(N/M) and the rank

ofM† over Csm
M−new is τ(N/M).

(2) Let ℓ be a prime not dividing Np ·disc(B). Then V is unramified at ℓ and the trace of Frobℓ
on V over Csm

M−new is τ(N/M) · Tℓ, where we view Tℓ as a global function on C.

(3) Let x ∈ Csm
N−new(Qp). Then the fibre of V at x is the Galois representation attached to x

via the theory of pseudorepresentations.

Proof. First we prove (1). By Lemma 5.5 V and M† are torsion free coherent sheaves over Csm,
which is smooth of pure dimension 1. Therefore V andM† are locally free. To compute the ranks
over Csm

M−new it suffices to compute the dimension of the fibres at points in Cnc ∩ Csm
M−new. This is

a computation using Atkin-Lehner theory, the control theorems of Stevens resp. Coleman and the
classical Eichler-Shimura isomorphism (see e.g [Bel, Lemma IV.6.3]).

To prove (2), note that the statements are true after specializing to points in Cnc (using Stevens’s
control theorem and the well known structure of the Galois representations H1

ét(X ,Vk)). By Zariski
density of Cnc∩Csm

M−new in Csm
M−new we may then conclude. Note that, to check that it is unramified,

one may reduce to the affinoid case by Lemma 5.9 and Remark 5.10, where it becomes a purely
ring-theoretic statement. Localizing (ring-theoretically), one may then reduce to the free case,
where one can check on matrix coefficients using Zariski density.

Finally, (3) follows from (2). �

Remark 5.13. The assumption on Kp in the above theorem is only to simplify the exposition. The
theorem and the definition of the CM−new may be adapted to arbitrary tame levels Kp =

∏
ℓ 6=pKℓ

with essentially the same proof, except for the explicit formulas for the ranks.

We remark that the statement that V is unramified at ℓ ∤ Np · disc(B) also follows from the same
fact for the Vs

U (for U small open), which in turn follows from the construction upon noting that
all members of the tower (XKp)Kp are analytifications of schemes over Q with good reduction at ℓ.

Finally, we prove that ES generically gives us Hodge-Tate filtrations/decompositions on V.

Theorem 5.14. We work over Csm.
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(1) The kernel K and image I of ES are locally projective sheaves of OCsm⊗̂QpCp-modules, and
may also be viewed as locally free sheaves on CsmCp

.

(2) Let ǫCsm be the character of GQp defined by the composition

GQp

ǫ
−→ Z×

p
χW−→ O×

W −→ (O×
Csm⊗̂QpCp)

×

where ǫ is the p-adic cyclotomic character of GQp and χW is the universal character of Z×
p .

Then the semilinear action of GQp on the module K(ǫ−1
Csm) is trivial.

(3) The exact sequence
0→ K → VCp → I → 0

is locally split. Zariski generically, the splitting may be taken to be equivariant with respect
to both the Hecke- and GQp-actions, and such a splitting is unique.

Proof. Part (1) is clear sinceV andM† are locally free on Csm and OCsm⊗̂QpCp is locally a Dedekind
domain. The second statement follows similarly.

For part (2) we use Lemma 5.9 and Remark 5.10 to reduce to the affinoid case with a very Zariski
dense set of points in Cnc. Taking a further cover we may also assume that K is free (perhaps after
making a finite extension, but this will not effect the rest of the argument). The statement now
follows from the family version of Sen theory ([Se1], [Se2]) , using the fact that the Sen operator
φ of K(ǫ−1

Csm) vanishes on points of Cnc and hence on Csm by Zariski density of Cnc and analyticity
of φ. The argument proceeds exactly as the proof of [AIS2, Theorem 6.1(c)], to which we refer for
more details.

Finally we prove part (3), arguing more or less exactly as in the proof of [AIS2, Theorem 6.1(d)],
to which we refer for more details. Once again we may work over an affinoid U ⊆ Csm with a
Zariski dense set of points U ∩ Cnc. We may without loss of generality assume that K, VCp and I
are free (once again, one might need to make a finite extension, but this does not effect the rest
of the argument and we will ignore it). The short exact sequence is an extension which defines an
element in H1(GQp ,H) where

H := HomOC(U)⊗̂QpCp
(I,K).

Let φ be the Sen operator of H. By work of Sen it is well-known that det(φ) kills H1(GQp ,H).
Specializing at points in U ∩Cnc one sees that det(φ) does not vanish identically on any component
of U . Thus, localizing with respect to det(φ), we find a Zariski open subset of U over which the
extension is split as semilinear GQp-representations. Moreover, if we further remove the finite set
of points whose weight is −1 ∈ Z, then I and K have distinct Hodge-Tate weights fibre-wise (by
using part (2) and that I has constant Hodge-Tate weight −1). Thus there can be no non-zero
Galois equivariant homomorphisms between K and I. Since the Hecke action commutes with the
GQp-action, this implies that the GQp-splitting must be Hecke stable as well. �

6. Appendix

In this appendix we define a ”mixed” completed tensor product that we will use in the main
text, and prove some basic properties as well as a few technical results that we need.

6.1. Mixed completed tensor products. Let K be a finite extension of Qp and let O be its
ring of integers, with uniformizer ̟. Our ”mixed completed tensor products” will be denoted by
an unadorned ⊗̂. The base field is assumed to be implicit in the notation. In the main text we will
always take K = Qp so this should not cause any problem. We starting by making the following
definition:

Definition 6.1. Let M be a topological O-module.
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(1) M is called linear-topological if there exists a basis of neighbourhoods of 0 consisting of
O-submodules.

(2) We will say that M is a profinite flat O-module if M is flat over O (i.e torsion-free),
linear-topological and compact.

Let us remark that if M is a profinite flat O-module then the topology on M is profinite,
which justifies this terminology. We also remark that such M are exactly the O-modules which
are projective and pseudocompact in the language of [SGA3, Exposé VIIB, §0]. Let us recall the
following structure theorem for profinite flat O-modules, specialized from [SGA3, Exposé VIIB,
0.3.8]:

Proposition 6.2. M is a profinite flat O-module if and only if it is isomorphic to
∏

i∈I O equipped
with the product topology, for some set I.

We note that a set of elements (ei)i∈I in M such that M ∼=
∏

i∈I Oei is called a pseudobasis. In
what follows ‘̟-adically complete” always means complete and separated.

Definition 6.3. Let M be a profinite flat O-module and let X be any O-module. We define

X⊗̂M := lim
←−
i

(X ⊗O M/Ii)

where (Ii) runs through any cofinal set of neighbourhoods of 0 consisting of Zp-submodules.

By abstract nonsense this is independent of the choice of system of neighbourhoods of 0. Note
that if A is an O-algebra and R is a small O-algebra, then A⊗̂R comes with a natural structure
of a ring, as is seen by choosing the neighbourhoods to be ideals. To compute X⊗̂M in a useful
form we fix a pseudobasis (ei)i∈I and define, for J ⊆ I finite and n ≥ 1 an integer, MJ,n to be the
submodule corresponding to

MJ,n :=
∏

i∈J

̟nOei ×
∏

i/∈J

Oei.

This forms a system of neighbourhoods of 0. Then we have:

Proposition 6.4. The functor X 7→ X⊗̂M is isomorphic to the functor X 7→
∏

i∈I X̂, where X̂
is the ̟-adic completion of X.

Proof. We compute

X⊗̂M = lim
←−
J,n

X ⊗O M/MJ,n

= lim
←−
J

(lim
←−
n

X ⊗O M/MJ,n)

∼= lim
←−
J

(lim
←−
n

X ⊗O

∏

i∈J

O/̟n)

= lim
←−
J

(∏

i∈J

(lim
←−
n

X ⊗O O/̟
n)

)

= lim
←−
J

(∏

i∈J

X̂

)

=
∏

i∈I

X̂.

�
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Corollary 6.5. We have

(1) X 7→ X⊗̂M is exact on ̟-adically complete X.
(2) If 0→ X → Y → Q→ 0 is an exact sequence of O-modules where X is ̟-adically complete

and Q is killed by ̟N for some integer N ≥ 0, then Y is ̟-adically complete and the natural
map (X⊗̂M)[1/̟]→ (Y ⊗̂M)[1/̟] is an isomorphism.

Proof. (1) follows from exactness of products in the category of O-modules. For (2) note that Q is
̟-adically complete and Q⊗̂M is killed by ̟N , so the second statement will follow from the first
and (1). To see that Y is ̟-adically complete first note that ̟NY ⊆ X (i.e. Q killed by ̟N ) so

̟N+kY ⊆ ̟kX ⊆ ̟kY

for all k ≥ 0 and hence we can compute Ŷ as lim
←−k

Y/̟kX. Thus we get exact sequences

0→ X/̟kX → Y/̟kX → Q→ 0

for all k and hence an exact sequence

0→ X = X̂ → Ŷ → Q

by left exactness of inverse limits. This sits in a natural diagram

0 // X

��

// Y

��

// Q

��

// 0

0 // X // Ŷ // Q

with exact rows and the snake lemma now implies that the map Y → Ŷ is an isomorphism as
desired. �

In particular we can now define −⊗̂M on K-Banach spaces (this is why we are calling it a
”mixed” completed tensor product). It is canonically independent of the choice of unit ball, but
we also make a more general definition.

Definition 6.6. Let V be a K-vector space and let V ◦ ⊆ V be an OK-submodule such that
V ◦[1/̟] = V . Then we define

V ⊗̂M := (V ◦⊗̂M)[1/̟]

where the choice of V ◦ is implicit (the choice will in general affect the result).

If V is naturally a Banach space we will always take V ◦ to be an open and bounded O-submodule,
and Corollary 6.5(2) implies that V ⊗̂M is independent of the choice.

We finish with a lemma needed in the main text.

Lemma 6.7. Let S be a K-Banach algebra and let V be a finite projective S-module and U a
Banach S-module. Let M be a profinite flat OK-module. Then we have a natural isomorphism
V ⊗S (U⊗̂M) ∼= (V ⊗S U)⊗̂M . If V and U in addition are Banach S-algebras and M is a small
OK-algebra, then this is an isomorphism of rings.

Proof. Pick an open boundedOK-subalgebra S0 of S and pick open bounded S0-submodules V0 ⊆ V
and U0 ⊆ U . Moreover, pick OK-submodules (Ii) of M that form a basis of neighbourhoods of 0.
Then we have natural maps

V0 ⊗S0 (lim←−
i

(U0 ⊗OK
M/Ii))→ V0 ⊗S0 U0 ⊗OK

M/Ii

for all i which give us a natural map

V0 ⊗S0 (U0⊗̂M)→ (V0 ⊗S0 U0)⊗̂M.



OVERCONVERGENT MODULAR FORMS AND PERFECTOID SHIMURA CURVES 47

Now invert ̟ to get the desired map. If V and U are Banach S-algebras we may choose everything
so that V0 and U0 are subrings, and if M is a small OK-algebra we may choose the Ii to be ideals,
hence we see that this is a ring homomorphism. To see that it is an isomorphism note that if V
is in addition free we may choose V0 to be a finite free S0-module. The assertion is then clear. In
general, write V as a direct summand of a finite free S-module. �

6.2. Mixed completed tensor products on rigid-analytic varieties. Let X be a quasicom-
pact and separated smooth rigid analytic variety over an algebraically closed and complete extension
C of K, of pure dimension n. Here K is a finite extension of Qp as in the previous subsection and
we use the same notation O = OK , ̟ et cetera. In this subsection we aim to prove:

Proposition 6.8. We have a canonical isomorphism

Riν∗(ÔX⊗̂M) ∼= (Riν∗ÔX)⊗̂M

of sheaves on Xét.

Here U 7→ (ÔX⊗̂M)(U) = ÔX(U)⊗̂M for U ∈ Xproét qcqs defines a sheaf on Xproét and

the completed tensor product is computed using Ô+
X(U) ⊆ ÔX(U). The former is ̟-adically

complete by [Sch3, Lemma 4.2(iii)], so we have exactness of −⊗̂M and hence a sheaf. We use

Im((Riν∗Ô
+
X)(U) → (Riν∗ÔX)(U)) to compute the completed tensor product on the right hand

side and claim that this is a sheaf, but these statements are not obvious and we will prove them
below.

We note the following important corollary to the above proposition.

Corollary 6.9. We have

Riν∗(ÔX⊗̂M) ∼= Ωi
X(−i)⊗OX

(OX⊗̂M)

as sheaves on Xét.

Proof. This follows from Proposition 6.8, Lemma 6.7 and the canonical isomorphism Riν∗(ÔX) ∼=
Ωi
X(−i) (Proposition 3.23 of [Sch2]) together with the finite projectivity of the latter sheaf. �

We will need several lemmas before we can prove Proposition 6.8.

Lemma 6.10. The presheaf U 7→ H i
cts(Z

n
p ,O

+
X(U)) on Xét is a sheaf, where O+

X(U) has its ̟-adic
topology and the trivial Zn

p -action.

Proof. This follows from the computation in [Sch3, Lemma 5.5]; H i
cts(Z

n
p ,O

+
X(U)) is isomorphic to∧iO+

X(U)n in a way compatible with completed tensor products. �

Put Tn = Spa(C〈X±1
1 , ..., X±1

n 〉,OC〈X
±1
1 , ..., X±1

n 〉). We let T̃n be the inverse limit over n ≥ 0

of Spa(C〈X
±1/pn

1 , ..., X
±1/pn

n 〉,OC〈X
±1/pn

1 , ..., X
±1/pn

n 〉). This is an affinoid perfectoid (see [Sch3,
Example 4.4]).

Lemma 6.11. Let U ∈ Xét and and assume that there is a map U → Tn which is a composition of

rational embeddings and finite étale maps. Pull back the affinoid perfectoid Zn
p -cover T̃

n to obtain

an affinoid perfectoid Zn
p -cover Ũ of U . Then:

(1) There is a canonical injection

H i
cts(Z

n
p ,O

+
X(U))→ H i(Uproét, Ô

+
X)

with cokernel killed by p.

(2) H i(Uproét, ÔX) ∼= H i
cts(Z

n
p ,OX(U)).
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(3) H i(Uproét, Ô
+
X⊗̂M)a ∼= (H i(Uproét, Ô

+
X)⊗̂M)a (where −a denotes the associated almost OC-

module).

(4) H i(Uproét, ÔX⊗̂M) ∼= H i(Uproét, ÔX)⊗̂M .

Proof. We start with (1). The Cartan-Leray spectral sequence gives us

Hp
cts(Z

n
p , H

q(Ũproét,O
+
X/̟

m)) =⇒ Hp+q(Uproét,O
+
X/̟

m)

for all m. Since the Hq(Ũproét,O
+
X/̟

m) are almost zero for all q ≥ 1 ([Sch3, Lemma 4.10], see the
proof of (i) and (v) ) we conclude that

Hp(Uproét,O
+
X/̟

m)a = Hp(Zn
p , (O

+
X/̟

m)(Ũ))a.

Next, note that the inverse system

(Hp(Zn
p , (O

+
X/̟

m)(Ũ))m

has surjective transition maps by the proof of [Sch3, Lemma 5.5]. Since the inverse system
(O+

X/̟
m)m has almost vanishing higher inverse limits on the pro-étale site (by an easy application

of the almost version of [Sch3, Lemma 3.18]) we conclude that there is an almost isomorphism

lim
←−

Hp(Zn
p , (O

+
X/̟

m)(Ũ)a ∼= Hp(Uproét, Ô
+
X)a.

By [Sch3, Lemma 5.5] we have

p∧
(O+

X/̟
m)(U)n ∼= Hp(Zn

p , (O
+
X/̟

m)(U))→ Hp(Zn
p , (O

+
X/̟

m)(Ũ))

with cokernel killed by p, compatibly in m; in fact the proof shows that the injection is split. It
remains to verify that lim

←−
Hq(Zn

p , (O
+
X/̟

m)(U)) ∼= Hq
cts(Z

n
p ,O

+
X(U)). This is standard; one may

e.g. argue as in the proof of [NSW, Theorem 2.5.7] (note that the relevant lim
←−

1 vanishes by the

isomorphism above). This finishes the proof of (1).

For (2), use (1) and invert ̟ - this commutes with taking cohomology by quasicompactness.

For (3) we view −⊗̂M as the functor of taking self products over some index set I. We remark

that H i(Uproét, Ô
+
X)a is ̟-adically complete by part (1), [Sch3, Lemma 5.5] and the almost version

of Corollary 6.5(3). Thus we are left with verifying that cohomology for Ô+
X almost commutes with

arbitrary products. Writing
∏

i∈I as lim
←−J

∏
i∈J for all J ⊆ I finite we are left with showing that the

relevant higher inverse limits vanish, which is easy using the Mittag-Leffler condition and [Sch3,
Lemma 3.18].

Finally we invert ̟ in (3) to deduce (4). �

Lemma 6.12. The sheaf Riν∗ÔX is equal to the sheaf U 7→ H i
cts(Z

n
p ,OX(U)), and (Riν∗ÔX)⊗̂M

may be computed using H i
cts(Z

n
p ,O

+
X(U)) ⊆ Riν∗ÔX(U).

Proof. We may work étale locally on X, so assume without loss of generality that there is a map
X → Tn which is a composition of rational embeddings and finite étale maps. By abstract nonsense

Riν∗ÔX is the sheafification of the presheaf U 7→ H i(Uproét, ÔX). Let us write F for this presheaf.
By part (1) of the previous Lemma there is an exact sequence

0→ H i
cts(Z

n
p ,O

+
X(U))→ H i(Uproét, Ô

+
X)→ Qi(U)→ 0

where Qi(U) is simply defined as the quotient. This is an exact sequence of presheaves on Xw
et.

Moreover Qi(U) is killed by p for all U . Write G for the presheaf U 7→ H i
cts(Z

n
p ,O

+
X(U)), F+ for
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U 7→ H i(Uproét, Ô
+
X) and Q for U 7→ Qi(U). Then the exact sequence above sheafifies to

0→ G → (F+)sh = Riν∗Ô
+
X → Q

sh → 0

( −sh for sheafification) since G is already a sheaf by Lemma 6.10, and Qsh is killed by p since

Q is. Inverting ̟ we get that H i
cts(Z

n
p ,O

+
X(U))[1/̟] ∼= Riν∗ÔX(U). For the other assertion of

the lemma, note that Im(Riν∗Ô
+
X(U) → Riν∗ÔX(U)) coincides with H i

cts(Z
n
p ,O

+
X(U)) under the

identification H i
cts(Z

n
p ,O

+
X(U))[1/̟] ∼= Riν∗ÔX(U), and is therefore a sheaf (as was asserted in

Proposition 6.8). �

Proof of Proposition 6.8: Lemma 6.12 gives us that

((Riν∗ÔX)⊗̂M)(U) = (H i
cts(Z

n
p ,O

+
X(U))⊗̂M)[1/̟].

On the other hand Riν∗(ÔX⊗̂M) is the sheaf associated with the presheaf

U 7→ H i(Uproét, ÔX⊗̂M)

by abstract nonsense. Working locally again, assume that there is a map U → Tn as above. We
may then compute

H i(Uproét, ÔX⊗̂M) = H i(Uproét, ÔX)⊗̂M

= (Im(H i(Uproét, Ô
+
X)→ H i(Uproét, ÔX))⊗̂M)[1/̟]

= (H i
cts(Z

n
p ,O

+
X(U))⊗̂M)[1/̟]

using Lemma 6.11 (4) and the proof of Lemma 6.12. Therefore U 7→ H i(Uproét, ÔX⊗̂M) is actually

defines sheaf when restricting to the basis of such U (since U 7→ H i
cts(Z

n
p ,O

+
X(U)) is a sheaf), so it

must equal Riν∗(ÔX⊗̂M) on these U . This gives the desired isomorphism. �

6.3. Analogues of the theorems of Tate and Kiehl. Let X be a quasicompact and quasisepa-
rated rigid analytic variety over some complete non-archimedean field K of characteristic zero. For
simplicity let us work with the site given by the basis of the topology consisting of quasicompact
open subsets together with finite covers (we will specialize this further eventually). Given a small
Zp-algebra R, we may form the sheaf R(U) = OX(U)⊗̂R on X (U is qc open). In this section we
are going to prove analogues of the theorems of Tate and Kiehl for OX for R under the assumption
that X is affinoid and that K is discretely valued. The assumption that K is discretely valued
makes it easy to prove various flatness assertions. We suspect that this assumption can be dropped
with some more work but we will not need the extra generality. We will however prove a few
statements that we need without this assumption on K. For simplicity we work with the topology
on X given by rational subsets and finite covers. We start with some basic properties.

Lemma 6.13. Let X be affinoid and assume that K is discretely valued.

(1) For every rational U ⊆ X, R(U) is Noetherian.
(2) If V ⊆ U ⊆ X are rational, then the map R(U)→ R(V ) is flat.
(3) If U is rational and (Ui)i is a finite rational cover of U , then the natural map R(U) →∏

iR(Ui) is faithfully flat.

Proof. To prove (1), choose surjections OK〈X1, ..., Xm〉։ OX(U), Zp[[T1, ..., Tn]] ։ R and use the

image of Zp〈X1, ..., Xm〉 to compute OX(U)⊗̂R (this is valid by the open mapping theorem). Then
we get a surjection

OK〈X1, ..., Xm〉⊗̂Zp[[T1, ..., Tn]] ։ OX(U)⊗̂R
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and by direct computation the left hand side is (OK〈X1, ..., Xm〉[[T1, ..., Tn]])[1/p], which is Noe-
therian (since K is discretely valued), hence the right hand side is Noetherian.

Next we prove (2). Pick functions f1, ..., fn, g such that V = {|f1|, ..., |fn| ≤ |g| 6= 0}. We factor
R(U)→ R(V ) as

OX(U)⊗̂R→ OX(U)[1/g]⊗OX(U) (OX(U)⊗̂R)→ OX(V )⊗̂R.

The first morphism is flat since OX(U) → OX(U)[1/g] is, so it suffices to show that the second
morphism is flat. It is obtained from

O◦
X(U)[f1/g, ..., fn/g]⊗O◦

X(U) (O
◦
X(U)⊗̂R)→ O◦

X(V )⊗̂R

by inverting p, so it suffices to show that this map is flat. But the right hand side is the completion
of the left hand side with respect to the ideal generated by the images of the generators of the
maximal ideal of R. Since the ring on the left hand side is Noetherian (it is finitely generated
over O◦

X(U)⊗̂R, which is Noetherian by the same proof as in (1)), we conclude that the map is
(faithfully) flat.

For (3) we argue as in (2), writing Ui = {|fi1|, ..., |fini | ≤ |gi| 6= 0} and factoring the map as

OX(U)⊗̂R→

(∏

i

OX(U)[1/gi]

)
⊗OX(U) (OX(U)⊗̂R)→

∏

i

OX(Ui)⊗̂R.

Now OX(U)→
∏

iOX(U)[1/gi] is faithfully flat, so the first map is faithfully flat, and the second
map is faithfully flat by the same argument as in the proof of (2). �

Having established this Lemma we now view R as a sheaf of Banach algebras on X by picking the
unit ball of R(U) to be R◦(U) = O◦

X(U)⊗̂R. Then all restriction maps are norm-decreasing, hence
continuous, and if we view R as a profinite flat Zp-module and choose a pseudobasis with index
set I, the Banach space structure on R(U) is the same as the natural Banach space structure on
the set of bounded sequences in OX(U) indexed by I (of course the multiplication is very different
from the pointwise multiplication on the latter). We will follow [AW, §5] (which in turn follows
[FvdP, §4.5]) closely in the proof of our analogue of Kiehl’s theorem.

Definition 6.14. Let U ⊆ X be rational and let M be a finitely generated R(U)-module. For every
V ⊆ U rational, we define

Loc(M)(V ) := R(V )⊗R(U) M.

This is a presheaf of R-modules of U .

Proposition 6.15 (Tate’s theorem). For every rational U ⊆ X, Ȟ i(U,R) = 0 for all i ≥ 1 and all
finite rational covers U of U , i.e. the augmented Cech complex for U is exact. As a consequence,
H i(U,R) = 0 for all i ≥ 1.

Proof. The second statement is a direct consequence of the first by a well known theorem of Cartan.
For the first, pick a pseudobasis (ei)i∈I of R, considered as a profinite flat Zp-module. For a cover U
as above, write C•

aug(U,−) for the augmented Cech complex functor. Then, using the pseudobasis,
we have

C•
aug(U,R) = C•

aug(U,R
◦)[1/p] ∼=

(∏

i∈I

C•
aug(U,O

◦
X)

)
[1/p].

Note that the cohomology groups Ȟ i(U,O◦
X) are bounded p-torsion for i ≥ 1 by Tate’s theorem

and the open mapping theorem, hence by exactness of products and the above displayed equation
so are the cohomology groups Ȟ i(U,R◦) for i ≥ 1. Thus Ȟ i(U,R) vanish as desired. �
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Proposition 6.16. Assume that K is discretely valued. Then functor Loc defines a full exact
embedding of abelian categories from the category of finitely generated R(U)-modules into the
category of R-modules on U . Moreover, Ȟ i(U,Loc(M)) = 0 and H i(U,Loc(M)) = 0 for all
i ≥ 1 and all finite rational covers U of U for all finitely generated R(U)-modules M . If K is
not discretely valued, Loc(M) is still a sheaf with vanishing higher cohomology groups if M is a
finitely generated projective module.

Proof. We start with the sheaf/vanishing assertions. Again, the statement about derived functor
cohomology follows from that of Cech cohomology by Cartan’s theorem, and the assertion about
Cech cohomology implies that Loc(M) is a sheaf. Pick a cover U. Then by Proposition 6.15 the
complex C•

aug(U,R) is exact. If M is projective, then it is flat and hence C•
aug(U,R) ⊗R(U) M =

C•
aug(U,Loc(M)) is exact. If K is discretely valued, then by the flatness properties of R all terms

are flat R(U)-modules and we may deduce that C•
aug(U,R) ⊗R(U) M = C•

aug(U,Loc(M)) is exact
for arbitrary finitely generated M . In either case, it follows that Loc(M) is a sheaf with vanishing
higher Cech cohomology.

Now let K be discretely valued. To see that the functor is fully faithful, note that Loc(M) is
generated by global sections as an R-module. For exactness, one checks that if f : M → N is a
morphism of finitely generated R(U)-modules, then ker(Loc(f)) = Loc(ker(f)) and similarly for
images and cokernels (in particular, images and cokernels in this sub-abelian category turn out to
be equal to the presheaf images and cokernels). �

Remark 6.17. Propositions 6.15 and 6.16 also hold for the étale site of X, with the same proofs
with obvious modifications.

We may now introduce coherent R-modules.

Definition 6.18. Assume that K is discretely valued. For a cover U of U as above a sheaf F of
R-modules on U is called U-coherent if for every Ui ∈ U there exists an R(Ui)-module Mi such that
F|Ui

∼= Loc(Mi).

F is said to be coherent if it is U-coherent for some U.

The equivalence of this definition and the usual definition is standard, cf. e.g. [AW, §5.2].

Before proving Kiehl’s theorem we need a simple lemma. Pick f ∈ OX(X) and consider the
standard cover of X consisting of X(f) = {|f | ≤ 1} and X(1/f) = {|f | ≥ 1}. We denote the
intersection by X(f, 1/f). We let s denote the restriction map OX(X(1/f))→ OX(X(f, 1/f)).

Lemma 6.19. With notation as above:

(1) The image of s is dense.
(2) The image of the restriction map R(X(1/f)) → R(X(f, 1/f)) is dense for the natural

Banach algebra structure on the target.

Proof. Statement (1) is well known, but since there seems to be a little confusion in the literature let
us give the one-sentence proof: s is the completion of the identity map on OX(X)[1/f ] with respect
to the group topology generated by (̟nO◦

X(X)[1/f ])n≥0 on the source and the group topology
generated by (̟nO◦

X(X)[f, 1/f ])n≥0 on the target.

To prove (2), pick a pseudobasis (ei)i∈I for R. Then the map is the natural map from bounded
I-sequences in OX(X(1/f)) to bounded I-sequences in OX(X(f, 1/f)), which has dense image
since s does. �

We may now follow the proof of Kiehl’s theorem from [AW, §5.3-5.5]. One firstly establishes an
auxiliary lemma ([AW, Lemma 5.3]), which only uses the Banach algebra structure and vanishing
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of cohomology (in our setting this is Proposition 6.15). Using this auxiliary lemma one proves [AW,
Theorem 5.4] on surjections of certain maps (upon noting that, in their notation, it is erroneously
asserted in §5.3 that s1 rather than s2 has dense image, see Lemma 6.19). Then Ardakov and
Wadsley establish a weak form of Kiehl’s theorem for the covering {X(f), X(1/f)} ([AW, Corollary
5.4]), using [AW, Theorem 5.4] and properties of Loc functor, which is Proposition 6.16 in our
setting. From this, [AW, Theorem 5.5] follows as well. Following their arguments, we get

Theorem 6.20 (Kiehl’s Theorem). Assume that K is discretely valued and let F be a coherent
R-module on X. Then there exists a finitely generated R(X)-module M such that F ∼= Loc(M).
Moreover, if F is locally projective (i.e. there is a cover U such that F(U) is projective for all
U ∈ U), then M is projective.

Proof. For the last part, use that R(X) →
∏

U∈UR(U) is faithfully flat and that projectivity for
finitely presented modules may be checked after a faithfully flat base extension. �

We record a simple base change lemma.

Lemma 6.21. Assume that K is discretely valued and that C is the completion of an algebraic
closure K of K. Let X/K be an affinoid rigid space and letM be a finitely generated projective R(X)
module. Let XC be the base change of X to C and let f : XC → X be the natural map, and let RC

be the sheaf U 7→ OXC
⊗̂R on XC . Then we have natural isomorphisms M⊗R(X)RC(X) ∼=M⊗KC

and
f−1(Loc(M))⊗f−1R RC

∼= Loc(M ⊗K C).

Proof. The proof of the first assertion is similar to the proof of Lemma 6.7. Using this, the second
assertion follows straight from the definitions upon noting that f is open, which makes it easy to
compute f−1. �

Remark 6.22. When working with affinoid weights in the main part of the paper we will often need
analogues of the results of this section (as well as Lemma 6.7) when one replaces −⊗̂R by −⊗̂QpS
in the definition of R, where S is a reduced Qp-Banach algebra of topologically of finite type. In this
case these results are classical results in rigid geometry, or straightforward consequences of such
results.

6.4. Quotients of rigid spaces by finite groups. In this section we show that if X is a rigid
space and G is a finite group acting on X from the right such that X has a cover by G-stable
affinoid open subsets, then the quotient X/G exists in the category of rigid spaces. In fact, the
quotient is a quotient in Huber’s ambient category V ([Hub, §2]), hence in the category of adic
spaces. Moreover X/G is affinoid if X is affinoid. This is presumably well known, but we have not
been able to find a reference. The proof below is a reasonably straightforward adaptation of the
proof in the case of algebraic varieties given in [Mum, §II.7, Theorem].

We start with some general discussion on quotients. Let X = (X,OX , (vx)x∈X) ∈ V and let G
be a finite group acting on X from the right. Consider the quotient topological space Y = X/G
and let π : X → Y be the quotient map. We may consider the sheaf of rings OY := (π∗OX)G on
Y . For y ∈ Y we pick x ∈ X such that π(x) = y and let vy denote the valuation on OY,y given
by composing vx with the natural map OY,y → OX,x. This is independent of the choice of x (and
representatives for the valuations vx). Then we have:

Lemma 6.23. With notation as above, the sheaf OY := (π∗OX)G is a sheaf of complete topological
rings on Y and (Y,OY , (vy)y∈Y ) is in V and is the categorical quotient of X by G in V .

Proof. We prove that OY is a sheaf of complete topological rings, the rest is then immediate from
the definitions. First, note that OY is a sheaf since invariants are left exact. Second, note that
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taking invariants preserve completeness (for example, argue with nets). Finally, taking invariants
preserves topological embeddings, so OY is a sheaf of complete topological rings. �

Now let K be a complete non-archimedean field with ring of integers OK , and fix an element
̟ ∈ OK with 0 < |̟| < 1. Let B be a K-algebra of topologically finite type, and assume that B
carries a left action over K by a finite group G. Then A := BG is a K-algebra of topologically finite
type and the inclusion A→ B is a finite homomorphism by [BGR, §6.3.3 Proposition 2]. We wish
to show that Y := Spa(A,A◦) is the quotient of X := Spa(B,B◦) in V by verifying the conditions
of Lemma 6.23. We first record a few well known facts:

Lemma 6.24. Let C be a K-algebra of topologically finite type and put S = Spa(C,C◦).

(1) Let x, y ∈ S be distinct points and assume that x is a specialization of y. Then rk(x) >
rk(y), where rk(−) denotes the rank.

(2) Let D be a K-algebra of topologically finite type and put T = Spa(D,D◦). Assume that
we have a finite morphism f : C → D and let φ : T → S be the induced map. Then
rk(z) = rk(φ(z)) for all z ∈ T .

Proof. Recall that all valuations involved have finite rank so the statements make sense; this follows
from [FvdP, Proposition 7.1.8]. We think of elements of S as pairs (p, V ) where p ∈ Spec(C) and
V is a valuation ring in Frac(A/p) which is ̟-adically separated (and similarly for elements of T ).

To prove (1), recall that x = (p, V ) is a specialization of y = (q,W ) if and only if p = q and
V ⊆W . In this case W is a localization of V at a prime ideal by [ZS, §VI.3 Theorem 3], and hence
we deduce that rk(x) = dimV > dimW = rk(y).

To prove (2) let z = (q,W ) and x = φ(z) = (p, V ). Then, putting K = Frac(C/p) and
L = Frac(D/q), L/K is a finite extension and W is an extension of the valuation ring V . The
ranks are then equal by [ZS, §VI.11 Lemma 2].

�

We now return to previous setting, i.e. B is a K-algebra of topologically finite type with a left
action of a finite group G and we put A = BG, X = Spa(B,B◦) and Y = Spa(A,A◦). We let
π : X → Y denote the map induced by the inclusion A ⊆ B.

Proposition 6.25. Y = X/G as topological spaces.

Proof. On topological spaces π clearly factors through X/G. π is closed since it is finite. We know
from commutative algebra (the going-up theorem) that MaxSpec(B) ։ MaxSpec(A) as sets, hence
π is surjective on classical points and is therefore surjective since it is closed and classical points
are dense. Since π is closed and surjective it then suffices to show that Y = X/G as sets.

To do this, pick x, y ∈ X and assume that x /∈ yG. We wish to show that π(x) 6= π(y). If
they are equal, then by Lemma 6.24(2) rk(x) = rk(y) so we may without loss of generality assume
that rk(x) = rk(y) and hence deduce that x is not specialization of any of the yg for g ∈ G by
Lemma 6.24(1). Thus we may find open subsets Ug such that x ∈ Ug but yg /∈ Ug for all g. Put
U =

⋂
g∈G Ug. Then x ∈ U and yg /∈ U for all g ∈ G. Shrinking U if necessary we may assume that

it is of the form {|f | ≤ |h| 6= 0} for some f, h ∈ B. Then, putting F =
∏

g∈G gf and H =
∏

g∈G gh

one sees that F,H ∈ A and that π(x) ∈ {|F | ≤ |H| 6= 0} but π(y) /∈ {|F | ≤ |H| 6= 0}, hence
π(x) 6= π(y) as desired. �

Corollary 6.26. Y = (X/G, (π∗OX)G, (vxG)) and is therefore the quotient of Spa(B,B◦) by G in
V .
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Proof. We know that Y = X/G on topological spaces and it suffices to verify that OY = (π∗OX)G

since then the equality of the valuations follows directly. There is a natural map OY → (π∗OX)G

and hence it suffices to prove that this is an isomorphism on rational subsets {|f1|, ..., |fn| ≤ |h| 6= 0}
on Y , i.e. that

B〈f1/h, ..., fn/h〉
G = BG〈f1/h, ..., fn/h〉.

But this follows from the fact that taking invariants commutes with localization by invariant
elements and with inverse limits. �

Corollary 6.27. Let X be a rigid space over K with a right action of a finite group G and assume
that there is a cover of X by G-stable affinoids. Then the quotient X/G of X by G exists in V and
is a rigid space. Moreover, the natural map X → X/G is finite and if X is affinoid then X/G is
affinoid.

Proof. Consider (X/G, (π∗OX)G, (vxG)) where π : X → X/G is the quotient map on topological
spaces. If this is a rigid space then the remaining statements hold by Lemma 6.23 and Corollary 6.26.
To see that it is a rigid space let (Ui)i∈I be a cover of G-stable affinoids. By G-stability π−1(π(Ui)) =
Ui for all i and hence π(Ui) = Ui/G is open for all i. By Corollary 6.26 (Ui/G, (π∗OUi)

G, (vxG)) =
(X/G, (π∗OX)G, (vxG))|Ui is an affinoid rigid space for all i, and we are done. �
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