
VECTOR Vol.21 No.4

1

Contents
 Page

Editorial: 2

RESPONSES
Thoughts on the Urn Problem Eddie Clough 4

CRCOMPARE in J Adam Dunne 7

NEWS
News from Sustaining Members 10

Product Guide Gill Smith 13

DISCOVER
At Play with J: Metlov’s Triumph Gene McDonnell 25

Functional Programming in Joy and K Stevan Apter 31

Function Arrays in APL Gianluigi Quario 39

LEARN
A Suduko Solver in J Roger Hui 49

Sudoku with Dyalog APL John Clark & Ellis Morgan 53

APL+WebComponent (Part 2)
 Deploy your APL+Win Application on the Web Eric Lescasse 62

APL Idioms Ajay Askoolum 92

Review
 Mathematical Computing in J (Howard Peelle) Cliff Reiter 97

J-ottings 44: So easy a Child of Ten ... Norman Thomson 101

Zark Newsletter Extracts edited by Jonathan Barman 108

 Crossword Solution 116

PROFIT
Developer Productivity with APLX v3 and SQL Ajay Askoolum 117

Index to Advertisers 143

VECTOR Vol.21 No.4

2

Editorial:

Discover, Learn, Profit
The BAA’s mission is to promote the use of the APLs. This has two parts: to serve
APL programmers, and to introduce APL to others.

Printing Vector for the last twenty years has addressed the first part, though I see
plenty more to do for working programmers – we publish so little on APL2, for
example. But it does little to introduce APL to outsiders.

If you’ve used the Web to explore a new programming language in the last few
years, you will have had an experience hard to match with APL. Languages and
technologies such as JavaScript, PHP, Ruby, ASP.NET and MySQL offer online
reference material, tutorials and user forums. In our world, Jsoftware has for some
time had the best and most active of these but until the recent appearance of its
excellent new site (http://www.jsoftware.com), wiki and forums, little could be
viewed or googled through the Web. (Congratulations to Eric Iverson and Chris
Burke for an excellent production.)

Vector now gives priority to publishing online. This is the first issue to appear
simultaneously in print and online. We are steadily bringing our twenty-year
archive on line.

This issue is also the first to follow the structure of Vector Online. In place of the
division between ‘technical’ and ‘general’ articles, we offer sections Discover,
Learn and Profit.

 • Discover is about the APLs, possible extensions to them, their history and their
relationships with other programming languages;

 • Learn is about extending our competence, for new and experienced
programmers both;

 • Profit is about profiting from the use of APLs, either commercially,
academically, or simply in pursuit of a hobby.

Gene McDonnell’s “At Play With J”, which would usually appear in Learn,
appears this issue in Discover, as Gene reports the results of a programming
competition. Successful entries for the competition ran up to 100 lines long;
Metlov’s J entry runs to 6 characters. Hello?

VECTOR Vol.21 No.4

3

Sudoku madness Do programmers solve Sudoku problems – or just write
programs that do? The Sudoku craze has provoked our readers to offer general
solutions; two in Dyalog APL and a characteristically terse J program from Roger
Hui. We doubt even their authors intended to profit from them by using them to
solve Sudoku problems; so we’re offering them as examples to learn from. We can
all profit by studying them.

Stephen Taylor
email: editor@vector.org.uk

Dates for Future Issues of VECTOR

 Vol.22 Vol.22 Vol.22
 No.1 No.2 No.3
Copy date in press 3rd Dec 3rd March
Ad booking in press 10th Dec 10th March
Ad Copy in press 17th Dec 17th March
Distribution Dec 2005 Jan 2006 April 2006

Back numbers advert (rerun)

VECTOR Vol.21 No.4

4

RESPONSES
Thoughts on the Urn Problem

from Eddie Clough (eacloughatt@tiscali.com)

In his article in Vector Vol. 21 No. 2, Devon McCormick purports to show how,
given an urn containing a known number of balls, each of which may be black or
white, Bayesian statistics can be used to derive the probability that all of the balls
are white after a number of white and only white balls have been drawn, with
replacement. No one denies the validity of the Bayes formula, of course, but I am
not convinced that it can be applied to the urn problem in the way McCormick
suggests.

To understand the problem better, I asked myself how I would provide a prior
probability. Since I have the opportunity to examine individual balls, I should
provide a probability p that any particular ball is white. It will then follow that the
probability of there being x white balls among n balls is given by the usual
binomial formula (using the J vocabulary):

 (x!n)*(p^x)*(1-p)^(n-x)

Note that the value p is to be my Bayesian prior relating to the balls in a particular
urn and in this context the use of the binomial formula is not itself a Bayesian
prior.

{It is normally taken that the urn is a ‘one-off’. There is no distribution of numbers
of white balls involved so discussion of whether it is or is not binomial is not
meaningful.}

The Bayes formula can then be used to determine a probability, say P3, that all of
5 balls are white after 3 three draws. My J4.06 script is:

ab=:3 :'((y.%n)^d)*(y.!n)*(py^y.)*(1-py)^(n-y.)' NB. Bayes component
urn=:4 :0 NB. e.g. (d,n) urn p [('d';'n';'p')=.3;5;0.5
d=:{.x. [n=:{:x. [py=:y.
(ab n)%+/ab"0 i.>:n NB. Bayes probability
)

VECTOR Vol.21 No.4

5

Graph 1 shows the relationship between p and P3 over the possible range of p.

Choosing a value for p is the difficult bit. In general a person’s choice will depend
on whether they are optimistic (“I am sure they will all be white balls”) or
pessimistic (“I never win anything”), trusting (“Urn suppliers are good chaps”) or
suspicious (“There is always one bad apple”), and also, I believe, the person will
be more or less strongly influenced by the intrinsic value of making a wrong or
right decision about the urn – involving assessment against their own particular
utility curve (“From my point of view, the stakes are high, so I will act with
caution”).

I am not quite sure where the implicit assumption is made but Devon
McCormick’s result of a P-value of 0.15625 corresponds to a p-value of 0.5. This
may not seem as plausible a ‘neutral’ prior as does selecting the binomial
distribution as the prior; it is equivalent to assuming, before any draws have been
made, that the (prior) probability of all balls being white is P0= 0.03125 (calculated
by 0 5 urn 0.5).

An alternative start point might be to choose, as the prior, a probability of P0= 0.5
of all the balls being white. By trial and error or by more formal iterative means, it
can be found that this corresponds to a probability p=0.8705507 of individual balls
being white. This in turn implies a probability P3=0.699031 of all balls being white
after three whites have been drawn. Is this a better solution? Is there a best neutral
prior?

The relationship between P0 and P3 is shown in Graph 2, J for which is:

 P0=:0 5 urn"1 0 p=:(10%~i.11)

 P3=:3 5 urn"1 0 p

 load'plot'

 'frame 1;grids 1;title GRAPH 2;xcaption P0;ycaption P3' plot P0;P3

VECTOR Vol.21 No.4

6

It can be seen more clearly that in reality there is no satisfactory neutral starting
point if the variable p is transformed. Probability occupies the domain (0,1). If I
choose to work with odds, z=p%(1-p), rather than probability so that the
binomial formula becomes

 (x!n)*(z^x)%(1+z)^n

(a slightly simpler formula than the original in that x only appears twice), I then
have a variable, which occupies the domain (0,_), i.e. zero to infinity. Finally,
taking log odds I finish with a variable in the domain (__,_) or minus to plus
infinity. In this more familiar territory it can be recognised that at least two
parameters, a mean and a variance, are needed to describe my initial state of mind
and in fact the variance is the dominant parameter, for, if there is no prior
information about p, the appropriate value for the variance of log z is infinity and
other parameters become indeterminate.

My conclusion is that the Bayes formula can and should be used to show the
logical relationship between the various probabilities involved in a problem but if
the process is taken beyond this point it may only offer fool’s gold. Perhaps those
who came after Laplace, to whom Devon McCormick refers, were more astute
than we think.

A person might still select a prior – either p or P0 – to reflect his own views but I
would suggest that, if the number of draws is less than the number of balls, the
best advice a statistician can give is a conditional probability of the form:
If there is one black ball the probability of not drawing it in three draws is
(4%5)^3=0.512, hence there can be no great confidence that all the balls are
white.

VECTOR Vol.21 No.4

7

When the number of draws is equal to or greater than the number of balls, a
different question can be examined, namely what is the probability that all the
balls have been seen, and if only white balls have been drawn this can be used as a
measure of the probability that all the balls are white. Such a probability can be
computed without reference to a prior. The rows in the following table give the
probabilities for urns with different numbers of balls.

+--+--+
| | Number of Draws |
+--+--+
| | 2 3 5 10 20 |
+--+--+
2	5.000e_1 7.500e_1 9.375e_1 9.980e_1 1.000e0
3	0.000e0 2.222e_1 6.173e_1 9.480e_1 9.991e_1
5	0.000e0 0.000e0 3.840e_2 5.225e_1 9.427e_1
10	0.000e0 0.000e0 0.000e0 3.629e_4 2.147e_1
+--+--+

CRCOMPARE in J

from Adam Dunne (Tamil Nadu, India)

The attached code (written in J but without any tacit coding for simplicity) is
shorter than the APL version in Vector, but perhaps more importantly, I think the
code is easier to grasp, resting as it does on one central idea, a ‘matching lines’
table, shown below (each line of cr1 is a row, each line of cr2 is a column;
matches are flagged). One can intuitively see how the code extracts the line
numbers from the table indices. A blank line is added to the top of cr1 and cr2 in
crcreate as a 1 in position (0,0) of the table is always needed to make it work.

J does not use line numbers, but I thought they might be useful in an application
like crcompare, so I added them. Sample output follows ...

'cr1 cr2'=.'calc'crcreate'calc2'
 addlinenos cr1
 0|
 1|3 : 0
 2|display a+b+c
 3|d=.3
 4|e=.d=.a+b+c
 5|f=.d+e
 6|a=.0 0 $0
 7|b=.0 0$0
 8|g=.f^0.5
 9|display'done'
 10|z=.0.01*d

VECTOR Vol.21 No.4

8

 11|)

 addlinenos cr2
 0|
 1|3 : 0
 2|display a+b+c]d=.3
 3|e=.d=.a+b+c
 4|f=.d+e
 5|g=.f^0.5
 6|a=.b=.0 0$0
 7|display'done'
 8|z*d%100
 9|)

 NB. This is the table of matching lines
 cr1-:/"1 1"1 2 cr2
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

 'calc'crcompare'calc2'
 2|display a+b+c
 3|d=.3
-replaced by----
 2|display a+b+c]d=.3

 6|a=.0 0 $0
 7|b=.0 0$0
----deleted----

 6|a=.b=.0 0$0
----added----

 10|z=.0.01*d
-replaced by----
 8|z*d%100

display=:(1!:2)&2

crcompare=: 4 : 0
'cr1 cr2'=.x.crcreate y.
cr1nos=.addlinenos cr1
cr2nos=.addlinenos cr2
linesmatchtab=.cr1-:/"1 1"1 2 cr2
inds=.I.1=,linesmatchtab
ind2=.($linesmatchtab)#:inds
z=.0 0,<:(}.ind2)-}:ind2 NB. indices increment
z2=.ind2-z NB. starting indices
z3=.i.0
for_ct.i.{.$z do.

VECTOR Vol.21 No.4

9

 z3=.z3,(((<ct,0){z2)+i.(<ct,0){z);((<ct,1){z2)+i.(<ct,1){z
end.
z4=.((-:$z3),2)$z3
lineflags=.dims"0 z4
zout=.0 0$0
width=.1{$cr1
for_ct.i.{.$z4 do.
 flagsrow=.ct{lineflags
 'extralines1 extralines2'=.ct{z4
 if.flagsrow-:1;1 do. NB. replace
 zout=.zout,(extralines1{cr1nos),(width{.'-replaced by----')
 zout=.zout,(extralines2{cr2nos),(1,width)$' '
 elseif.flagsrow-:1;0 do. NB. deleted
 zout=.zout,(extralines1{cr1nos),(width{.'----deleted----'),(1,width)$' '
 elseif.flagsrow-:0;1 do. NB. added
 zout=.zout,(extralines2{cr2nos),(width{.'----added----'),(1,width)$' '
 end.
end.
zout=.charmattovec zout
)

samewidth=: 4 :'(maxw{."1 x.);(maxw=.>./(1{$x.),1{$y.){."1 y.'
charvectomat=: 3 :',;._2 y.,LF'NB.converts char vec with LFs to char mat
crcreate=:4 :'('' '',charvectomat 5!:5<x.)samewidth '' '',charvectomat
5!:5<y.'
dims=:3 :'<(#>y.)>0' NB. flags boxes where dimension>0
elim_trail_bl=:3 :'(($y.)-(|.'' ''=y.)i.0){.y.'
NB.eliminates trailing blanks
charmattovec=:3 :0 NB. converts character matrix to char vector with LFs
z=.i.0
for_ct.i.{.$y. do.
 z=.(z,elim_trail_bl ct{y.),LF
end.
)

addlinenos=:3 :'(3":,.i.{.$y.),.''|'',.y.' NB. adds linenos to crfn

VECTOR Vol.21 No.4

10

News from Sustaining Members

MicroAPL Ltd

The launch by AMD of a 64-bit version of the x86 architecture, a couple of years
ago, has opened the way for low-cost, 64-bit systems in the mass market. Today,
you can buy a desktop machine – or even a laptop – with a 64-bit processor, for
just a few hundred pounds. Intel have now followed AMD with a binary-
compatible equivalent, and, over the next few months, we can expect 64-bit x86
systems to become commonplace. 64-bit versions of Windows and Linux are
available to run on this architecture. In addition, Apple has sold 64-bit
Macintoshes, based on the PowerPC architecture, for some time. 64-bit Servers
are, of course, well established.

Such machines can address extraordinary amounts of memory. 32-bit systems are
limited to at most 4Gb of memory address space, and usually this is not all
available to user processes (Windows, for example, normally has a limit of 2Gb).
Today, XP Professional x64 Edition supports up to 128Gb of RAM and 16
Terabytes of virtual memory. In the future, even more memory will be usable.
And the cost of RAM has fallen to such an extent that it is already possible to
configure desktop machines with tens of gigabytes of memory for a couple of
thousand pounds.

Of course, it is not just the size of workspace which matters; it is also the
maximum size of arrays. 32-bit APL systems use 32-bit slots to hold array sizes
and dimensions. Thus, even if the processor can address more than 32-bits and the
APL interpreter provide access to a workspace size greater than 4Gb, it does not
follow that the APL interpreter will necessarily handle arrays which will take full
advantage of this memory.

For this reason, MicroAPL is introducing a fully 64-bit version of APLX, which
will overcome all limitations in workspace and array size for the foreseeable
future. APLX64 is this new product. It is initially being made available for Linux
and Windows, with a MacOS version following. In APLX64, all array dimensions
are 64-bit, so there are effectively no limits other than available memory on the
number of elements in any array, or the maximum length along any dimension.
Integers are also 64-bit (otherwise you would have to use floating-point numbers
to index arrays!). Booleans remain as one bit per element, making it possible to
handle huge Boolean arrays without excessive memory requirements. Huge
native files and component files are of course fully supported.

VECTOR Vol.21 No.4

11

We believe this product extends the reach of APL upwards to applications which
previously were beyond its reach. These include modelling and simulation using
huge data sets, and OLAP applications for analysis and aggregation of large
volumes of transactional data. In this new world, you do not need to compromise:
you can just load the entire database into your APL workspace (the APLX ŒSQL
system function will be handy here!). In some ways, this is taking APL back to the
kinds of application where it used to be strong, but where it lost ground because
the amount of data became too big to fit in the workspace. The benefit is direct
manipulation, in the APL workspace, of data which other languages have to
process piecemeal.

APLX64 is currently in beta, and will be available in the first quarter of 2006.

Kx Systems

Kx Systems has announced new speed gains for its kdb+tick application, achieved
by eliminating the latency between data capture and data analysis. Kx, leader in
high-performance databases and financial applications, offers kdb+tick
worldwide on Linux, Solaris and Windows x64 operating systems.

“Today’s onslaught of tick data streams in 24x7 from multiple exchanges
worldwide. The trading firm that acts on this data faster stands to make
enterprising trades microseconds ahead of the competition,” said Simon
Garland, Kx CTO. “Zero latency kdb+tick makes streaming data usable in
applications immediately.”

Because kdb+tick v. 2.2 removes the traditional delay between the capture of
streaming data and its availability for applications, it enables traders to receive
every single tick instantly. Applications written using kdb+tick can, for example,
update a spreadsheet in real time with every tick that streams in.

By removing the latency between tick data capture and analysis, kdb+tick endows
extreme speed applications, such as auto trading and program trading, with more
time to execute advanced strategies. It becomes feasible, for example, to perform
full depth-of-book program trading on billions of ticks in a single trading day.

Matthew Rock, Director IT at Dresdner Kleinwort Wasserstein, commented “We
rely on the capture speed and fast, flawless time-series analysis in kdb+tick to
develop unprecedented trading models, to back test trading strategies, and to
position DrKW for superior program trading.”

Kdb+tick gives traders more time to respond decisively and intelligently to
market conditions in real time, and its database heritage takes kdb+tick beyond

VECTOR Vol.21 No.4

12

ordinary streaming data solutions. Without losing a microsecond of red-hot speed
for streaming data processing, kdb+tick also maintains a real-time database that
process a million events per second and saves a historical database for business-
critical functions such as regulatory audit trails. For more information visit
www.kx.com.

APLNEWS for Japanese Audience
from Kyosuke Saigusa

We started to distribute APL related news to Japanese audience strictly in
Japanese language via our APL programmed Web site (http://aplcons.com/apl) in
recent months. I would like to introduce some reported items to you, wondering if
they are of some interest outside Japan.

An interesting demo program has been completed based on the APL COM
interface, which became available with IBM APL2 Windows version released in
May this year (Workstation APL2 V2.6).

This program (about 250 lines of APL2 code with only one utility subroutine) will
start Excel and allow computation of the data on Excel sheets (regarded as pages
of 2 dimension arrays in front of you) interactively from an APL window by
simple APL statements handling 2-dimension arrays.

This will take XLS, CSV,ATF files for input and allow parallel processing between
APL and Excel because any changes made on Excel side will be reflected in APL
processing because the latest data are always read-in prior to APL processing..

The program will run in full licensed interpreter as well as non-licenced APL2
runtime. Any APL interpreter functions in respective environments are usable
without restrictions. We intend to use this program to broaden the base of APL
users amongst the Excel users.

There are other topics, such as a common utility APL function library based on
namespaces which allow even GRAPHPAK as external functions with a lot of
merits for APL group users and Windows dialog design scheme for application
developers for higher productivity than standard approach.

But APL2-COM demo-program reminds us of the importance of the use of a very
small elementary part of APL2 language for general public for practical results. It
will be distributed basically free of charge to individuals outside enterprises. Any
inquiries are most welcome.

VECTOR Vol.21 No.4

13

The Vector Product Guide

compiled by Gill Smith

VECTOR’s exclusive Product Guide aims to provide readers with useful
information about sources of APL hardware, software and services. We welcome
any comments readers may have on its usefulness and any suggestions for
improvements.

We reserve the right to edit material supplied for reasons of space or to ensure a
fair market coverage. The listings are not restricted to UK companies and
international suppliers are welcome to take advantage of these pages.

For convenience to readers, the product list has been divided into the following
groups (‘poa’ indicates ‘price on application’):

• APL and J Interpreters
• APL-based Packages
• Consultancy
• Other Products
• Overseas Associations
• Vendor Addresses
• World Wide Web and FTP Sites

Every effort has been made to avoid errors in these listings but no responsibility
can be taken by the working group for mistakes or omissions.

We also welcome information on APL clubs and groups throughout the world.

Your listing here is absolutely free, will be updated on request, and is also

carried on the Vector web site, with a hotlink to your own site. It is the most
complete and most used APL address book in the world.

Please help us keep it up to date!

All contributions and updates to the Vector Product Guide should be sent to:
Gill Smith, Brook House, Gilling East, York, YO62 4JJ. Tel: 01439-788385,
Email: apl385@compuserve.com

VECTOR Vol.21 No.4

14

APL INTERPRETERS

COMPANY PRODUCT PRICES(£) DETAILS

ADVOCORP Oy APL+Win, APL+Link, APL+Linux,
 APL+Unix, APL*Plus Sharefile poa Complete APL2000 and Statgraphics(StatPoint) product range

and links to various third party products.

APL Borealis Inc. Dyalog APL poa Distributor of Dyalog APL products from Dyadic

 APL2000 poa Distributor of APL2000 products

APL Systems IDC SL
 APL2000 APL interpreters and toolspoa Distributor of APL2000 products for the UK

Consulting and maintenance for APL applications

Beautiful Systems Dyalog APL/W for Windows poa US Distributor of Dyalog APL products from Dyadic.

 Dyalog APL for Unix poa See Dyadic listing for product details.

Dinosoft Oy Dyalog APL/W for Windows poa Finnish distributor of Dyalog APL products.

 Dyalog APL for Unix poa See Dyadic's listing for product details.

Dittrich & Partner APL+Win poa Cognos/APL2000 Inc products

 Dyalog APL poa Dyadic Systems Ltd. products

 IBM APL products poa

Dyalog Dyalog APL for DOS/386 995 Second generation APL for DOS.Runs in 32-bit mode, supports
very large workspaces. Unique "window-based" APL
Development Environment and Screen Manager. Requires
386/486 based PC or PS/2, at least 2Mb RAM, EGA or VGA,
DOS 3.3 or later.

 Dyalog APL/W for Windows 995 As above, plus object-based GUI development tools. Requires
Windows 3.0 or later.

 Dyalog APL for Unix 995-12,000 Second generation APL for Unix systems. Available for Altos,
Apollo, Bull, Dec, HP, IBM 6150, IBM RS/6000, Masscomp,
Pyramid, NCR, Sun and Unisys machines, and for PCs and
PC/2s running Xenix or AIX. Oracle interface available for IBM,
Sun and Xenix versions.

DynArray DICE for Windows poa Software development kit which includes an APL interpreter as a
DLL and the ability to run and link existing and new APL code to
non APL code such as VB, C/C++, Java and integration with
various Windows software applications and database packages
such as MS Office.

I-APL Ltd I-APL/PC or clones 8 ISO conforming interpreter. Supplied only with manual (see 'Other
Products' for accompanying books).

IBM APL Products TryAPL2 free APL2 for educational or demonstration use. Download from IBM
APL2 ftp site or contact APL Products.

 Workstation APL2 V2 $1500 AIX, Linux, Solaris, Windows
 Version 2 Product 5724-B74

 APL2 Version 2 poa Product No. 5688-228. Full APL2 system for S/370 and S/390

 APL2 Application Envt Vn2 poa Product No. 5688-229. Runtime environment for APL2 packages

Insight Systems APL2000 poa Leading distributor of APL2000 products in Denmark

 Dyalog Ltd. poa Leading distributor of Dyalog APL products in Denmark

 IBM poa Leading distributor of IBM APL & GraphX products in Denmark

 Dyalog APL poa Distributor

 Causeway Products poa Distributor

 Structural Analysis Software poa Complete package by IG Zenkner&Handel to perform structural
analysis/engineering calculations. Also suitable for dynamic
problems, e.g. earthquake simulation.

JSoftware Inc. J on the Web online registration ...

 J Professional (online reg.) $895 includes manual set and one year of updates

 J Standard (online reg.) Free Free for download only

VECTOR Vol.21 No.4

15

 Books and accessories

 J Dictionary $50

 J Phrases $50

 J Primer $50

 Fractals, Visualization and J $80

 Concrete Math $40

 Exploring Math $50

Lescasse Consulting APL+PC poa Lescasse Consulting is the exclusive APL2000 distributor in
France and also distributes in Switzerland and Belgium.
Call for price quotes.

 APL+Unix poa

 APL+DOS poa

 APL+Win poa

 Dyalog APL/W poa French distributor for Dyalog

MicroAPL APLX for Windows/MacOS 499 Cross-platform APL development environment with GUI
programming facilities. Interpreter modelled on APL2. Available
for Windows 95/98/ME/NT/2000/XP, Mac OS 9 and Mac OS X.

 APLX Server Edition poa For running large multi-user APL applications on x86 Linux,
RS/6000 AIX, and Windows NT/2000.

 APLX for Linux (commercial) 499 Linux desktop edition of APLX, compatible with Windows and
MacOS versions, with full development environment and GUI
programming facilities. Runs under RedHat, Debian, Mandrake
and SuSe Linux distributions.

 APLX for Linux (personal) Free Full version of APLX, can be downloaded free for personal use.

 APL*PLUS poa Manugistics

 APL.68000 poa MicroAPL Ltd

 APL2 poa IBM

Strand Software Canada

 All APL*PLUS products poa All APL*PLUS products including upgrades and educational.

 Dyalog and JSoftware products poa
 USA

 Dyalog and JSoftware products poa

ubJL GmbH Dyalog APL and
(APL Software Team) Dyalog Systems Ltd. Products poa

APL PACKAGES

COMPANY PRODUCT PRICES(£) DETAILS

Acadvent ARQUE poa Software for the quality assurance of university examinations.

APL Software\Services
 APL Utilities poa Software: mostly .AWS for DOS, utilities for most APL

interpreters. Public domain APL*Plus v10 with on-screen
documentation and interactive tutorials. APL Conference
Software. Books: APL user manuals for STSC, IBM, and Sharp.
Request email catalog from dick_holt@email.com.

Assured Systems FLAIR poa Finite loader and interactive rescheduler. Customisable full-
function scheduling system. (Available outside Australia by
special arrangement only.)

Beautiful Systems ASF_FILE $399 Dyalog APL/W auxiliary processor for access to APL*PLUS/PC
APL component files (*.ASF).

 SF_READ poa Dyalog APL/W functions to read APL*PLUS data objects of any
type or structure from *.SF style component files created by
APL*PLUS II or III.

VECTOR Vol.21 No.4

16

Causeway CausewayPro for Dyalog/W 400 Causeway application development platform for Dyalog APL/W.

 RainPro Business Graphics 250 The ultimate graphics toolkit for the APL developer. Adds 3D
charting capability, Web publishing and clipboard support to the
shareware product. Charts can be included in NewLeaf reports.
Functionally compatible across Dyalog/W and APL+Win.

 NewLeaf for Dyalog and +Win 400 Frame-based reporting tool with comprehensive table-generation
and text-flow support. Offers multiple master-page capability,
bitmap wrap-around and on-screen preview with pan and zoom.
Fully supported on Dyalog/W and APL+Win

 SharpPlot for Microsoft .Net 500 RainPro rebuilt as a fully-managed .Net DLL for use by APL and
non-APL applications alike. May be an attractive alternative for
Dyalog 11 and Santa Fe users, as it has much improved image
support as well as running rather faster, and not cluttering your
workspace with APL sourcecode.

Cinerea AB ORCHART 250 Organization chart package for IBM APL2/PC. Full & heavily
commented source code included - free integration into other
applications. NB: ASCII output with line-drawing (semi-graphic)
characters for boxes.

CoSy K.CoSy $30 % yr sub K.CoSy is a general purpose computing and programming
environment constructed, all in open code, in Arthur Whitney's
very high level, yet structurally transparent Array Programming
Language, K , and its tightly coupled User Interface. K.CoSy is an
extremely productive environment in one of the most powerful and
fastest of APL's progeny, and therefore, likewise, of all languages.
K.CoSy provides a workspace-like interactive development
environment previously impossible in K. Because of its unique
open construction within the language itself, this environment is
clearly competitive in a large domain with the APLs from the other
vendors. K.CoSy notepad nature, interactivity, and open K code
vocabulary make learning Arthur Whitney's K far less daunting
and far more productive than its raw console, or any external
scripting method. If you are a client of Kx Systems , or are
investigating the possibilities, Contact us. See CoSy/K/CoSy for
more information.

DynArray DynaWeb Server poa A web server providing web based access to applications running
on the DICE interpreter from DynArray, or on an IBM mainframe
running APL2.

 DynaHarry poa A DSS system which offers the next generation capabilities for
current APLDI, IC/E and IC/1 users. It comes with ROLAP
capabilities, multisystem access to a wide variety of databases
and data warehouses.

 DynaLink poa An ODBC client interface for DICE and IBM APL2 programs.

Dynamic Logistics MPS poa Master Production Scheduling
 Systems GmbH FBS poa Forecasting and Budgeting System

 DRP poa Distribution Requirements Planning

HMW 4XTRA poa Networked, Windows/Unix based Front End and Middle Office
Foreign Exchange and Money Market Dealing System. Scalable
from 1 user to 120+.

 Inca poa Software Change Management System. Enables the user to co-
ordinate development work from several sources, resolve
clashes, promote work items for testing and configure releases to
a live environment.

 Maya poa APL code file manager. A comprehensive suite of tools giving a
multi-window IDE style interface to file based APL code. Offers
features such as copying from file to file, object comparison,
string search, style formatting, hot-spot editor for filed objects
(including variables), etc.

 Aztec poa System shell for APL development. Manages real-time and batch
applications across multiple platforms. Offers standardised error
trapping, job scheduling, task communication and recovery/restart
features.

VECTOR Vol.21 No.4

17

 Olmec poa APL GUI environment, providing menu bar, tool bar, status area,
navigation sidebar (with treeviews & listviews)and client area. All
are configured by simple text files and require no programming.
Client area has a "tab wizard" option to provide ordered
transaction processing

 Nazca poa fast, flexible and reliable static database and editor.

Insight Systems Causeway poa Leading distributor of Causeway products in Denmark

 All our old products are now either OEM’d, in the public domain, out of date, or all of the above. We’ll be back!

Lescasse Consulting
 APL+Win Monthly Training $600 Download 50+ page document about APL+ programming each

month. You also get one or more workspaces full of re-usable
APL code and sometimes additional files or products.

 Advanced Windows Programming $95 200-page book plus companion disk on interfacing APL and
Delphi. Contains full coverage of Delphi-2, +Win and Dyalog.

 DLL parser for APL $250 Parse any Visual Basic DLL declaration file into a set of quadNA
definitions. Turn constants and structures into APL variables.
Available for APL+Win and Dyalog/W.

 Delphi Forms Translator $195 Design forms with Delphi and turn them automatically into APL
programs which recreate the same form (+Win and Dyalog/W).

 APL+Link Pro poa ODBC interface for APL+Win

 SQAPL Pro poa ODBC interface for Dyalog APL/W

 RainPro poa Highly customisable 2D and 3D publication graphics for APL+Win
and Dyalog APL/W

 NewLeaf poa Page layout and printing tools for APL+Win and Dyalog

 GraphX and ChartFX poa High-quality business graphics for APL+Win

 Formula One and Dyalog APL $95 100-page book + companion disk on how to use the Formula One
VBX with Dyalog APL/W

Lingo Allegro FACS poa EMMA-like interface to DB2 or ODBC databases

 QWIN poa Legacy DOS Windowing support for APL+Win

 ODBC/127 poa IBM AP127-like ODBC Interface for APL+Win and Dyalog APL/W

Optima ServiceLine poa A property management system which keeps a
record of all outstanding tasks, produces an up
to date list of work to-do and Scheduled reminders plus
automated standard letters and basic financial control.

 TravelLine poa A system designed to control the workload allocation for
a fleet of chauffeur vehicles plus a reminder system
for fleet management and Local Authority requirements.

 BPA poa "Brand Performance Analysis" allows for the modelling of
product/brand performance over time and comparison with
competitor products.

 DBI poa "Database Interrogator" allows for the non technical user
to ask sensible questions of a large database such as a
questionaire and obtain results tables and graphs quickly,
easily and accurately.

Qualedi Qualedi $850-$5,500 Electronic Data Interchange (EDI) translation software for the PC,
with strict compliance checking.

 FAB free Training program for the above.

Zark APL Tutor (PC) $299 APL computer-based training. Available for APL*PLUS PC &
APL*PLUS II. Demo disk $10.

 APL Tutor (MF) $5000 Mainframe version.

 Zark ACE $99 APL continuing education. APL tutor news and hotline phone
support.

 APL Advanced Techniques.... $59.95 488pp. book, (ISBN 0-9619067-07) including 2-disk set of utility
functions (APL*PLUS PC format).

 Communications $200 pc, $500 mf Move workspaces or files between APL environments.

VECTOR Vol.21 No.4

18

APL CONSULTANCY AND DEVELOPMENT

COMPANY PRODUCT PRICES(£) DETAILS

ADVOCORP Oy Consultancy poa APL application conversions, APL Windows interfaces, APL to
API level interfacing to any system under Windows, TCP/IP
network and database connectivity, APL based financial
client/server applications, Cognos Planning and ReportNet
consultancy.

APL Borealis Inc. Support and Development poa APL Software Support and Development. Specialists since 1979
in Sharp APL, APL*Plus, APL+Win, Dyalog APL

APL Solutions Inc Consultancy poa APL systems design, development, maintenance, documentation,
testing and training. Providing APL solutions since 1969.

Assured Systems Consultancy poa APL+Win and/or J and/or VB custom systems development.
Conversion of APL+DOS to APL+Win a speciality.

AUSCAN Software Consultancy and Training poa APL software development, training

Ray Cannon Consultancy 500/day +VAT APL, C, C++, Assembler, Windows, Graphics on PC and IBM
Mainframe. Experience in Insurance, Chemical, and Airline
Industries

Causeway Consultancy and Training poa On-site training for Causeway, RainPro and NewLeaf.
Customisation and enhancement to meet local needs. Code
review and pre-implementation check of Causeway applications.

CoSy Consultancy poa CoSy.com, Coherent Systems, provides rapid development in the
K language and associated data base products, with a particular
interest in quantitative (financial) modelling.

David Crossley Consultancy poa Experienced in large APL system developments since 1969 for
PC or mainframe.

Dinosoft Oy Consultancy poa Specialised in very large databases.

Dittrich & Partner Consultancy poa APL programming and analysis; APL workshops and training on
the job

Dyalog Consultancy poa APL and Unix system design, consultancy, programming and
training.

DynArray Consultancy poa DynArray offers consulting in the areas of DSS, Y2K and APL
programs upgrade/conversion to modern Web enabled platforms.

Evestic AB Consultancy poa Excellent track record from 15+ years of APL applications in
banking, insurance, and education services. All dialects, platforms
and project phases. SQL expertise.

First Derivatives plc Consultancy poa Financial trading software in Q, K and kdb+

First Derivative
 Analytics Ltd. Consultancy poa Analysis, design, prototyping, development & testing of APL

(especially financial) applications: Sharp, Dyalog APL/W.

General Software Consultancy from 200 Over 20 years experience with every version of APL, large
mainframe systems and small PC based programmes.

HMW Consultancy poa System design consultancy, programming. HMW specialize in
banking and prototyping work. full members of DSDM consortium
and Agile Alliance.

Hoekstra Systems Consultancy poa APL consultancy, programming, etc. Also UNIX system
administration

INFOSTROY Consultancy poa, competitive Broad experience in various APL platforms. Special skills and
knowledge in developing complex applications for investment,
financial and construction markets. Implementation of hybrid
solutions based on APL, Delphi, C#, VBA, SQL servers.

Insight Systems Consultancy poa We have experience with just about every APL system and
platform in common use during the last 20 years, from SHARP
APL under MVS or Linux to APL+Win and in particular Dyalog
APL under Windows 9x, NT or 2000. If you have decisions to take
about adapting your APL application to take advantage of
emerging technologies, or would like your strategy reviewed, give
us a call. We have extensive experience in all areas of APL
development, from legacy systems, up, down and sideways

VECTOR Vol.21 No.4

19

migrations, to the development and support of shrink wrapped
solutions based on APL. Even if we don’t have time to do the
work ourselves, we will know where to find someone who is an
expert in your version of APL and your application area, on your
continent.

KJK Consultancy and
 software development poa APL-based data management: conversions, ad hoc-analyzing

tools, well-interfaced methods for defining, processing and
browsing of multi-dimentional reports. Rapid custom software
development based on proven modular toolset approach.

Lambent Technolgy Consultancy poa APL programming, consulting & training; web design and
construction.

Phil Last Consultancy poa APL consultancy, modelling and programming.

Lescasse Consulting Consultancy poa A range of consultants, experts in Windows programming, with
APL+Win and Dyalog APL/W. More than 100 major APL
applications already developed. We all have additional expertise
in Formula One and Delphi.

Lingo Allegro Consultancy poa General APL consulting, internet website development, migration
and downsizing, performance tuning, education and training.

Lucas Solutions Consultancy poa Rates depend on task and location.

Alastair Kinloch Consultancy poa Design, analysis and programming for banking, insurance and
pensions, financial planning and modelling, corporate
performance and legal reporting

Milinta Inc Consultancy poa Design, development, maintenance, conversion, documentation in
all APLs, most APs and some specific Sharp products (LOGOS,
ViewPoint, Retrieve). Experience in multi-user, multi-task
systems, databases, Windows programming.

Ellis Morgan Consultancy poa Business Forecasting & APL Systems.

Nussbaum gift Consultancy poa IT Consultant with a strong focus on APL.

Optima Consultancy, Training
 & Development poa We have been in business since 1990 and have a team of

APL professionals with many years experience in
pharmaceutical, industrial and financial systems on both
PC and Mainframe platforms. In addition to pure APL we can also
offer assistance with network integration, ACT! customisation
and issues concerning the internet and/or web design.

Graeme Robertson Consultancy & Training 250-500 Design and write custom software. Maintain and upgrade APL
systems. Deliver customized APL training courses

Skelton Consulting Consultancy poa K/Q Consultancy

Snake Island Research Inc
 Consultancy poa APL interpreter and compiler enhancements, intrinsic functions,

performance consulting. APL parallel compiler APEX is giving
very good initial performance tests with convolution somewhat
faster than FORTRAN.

SovAPL Consultancy poa Offshore APL development service.

Strand Software Consultancy poa Advice on migrating to and from all flavours of APL and hardware
platforms. Full-screen interface implementation, APL utilities,
benchmarking, efficiency analysis, actuarial software, system
development tools, valuation, pricing and modelling systems.

Rex Swain Consultancy poa Independent consultant, 25 years experience. Custom software
development, PC and/or mainframe.

Sykes Systems Inc Consultancy poa Complete APL services specialising in audit, optimisation and
conversion of APL systems. Excellent design skills. All dialects
and platforms. 17-23 years experience.

 MACfns MACfns has been released. A suite of over 100 high-accuracy,
high-speed assembler code utility functions for APL+Win and
APL+DOS, MACfns has been thoughtfully designed and
implemented for APL programmers. It includes functions for
segmented string manipulation, data restructuring, translation and
datatype adjustment, and many numerical computations.Typical
speedups range from 4-10 times, with reduced workspace usage,

VECTOR Vol.21 No.4

20

datatype conservation, identity detection, and greater numerical
precision amongst the other benefits. Documentation of MACfns
is extremely detailed and thorough.

ubJL GmbH (APL Software Team) poa Analyses, design and programming.

OTHER PRODUCTS

COMPANY PRODUCT PRICES(£) DETAILS

APL-385 Typefaces poa Variants of the APL2741 typeface available to specification. APL
unicode fonts designed and built for all flavours of APL.

APL Borealis Inc. APL Training poa Hands-on courses in Introductory, Intermediate, Advanced and
Windows APL. Courses are customized and flexible, and may be
delivered on-site, with strong emphasis on methods for efficient
and maintainable APL systems development.

ComLog Comic-Logger $25.95+p&p APL*PLUS II comic-book inventory system. Shareware version
available on America OnLine.

I-APL Ltd Books poa I-APL stocks books written to go with the I-APL interpreter and
some APL Press books. For a list write to 11 Auburn Road, Bristol
BS6 6LS, ring 0117 973 0036 or email acam@blueyonder.co.uk.

Renaissance Booksellers The widest range of APL books available anywhere. See Vector
Data Systems advertisements.

Right Seat Software Vox Proxy $199 (comm) Vox Proxy is authorware for PowerPoint(r) 2000 or 2002 which
allows the use of Microsoft Agent Technology (3D talking
animated characters) within slide shows. VP appears on
PowerPoint's main menu and provides editing side-by-side with
slides. Automated script-writing provides control of PowerPoint,
allowing the use of characters for live presentations or fully-
automated tutorials, demos, or training programs. Optional CD
Prep program allows the user to create auto-starting CD's that will
play on any version of PowerPoint or without PowerPoint.

 $69.95 (edu) Vox Proxy for educational use.

OVERSEAS ASSOCIATIONS

GROUP LOCATION JOURNAL OTHER SERVICES Ann.Sub.

ACM SigAPL International APL QuoteQuad Conferences; APL white pages; web site $30

APL Bay Area USA N. California APLBUG Monthly Meetings (2nd Monday) $20

APL Germany e.V. Germany APL Journal Semi-annual meetings

FinnAPL Helsinki, Finland FinnAPL Newsletter Seminars on APL 100FIM(private), 30(student), 1000 (Co)

Japan APL Assoc Tokyo APL Journal Monthly meetings (4th Sat) 10,000yen to join
 Material fee 5,000yen a year

Rome/Italy SIG Roma, Italy

SE APL Users Grp Atlanta, Georgia The APL Planet Semi Annual meetings $13 (US), $25 (non-US)

SovAPL Moscow, Russia - Seminars and Annual Meeting

Toronto SIG Toronto, Canada Occasional meetings, APL Skills Database, Toronto Toolkit

ADDRESSES

ORGANISATION CONTACT ADDRESS, TELEPHONE, FAX, EMAIL etc.

Acadvent Ltd. Dr A M Sykes 171 Gower Road, Swansea SA2 9JH, UK. Tel: 01792-201776
Email: Alan.Sykes@which.net

ACM SigAPL ACM, 1515 Broadway, 17th Floor, New York, NY 10036, USA (Subs only)

ADVOCORP Oy Richard Eller Mikonkatu 8 A, 2.krs, PL 363, 00101 Helsinki, Finland.
Tel: +358 9-621 3300 Fax: +358 9-621 3378 Email: re@rett.fi

APL-385 Adrian Smith Brook House, Gilling East, York YO62 4JJ, UK. Tel: 01439-788385
Email: adrian@apl385.com

VECTOR Vol.21 No.4

21

APL Bay Area APLBUG Curtis Jones (Sec) 228 South 15th Street, San Jose, CA 95112-2150, USA
Tel: +1 (408) 292-4060 Email: curtis_jones@prodigy.net

APL Borealis Inc. Richard Procter 381 Manor Road East, Toronto, Ontario M4S 1S7, Canada.
Tel: (416) 457-7828. Fax: (416) 482-6582 Email: info@aplborealis.com

APL Consultants Japan Kyosuke Saigusa 1507 shimomizo, sagamihara, kanagawa, Japan 2290015
Tel:+81-042-778-2127 Fax:+81-042-778-2205

APL Germany e.V. Dr. Reiner Nussbaum Buchenerstrasse 78, D-68259 Mannheim, Germany.
Email: reiner@nussbaum-gift.de

APL Software\Services Dick Holt 1570 Heather Field Lane, Earlysville VA 22936 USA. Tel: +1 434-973-4255
email: dick_holt@email.com

APL Solutions Inc Eric Landau 1107 Dale Drive, Silver Spring, MD 20910-1607 USA
Tel: +1 (301) 589-4621 Fax: +1 (301) 589-4618 Email: aplsi@starpower.net

Assured Systems Lois & Richard Hill 49 First Street, Black Rock 3193, Australia.
Tel: +61 3 9589 5578 Fax: +61 3 9589 3220 Email: hillrj@melbpc.org.au

AUSCAN Software Ltd Richard Procter PO Box 39, Mansfield, Ontario L0N 1M0 Canada
Tel: +1-705-434-1239 Email: rjp@ca.inter.net

Beautiful Systems, Inc. Jim Goff PO Box 2235 Jenkintown, PA 19046, USA
Tel: +1 (215) 635-0375; Fax: +1 (215) 635-9212
Email: info@beautifulsystems.com

Ray Cannon Ray Cannon 21 Woodbridge Rd, Blackwater, Camberley, Surrey GU17 0BS, UK.
Tel: 01252-874697 Email: ray_cannon@compuserve.com

The Carlisle Group Paul Mansour 544 Jefferson Avenue, Scranton PA, 18510 USA. Tel: +1 570-963-2036

Causeway Graphical Adrian Smith Brook House, Gilling East, YORK, UK.
Systems Ltd Tel: 01439-788413 Email: adrian@causeway.co.uk

Cinerea AB Rolf Kornemark Box 61, S-193 00 Sigtuna, Sweden.
Tel/Fax: +46 859 255 421 Email rolf@cinerea.se

ComLog Software Jeff Pedneau 18728 Bloomfield Road, Olney, MD 20832 USA
Tel: +1 (301) 260-1435 Email: jeff@softmed.com

CoSy.com Bob Armstrong 42 Peck Slip #4B, New York, NY 10038-1725, USA. Tel: +1 212-285-1864
Fax: +1 212-285-1864. E-mail: bob@CoSy.com.

David Crossley David Crossley 187 Le Tour du Pont, 84210 ST DIDIER, France. Tel: +33.4.90.66.08.87
Email: crossley@au-village.com

Danish User Group Helene Boesen c/o Insight Systems ApS, Nordre Strandvej 119G, Hellebæk, Denmark

Dinosoft Oy Pertti Kalliojärvi Lönnrotinkatu 21C, 00120 Helsinki, FINLAND.
Tel: +358 9 70028820 Fax: +358 9 70028824 Email: dinosoft@dinosoft.fi

Dittrich & Partner Axel Holzmüller Kieler Strasse 17, D-42697 Solingen, Germany. Tel: +49 212-260 660
Consulting GmbH Fax: +49 212-260 6666; Email: info@dpc.de

Dyalog Ltd. Morten Kromberg Grove House, Lutyens Close, Chineham Court, Basingstoke, Hampshire
RG24 8AG, UK. Tel: 01256-338461 Fax: 01256-316559
Email: sales@dyalog.com; support@dyalog.com

Dynamic Logistics
 Systems GmbH Michael Baas Wilhelm-Schöffer-Str. 29, 63571 Gelnhausen Germany.

Tel: +49 6051 13067 Fax: +49 6051 16142. Email: info@dls-planning.com

DynArray Corporation Dr James Brown 16360 Monterey Rd. Suite 260, Morgan Hill, CA 95037, USA
Tel: +1 (408)-782-6648 Fax: +1 (408)-782-6627 Email:info@DynArray.com

Evestic AB Olle Evero Berteliusvagen 12A, S-146 38 Tullinge, Sweden
Tel & Fax: +46 778 4410 Email: olle.evero@mail.com

FinnAPL Olli Paavola Suomen APL-Yhdistys RY, FinnAPL RF, PL 1005, 00101 Helsinki 10,
Finland Email: olli.paavola@pyr.fi

First Derivatives plc Michael O'Neill First Derivatives House, Kilmorey Business Park, Kilmorey Street, Newry,
Co, Down, N. Ireland BT34 2DH. Tel. 028 3025 2242 Fax 028 3025 2060
Email:enquiries@firstderivatives.com

First Derivative Ken Chakahwata 114 Lemsford Lane, Welwyn Garden City, Herts AL8 6YP, UK
Analytics Ltd. Tel/Fax: 01707-339620. Email: KenChakahwata@compuserve.com

General Software Ltd M.E. Martin Little Wester House, Westerhill Road, LINTON, Kent ME17 4BS
Tel: 01622 832463 E-mail: martin@gsoft.plus.com

HMW Computing Chris Hogan Hamilton House, 1 Temple Avenue, London EC4Y 0HA, UK.
Tel: 0870-1010-469; Email:HMW@4xtra.com

Hoekstra Systems Ltd Bob Hoekstra Dominique, Salisbury Road, Woking, Surrey, GU22 7UR, UK.
Tel: 01483-771028. Fax: 01483-837324
Email: Bob.Hoekstra@HoekstraSystems.ltd.uk

VECTOR Vol.21 No.4

22

I-APL Ltd Anthony Camacho 11 Auburn Road, Redland, Bristol BS6 6LS, UK.
Tel: 0117-973 0036. Email: acam@blueyonder.co.uk

IBM APL Products Nancy Wheeler APL Products, IBM Silicon Valley Lab, Dept H36/F40, 555 Bailey Avenue,
San Jose CA 95141, USA. Tel: +1 (408) 463-APL2 [+1 (408) 463-2752]
Fax: +1 (408) 463-4488 Email: APL2@vnet.ibm.com

INFOSTROY Alexey Miroshnikov 11 Bolshaya Monetnaya Str., suite 6, St. Petersburg 197101 Russia.
Tel:+7 812 325-9797 Fax: +7 812 233-9685 Email:aim@infostroy.ru

Insight Systems ApS Helene Boesen Nordre Strandvej 119G, DK-3150 Hellebæk, Denmark
Tel:+45 70 26 13 26 Fax: +45 70 26 13 25 Email: info@insight.dk

Japan APL Assoc Juichiro Takeuchi Keio Univ. Faculty of Sci.&Tech. 3-14-1 Hiyoshi, Kohoku-ku Yokohama
Kanagawa, Japan 223-8522. Tel:+81(045)563-1411 Fax:+81(045)566-1617
E-mail:takeuchi@ae.keio.ac.jp

JSoftware Inc. Eric Iverson 33 Major Street, Toronto, Ontario, Canada M5S 2K9. Tel: +1 (952) 470-
7345 Fax: +1 (952) 470-9202 Email: info@jsoftware.com

KJK-tieto Oy Kimmo Kekäläinen Merikasarminkatu 10 B 56,00160 Helsinki, Finland. Tel: +358 50 55 27 207;
Email: kimmo.kekalainen@kjk-tieto.com

Kx Systems Simon Garland [Europe] 555 Bryant St., No. 375, Palo Alto CA 94301 USA. Tel: +1 866 kdb fast
email: info@kx.com (in Europe simon@kx.com)

Lambent Technology Ltd Stephen Taylor 81 South Hill Park, London NW3 2SS, UK. Tel: +44(0)20 7813 3786.
Email: sjt@lambenttechnology.com

Phil Last Ltd Phil Last 146 Crossbrook Street, Cheshunt, Herts, EN8 8JY, UK.
Tel: 01992-633807 Fax: 0121-359 0375 Email: phil.last@net.ntl.com

Lescasse Consulting Eric Lescasse 18 rue de la Belle Feuille, 92100 Boulogne, France. Tel: +33.1.46.05.10.76
Fax: +33.1.46.04.60.23 Email: eric@lescasse.com

Lingo Allegro USA, Inc Walter G. Fil 203 N. LaSalle Street, Suite 2100, Chicago, Illinois 60601, USA.
Tel:+1 (800) 546 4621 E-mail: lingo-allegro@visto.com

Lucas Solutions Jim Lucas Stubbedamsvej 9C, 3.tv., 3000 Helsingør, Denmark
Tel: +45 49 26 52 42. Email: jel@danbbs.dk

Alastair Kinloch Ltd Alastair Kinloch 519 Webster's Land, Edinburgh EH1 2RX, Scotland, UK.
Tel: +44 (0)7802 430 202 Email: alastair.kinloch@btinternet.com

MicroAPL Ltd. Richard Nabavi The Roller Mill, Mill Lane, Uckfield, E.Sussex TN22 5AA
Tel: 01825 768050. Fax: 01825 749472
Email: MicroAPL@microapl.demon.co.uk

Milinta Inc. Dan Baronet Contact Dan Baronet at dbaronet@milinta.com

Ellis Morgan Ellis Morgan Myrtle Farm, Winchester Road, Stroud, Petersfield, Hants GU32 3PE, UK.
Tel: 01730-263843 Email: apl@ellismorgan.co.uk

Dr. Nussbaum gift mbH Dr Reiner Nussbaum Buchenerstrasse 78, D-68259 Mannheim, Germany
Tel: +49 621 7152190, Email: reiner@nussbaum-gift.de

Optima Systems Ltd Paul Grosvenor Optima House, Mill Court, Spindle Way, Crawley, West Sussex, RH10 1TT,
UK. Tel: 01293 562700 Fax: 01293 562699
Email:paul@optima-systems.co.uk

Qualedi Inc. Nicole Schless 121 West Main Street, Milford, CT 06460, USA. Tel: +1 (203) 874-4334
 Georges Brigham Fax: +1 (203) 876-9083. Email: sales@qualedi.com; info@qualedi.com

Renaissance Data Sys Ed Shaw P.O. Box 511, Botsford, CT 06404, USA. Tel: +1 (203) 270-9729
Email: aplbooks@earthlink.com

Right Seat Software, Inc. Tom Atkins 1110 12th Street, Golden, CO 80401, USA. Tel:+1 303 278 2244.
Fax: +1 303 278 6967. Email: info@voxproxy.com

Graeme Robertson Dr. Graeme D. Robertson 15 Little Basing, Basingstoke, Hants RG24 8AX, UK.
Tel: +44 (0) 1256-364071 Email: GraemeDR@nildram.co.uk

Rome/Italy SIG Mario Sacco Casella Postale 14343, 00149-Roma Trullo, Italy
Email: mario.sacco@tin.it

SE APL Users Group John Manges 413 Comanche Trail, Lawrenceville, GA 30044, USA
Tel: +1 (770) 972-3755 Email: seapldoc@aol.com

Skelton Consulting GmbH Charles Skelton Weinklinge 9, 70329 Stuttgart, Germany. Email: c.skelton@skelton.de

Snake Island Research Inc Bob Bernecky 18 Fifth Street, Ward's Island, Toronto, Ontario M5J 2B9 Canada
Tel: +1 (416) 203-0854 Fax: +1 (416) 203-6999
Email: bernecky@interlog.com

Soliton Associates Soliton Inc, 44 Victoria Street, Suite 2100, Toronto, ON M5C 1Y2
Tel: +1 (416) 364 9355 Email: sales@soliton.com

SovAPL Alexander Skomorokhov PO Box 5061, Obninsk-5, Kaluga Region 249020, Russia
 Russian Chapter of SIGAPL Tel: +7(08439)47109 Fax: +1 (530) 6885510 Email:askom@obninsk.com

VECTOR Vol.21 No.4

23

Strand Software Inc P.O. Box 330, Excelsior, MN 55331 USA
Tel: +1 (952) 470-7345 Fax: +1 (952) 470-9202 Email: info@strandsoft.com

Rex Swain Rex Swain 8 South Street, Washington, CT 06793 USA. Tel: +1 (860) 868-0131
Fax: +1 (860) 868-9970 Email: rex@rexswain.com

Sykes Systems Inc Roy Sykes Jr 4649 Willens Ave., Woodland Hills, CA 91364, USA
Tel: +1-818-347-5779 Email: roysykes@earthlink.net

Toronto SIG Richard Procter P.O.Box 39, Mansfield, Ontario, L0N 1M0, Canada, email:
info@torontoapl.ca

ubJL GmbH
 (APL Software Team) Kai Jäger Thusneldastr. 22, 90482 Nürnberg, Germaany. Tel + 49 911 482512;

Fax: +49 911 482518 Email jaeger@ubjl.de

Zark Incorporated Gary A. Bergquist 23 Ketchbrook Lane, Ellington CT 06029, USA. Tel: +1 (860) 872-7806

FTP SITES

IBM APL2 ftp.software.ibm.com/ps/products/apl2

WORLD WIDE WEB SITES

ACM SigAPL www.acm.org/sigapl/

ADVOCORP Oy www.rett.fi/

AFAPL www.afapl.asso.fr/ (Journal available on line)

APL2000 www.APL2000.com/

APL-385 www.apl385.com

APL Forum www.aplforum.com

APL Germany e.V. www.apl-germany.de

APL Journal, Germany http://www.rhombos.de/shop/a/show/article/?216

APL Borealis Inc. www.aplborealis.com

APL Consultants Japan http://aplcons.com

APL to ASCII see Waterloo Archive

Assured Systems www.assuredsystems.com.au/

AUSCAN http://home.ca.inter.net/rjp/auscan/

Eke van Batenburg wwwbio.LeidenUniv.nl/~Batenburg/index.html

Carlisle Group http://carlislegroup.com/

Causeway www.causeway.co.uk/

CODEWORK www.codework-it.com/tangram/eng/

CoSy (Bob Armstrong) CoSy.com/

Dinosoft Oy www.dinosoft.fi/

Dittrich & Partner www.dpc.de; www.apl-online.de

DMOZ - Open Directory http://dmoz.org/Computers/Programming/Languages/APL/

Dyalog Ltd www.dyalog.com/

DynArray www.dynarray.com/

Dynamic Logistics www.dls-planung.de
 Systems GmbH www.dls-planning.com

FinnAPL www.pyr.fi/apl/

First Derivatives plc www.firstderivatives.com

Hoekstra Systems www.HoekstraSystems.ltd.uk/

IBM APL2 www.ibm.com/software/awdtools/apl

Infostroy www.infostroy.ru

Insight Systems ApS www.insight.dk/

Japan APL Association www.ae.keio.ac.jp/lab/soc/takeuchi/japla/

JSoftware Inc www.jsoftware.com/

VECTOR Vol.21 No.4

24

KJK-tieto Oy www.kjk-tieto.com

kx systems www.kx.com

Lambent Technology www.lambenttechnology.com

Lescasse Consulting www.lescasse.com/

Lingo Allegro USA Inc www.lingo-allegro.com/

MicroAPL Ltd www.microapl.co.uk/apl

Milinta Inc www.milinta.com

Nussbaum gift www.nussbaum-gift.de

Optima Systems Ltd www.optima-systems.co.uk

Qualedi, Inc. www.qualedi.com

Renaissance Data www.aplbooks.com/

Right Seat Software, Inc. www.voxproxy.com

SigAPL www.acm.org/sigapl/

Skelton Consulting GmbH www.skelton.de

Snake Island Research Inc. www.snakeisland.com

Soliton www.soliton.com/

Strand Software Inc. www.strandsoft.com/

Rex Swain www.rexswain.com/

Toronto SIG (for Toolkit) www.torontoapl.ca/

ubJL GmbH
 (APL Software Team) www.aplteam.de

Waterloo Archive www.math.uwaterloo.ca/apl_archives/Welcome.html

Jim Weigang www.chilton.com/~jimw/

VECTOR Vol.21 No.4

25

DISCOVER
At Play with J: Metlov’s Triumph

by Eugene McDonnell (eemcd@mac.com)

A puzzle was recently announced by Frank Buss on the Internet that led to some
interesting discoveries. The puzzle is to be found by Googling “Frank Buss
Triangle Problem” and then clicking on “Triangles Challenge” or browsing
directly to http://www.frank-buss.de/challenge/ if you prefer. It says:

The challenge is to write a program, which counts all triangles with area >0 in this
figure:

But count only the triangles, which are bounded by lines, like (P0, P7, P8), not all
possible connections between the points, like (P7, P8, P9). If anything is unclear,
the solution is 27 and looks like this: (see overleaf)

Graphic output is not needed, but you can do what you want. If a GUI or
something else is included, it would be nice to write: how long you needed for the
pure algorithm and for the rest.

VECTOR Vol.21 No.4

26

This is not a quantitative, but more a qualitative challenge. Neither the number of
lines nor the time (which I can't verify anyway) is important, but I'm interested in
good solutions, which show the advantages of the chosen language.

Every program should be documented enough to understand how it works and it
should not simply print 27, but somewhere it should read from a file or integrate
the points and geometry, so that it is easy to change it for similar problems, for
example if another line is added, but it need not to be so general as to count the
number of squares.

There were 31 entries: The languages they used, the number of entries in that
language, and the average number of lines in the programs are tabulated below:

Language Number of entries Average number of lines

C++ 3 115

Java 4 105

Python 1 94

Haskell 1 93

Ruby 1 75

Scheme 1 66

Awk 1 59

Lisp 17 56

Kogut 1 29

J 1 1

VECTOR Vol.21 No.4

27

Most of these had a generous amount of documentation along with the actual
program. I don’t know most of the languages used, but I could come to some
conclusions about them. It seems to me that most of the authors were more
programmers than mathematicians. Almost all of them tackled the problem as one
of establishing the proper way to represent the points, lines, and intersections in
the triangle. Most of them gave solutions which were wired in, and their
programs could not easily be extended to variations of the problem.

Since Haskell is supposed to be a functional programming language, I thought it
might give an interesting and useful result, but I was disappointed. It hard-coded
the geometry of the problem, so that it, like many others, couldn’t be extended.

The J solution was submitted by Dr. K. L. Metlov. Here it is:

* -: @ * +

Metlov is a physicist, with many publications in his field, and he obviously
studied the triangle puzzle as a mathematical one. In his notes, one sees that he
experiments with variations of the problem, and in a relatively short time had
concluded that a simple expression could be formed that would apply to a
triangle with any number of lines.

This is a fork, and a dyad, and it is better understood by emphasizing its
forkiness.

* +
 \ /
 |
 *
 |
 -:

The arguments are multiplied and added, this product and sum are multiplied,
and the product is halved.

I give Metlov’s Documentation on the next three pages:

“When both sides of the triangle are divided into an equal number of steps (let’s
call this number -- n), the number of triangles is n^3 (n to the third power). For the
example Frank Buss gives n=3 and the answer is 3^3 = 27.

VECTOR Vol.21 No.4

28

When sides are subdivided into a different number of subdivisions, say, n and m,
the number of triangles is equal to

½m × n(m + n)

which is integer for any integer m and n.

In J language (see http://www.jsoftware.com/ for description and download) the first
formula is coded and invoked as

 nt =: ^&3
 nt 3
27

The second formula is coded and invoked as

 nt =: * -: @ * +
 3 nt 3
27
 2 nt 5
35

The first variant of the program is three characters, the second is 6 characters.

It took me 15-20 minutes of drawing rectangles to derive the formula. J is an array-
oriented language, descendent of APL. Therefore, the above programs (without
change) can indeed be used to process millions of rectangles very fast. In order to
achieve this the arguments must be arrays (of equal length in the second case). For
example:

 (3 2) nt (3 5)
27 35

How the formula was developed:

Here is the link to the page of notes I made when thinking about the problem.
http://www.livejournal.com/users/dr_klm/51584.html?thread=435072#t435072 and
overleaf is a copy of the page.

The direct link is here: http://galaxy.fzu.cz/~metlov/Triangles_Deriv.gif

VECTOR Vol.21 No.4

29

VECTOR Vol.21 No.4

30

I do not know if that will be enough to communicate the basic idea used for
deriving the formula. On the other hand I do not have time to explain it in full
detail.

The interesting part occupies the lower left quarter of the page. Triangles are
counted separately for two lower corners of the big triangle (left and right) and
then the result is multiplied by 2 (if n=m), or added up with exchanging n<->m (if
n!=m). To count triangles for one corner I sum up the triangles, occupying all
single sub-sectors, the triangles, occupying all pairs of two consecutive sub-
sectors, ... three sub-sectors... etc... In this sum, the triangles, which include both
left and right corners of the big triangle are counted with weight 1/2 (to note that
they will be counted again, in the sum for the other corner).

I ran this procedure for n=3, m=3 approximately in the middle of the page. Then,
by induction, wrote a general formula with the sum. The sum is nothing else but
an arithmetic progression, which is immediately summed up. Then, with very
basic algebra, the final formulas are obtained.”

Comment from Frank Buss: This is a nice solution and the language looks interesting. It
is the same concept as the Scheme solution, which uses a formula instead of counting the
triangles, but this formula is much easier than the one used in the Scheme solution.

VECTOR Vol.21 No.4

31

Functional Programming in Joy and K

by Stevan Apter (sa@nsl.com)

What is Joy?

Joy is a pure, concatenative, functional, scalar programming language.

Joy is pure because it does not contain assignment.

Joy is functional because computation consists of the evaluation of expressions.

Joy is concatenative (and not applicative) because

 • The elementary well-formed expressions of Joy are monadic functions of a
nameless data stack.

 • If X and Y are well-formed expressions, then the concatenation of X and Y is
well-formed.

 • If Z is the concatenation of X and Y, then the value of Z is the composition of
the values of X and Y.

For a rigorous exposition of Joy, and for examples of its use, the reader should
consult the FAQ, language reference manual, tutorial, and related materials on the
official Joy website http://www.latrobe.edu.au/philosophy/phimvt/joy.html.

In this note to my interview with Joy’s inventor, Manfred von Thun, I describe tcK
(http://www.nsl.com/k/tck/), a tiny concatenative language modelled on Joy and
written in K.

A tiny concatenative K

tcK is a pure, concatenative, functional, array programming language.

tcK is a "tiny" version of cK (http://www.nsl.com/papers/ck.htm): syntax and display
are untranslated K, and the interactive environment is the plain K console.

The primitives of tcK are those of K: the twenty dyads

 ~ ! @ # $ % ^ & * - _ = + | : , < . > ?

and their monadic counterparts

VECTOR Vol.21 No.4

32

 ~: !: @: #: $: %: ^: &: *: -: _: =: +: |: :: ,: <: .: >: ?:

The atoms of tcK are those of K, minus lambdas (defined functions): integers,
floats, characters, symbols, null, dictionaries, and lists.

Since tcK is concatenative, everything – primitives, atoms, and lists – is a monadic
function of the nameless data stack. For example, the number 12 is a function
which takes a data stack and returns it with 12 as the new top element. The “stack
diagram” showing the action of the 12 function is:

 -> 12

+ is a monadic function which takes a stack whose top two elements are X and Y
and returns it with X and Y replaced by X+Y:

 X Y -> X+Y

Evaluation in tcK uses two stacks, implemented as K lists. The data stack

 (..;Z)

has Z as its top element. The program stack

 (X;..)

has X as its next element.

Since the program stack is a concatenation of monadic functions, it denotes a
composition. For example,

 (2;+;*)

is the composition times of add of 2 of the data stack. Applied to

 10 20 30 40 50

it returns

 10 20 30 2080

That is,

 10 20 30 (40 * 50 + 2)

Computation consists of evaluating the program stack on the data stack to obtain
a new data stack.

VECTOR Vol.21 No.4

33

Quotations and Combinators

A program in tcK is a list, or in Joy-speak, a quotation. Quotations are monadic
functions of the stack (everything is), so, applied to the data stack, it returns that
stack with itself as the top element.

A combinator is a function which expects one or more quotations on the data stack,
and applies those quotations in a particular way to the remainder of the stack.
Combinators resemble APL operators, or K adverbs.

The simplest combinator is i, which expects a quotation as the top item of the data
stack. The action of this combinator is to evaluate the quotation on the remainder
of the data stack:

 (10;20;30;40;50;(2;+;*);i)
 10 20 30 2080

Recursive Combinators

Joy contains several combinators which abstract common patterns of recursion.
One such is linear recursion, which expects four quotations I, T, E, and F on the
data stack. The combinator evaluates the predicate I. If it leaves 'true' on the stack,
it evaluates T, else it evaluates E, recurses, and then evaluates F. For example, in
Joy the factorial function can be written:

 [0 =] [1 +] [dup -1 +] [*] linrec

and in tcK:

 ((0;=);(1;+);(dup;-1;+);,(*);linrec)

Definitions

Joy allows us to create associations between a name and the contents of a
quotation:

 sqr == dup *

The effect of the definition is to add the word 'sqr' to the Joy vocabulary. Note that
== is not assignment.

The tcK analogue of Joy definition is the function-definition function d. A tcK
definition is a projection of d onto a quotation:

 sqr:d[(dup;*)]

VECTOR Vol.21 No.4

34

The result is a monadic function of the stack which can be used in subsequent
evaluations as though it were a primitive of tcK.

An implementation of tcK

The tcK evaluator E is the following dyadic function:

 E:{*(a .)/(x;y)}

E is applied to a data stack x and a program stack y. It calls (a .) repeatedly,
initially on (x;y), and thereafter on the result of the previous application, until that
result either matches (x;y) or is the same twice in a row.

For convenience, evaluation on the empty data stack is defined as the projection

 e:E[()]

For example,

 e(10;20;30;+;-)

 ,-40

The application function a is:

 a:{:[~#y;(x;y);(4:*y)_in 4 7;(f[x;*y];1_ y);(x,1#y;1_ y)]}

Again, x is the data stack and y the program stack. If y is empty – all program
elements have been processed – then a returns (x;y), which causes E to terminate
evaluation and return the final data stack. Otherwise, if the next program element
*y is a function or a symbol, f is called to compute the new data stack and *y is
dropped from the program stack. Otherwise, the next program element is
appended to the data stack and dropped from the program stack.

The function-evaluation function f is:

 f:{:[(#k)>i:k?y;(v[i]_ x),,y . v[i]#x;y x]}

where x is the data stack and y is a single program element to evaluate. k is a list
of the forty K primitives, and v is a vector of the corresponding valences, negated
for convenience. For example, the dyadic k primitive of equality is k 32, and v 32
is -2.

If y is a K primitive, then the new data stack is constructed by dropping valence-
of-y-many elements from the data stack, and appending the result of applying y to
those elements.

VECTOR Vol.21 No.4

35

If y is not a K primitive, then it is either a tcK primitive or a tcK definition.

The tcK primitives are monadic K functions which model the stack operators and
combinators of Joy, and the adverbs of K. For example, the Joy operator dup
which duplicates the top element of the data stack is written:

 dup:{x,-1#x}

and the K adverb over is written:

 over:{(-2_ x),,{{*e(y;z),x}[y]/x}.-2#x}

The vocabulary of Joy is quite large. Since the purpose of tcK is primarily
pedagogical, I've implemented only those operators required by the
demonstration problems:

 dup X -> X X duplicate top of data stack

 cons X [..] -> [X ..] insert X at head of [..]

 swap X Y -> Y X swap top two items of data stack

 i [P] -> P evaluate P

 linrec [I] [T] [E] [F] -> if I then T else: E, recurse, F

 right X Y [F] -> X [F]/:Y X F/:Y, X F each-right Y

 over X [F] -> [F]/X F/X, F over X

 converge X [F] -> [F]/X F/X, R:F X, then R:F R until R ~ X

 or R ~ previous R

Three Problems

Transitive closure1

A K implementation of the classical 'or . and' APL solution:

 tc:{x|x(|/&)/:x}/

tc is the converge of the monadic function

 {x|x(|/&)/:x}

the “noun-verb-adverb” syntax of which is:

VECTOR Vol.21 No.4

36

 nvn(vav)an

 v

That is, x is a noun, | and & are transitive verbs, / and /: are adverbs, and the
expression (|/&) parses to a transitive verb. In keyword K, tc is:

 {x or x (or over and) right x} converge

We can easily implement tc in prefix form, where expressions involving adverbs
are explicit projections of higher-order functions:

 or:|
 and:&
 over:{x/y}
 converge:{x/y}
 right:{y x/:z}
 tc:converge[{or[x]right[{over[or]and[x]y}][x]x}]

A concatenative language does not have variables. Instead, operators such as dup
and swap are used to move items on the data stack into argument position:

 tc:d[((dup;dup;(&;,(|);over);right;|);converge)]
 e(3 3;0 0 0 1;#;tc)
 ,(0 0 0
 1 0 0
 1 1 0)

Accumulator-Generator2

Paul Graham the following problem
(see http://www.paulgraham.com/accgen.html):

Write a function foo that takes a number n and returns a function
that takes a number i, and returns n incremented by i.

We cannot write foo in K, since K lambdas have no state. But tcK programs are
lists, and lists have parts which can be used to keep state:

VECTOR Vol.21 No.4

37

 acc:d[((+;`acc);cons)] / accumulator (recursive, must use `acc

 instead of acc)

 foo:d[(`acc`i;cons)] / generator (can use acc and i instead of

 `acc and `i)

 e(3;foo) / generate a 3-accumulator

 ,(3;`acc;`i)

 e(3;foo;4;swap;i) / and accumulate 4

 ,(7;+;`acc)

 e(3;foo;4;swap;i;5;swap;i) / then accumulate 5

 ,(12;+;`acc)

Quines3

A quine is a function which prints its own code.

The standard approach is to design a function which indirectly constructs a text-
representation of its code. In K (and in many other languages) the ultimate
constituents of text are characters. But the ultimate constituents of programs are
terms, so we might expect that a language in which programs are directly available
as lists of first-class terms would present the opportunity for a more direct
solution.

In tcK, we can define the following quine:

 (`dup`cons;`dup;`cons)

Evaluation begins by pushing the program `dup`cons on the data stack:

 ,`dup`cons

Next, dup is evaluated, leaving two items on the stack:

 (`dup`cons;`dup`cons)

Finally, cons is evaluated, which inserts `dup`cons at the head of the list `dup`cons, leaving

 ,(`dup`cons;`dup;`cons)

which is the original program.

1 Adapted from code posted by Greg Heil on the K mailing list.
2 Joy solution by Martin Young.
3 Joy solution by Manfred von Thun

VECTOR Vol.21 No.4

38

tck1.k (http://www.nsl.com/k/tck/tck1.k)

// tcK - 1 stack

/ verbs

k:,/+{.:'(x,":";x)}'"~!@#$%^&*_-+=|:<,>.?" / F1,F2 = (~:;!:;..;~;!;..)
v:-&0 20 20 / valences

/ stack operators

dup:{x,-1#x} / X -> X X
cons:{(-2_ x),,{(,x),y}.-2#x} / X [..] -> [X ..]
swap:{(-2_ x),|-2#x} / X Y -> Y X

/ combinators

i:{E[-1_ x;*-1#x]} / [..] -> ..
linrec:{{[x;i;t;e;f]:[E_[x;i];E[x;t];E[_f[E[x;e];i;t;e;f];f]]}[-4_ x].-4#x}
 / t if i else: e, recurse, f

/ adverbs (k combinators)

right:{(-3_ x),,{x{*e(y;z),x}[z]/:y}.-3#x} / X Y f2 -> X f2/:Y
over:{(-2_ x),,{{*e(y;z),x}[y]/x}.-2#x} / X f2 -> f2/X
converge:{(-2_ x),,{{*e(,y),x}[y]/x}.-2#x} / X f1 -> f1/X

/ apply

a:{:[~#y;(x;y);(4:*y)_in 4 7;(f[x;*y];1_ y);(x,1#y;1_ y)]}
 / apply if program-stack not empty
f:{:[(#k)>i:k?y;(v[i]_ x),,y . v[i]#x;y x]} / apply k or tck0 program

/ eval

E:{*(a .)/(x;y)} / evaluate y on x
E_:{*-1#E[x;y]} / last of evaluate y on x
e:E[()] / evaluate y on ()

/ trace

T:{(a .)\(x;y)} / trace evaluation of y on x
t:T[()] / trace evaluation of y on ()

/ define program P:d[(..)] (metalinguistic)

d:{E[y;x]} / evaluate x on y

VECTOR Vol.21 No.4

39

Function Arrays in APL

by Gianluigi Quario (giangiquario@hotmail.com)

The foundations of APL have been be extended to encompass arrays of functions.
Nevertheless we have few APL instruments for handling those arrays: this note is
an attempt to open up a new panorama to those willing to cultivate this meager
field.

Building an Array of Functions

It is possible to build an array-of-functions by means of unnamed namespaces.

You can define a set of unnamed namespaces like this:

 (ns1 ns2 ns3)←(⎕NS ⍬)(⎕NS ⍬)(⎕NS ⍬)

and build a namespace-array

 nsA←ns1,ns2,ns3

nsA is a vector-of-namespaces (shape is 3) and its name class is 2

Let FOO be a function, for example

 FOO←{3+Ω}

and make some assignments:

 ns1.f←FOO ⋄ ns2.f←FOO ⋄ ns3.f←FOO

Then nsA.f is a set of functions . Try

� nsA.f
 #. ∇f #. ∇f #. ∇f

nsA.f is a strange object: its name class is 0 ... but

 nsA.f 5
8 8 8

and

 nsA.⎕NC'f'
3 3 3

VECTOR Vol.21 No.4

40

 Now let us write

 FA←nsA.f

and obtain

 ⎕NC'FA'
3

FA is an actual array-of-functions:

 FA 5
8 8 8

 FA 5 6 7
8 9 10

 FA 5 6
LENGTH ERROR

You can also expunge the involved namespaces and functions; the array-of-
functions FA is still alive:

 ⎕EX 5 3Ρ'ns1ns2ns3nsAFOO'
 FA 5
8 8 8

FA has its own actual identity amongst other APL objects.

Array of Functions for the Parallel Headed APLer

The APL scalar functions have a pervasive behaviour over their arguments and
are the most “politically correct” functions in a parallel environment. When a
function is not scalar, we can force it to behave in a more diligent manner by
means of some operator like primitive each ¨ or “saw” or “perv” .

I do not know how you envisage those operators; my basic instinct is to look at
them like substitutes for loops.

At the opposite the definition of an array-of-functions carries my mind in a
different mood and I actually feel myself thinking in a more holistic way when my
attention is forwarded to every kind of arrays.

Consider for example:

 Ρ¨ (1 2 3)('abcde')
3 5

VECTOR Vol.21 No.4

41

I usually read (i.e. my internal semantics interpreter reads) that statement in this
way: “compute the shape of first vector and afterwards of the second one”

But if we afford this task ...

 nsA←(⎕ns ⍬) (⎕ns ⍬)
 nsA[1].f←Ρ ⋄ nsA[2].f←Ρ
 RHO_parallel←nsA.f

 ... then my mood is much different when I look at:

 RHO_parallel (1 2 3)('abcde')
3 5

We can avoid the upper manual task of defining many namespaces and
afterwards assigning a function by means of a new operator:

 Parallelized←{((ΡΩ)Ρ(⎕NS ⍬).##).ΑΑ Ω}

 and obtain in a more direct manner:

 ΡParallelized (1 2 3)('abcde') ⎕A ⎕A
3 5 26 26

That new operator can be rewritten in a more general way:

 Parallelized←{
 0∊ΡΩ:Ω
 Α←{Ω} ⍝ambivalency
 Α((ΡΩ)Ρ(⎕NS ⍬).##).ΑΑ Ω
 }

It may be the mate of both monadic and dyadic functions, both primitive and
defined. Furthermore it modifies the behaviour of primitive each ¨ operator.

I think that the implementation of each operator by Dyalog APL has some
drawbacks.

Let us consider the monadic primitive each:

 (0Ρ⊂⍬)≡Ρ¨⍬
1

 (0Ρ⊂⍬)≡Ρ¨''
1

 (0Ρ⊂'')≡Ρ¨''
0

VECTOR Vol.21 No.4

42

That I cannot understand! The Dyalog APL language reference says:

“If the argument Y is empty, the derived function is applied once to the
prototype of Y, and the shape of R is the shape of Y.

The thinking behind Dyalog’s implementation of each on null arrays is that the
prototypical item of the result is determined by the function, rather than the
argument. Owing to the fact that “each” is an operator, a more consistent
behaviour ought to be:

“If the argument Y is empty, the derived function is the prototype of function
operand Lop”.

The prototype of any function could be the “TRANSPARENT” function.

You can also consider another example:

 {Ω[⍋Ω]} ¨ ⍬
RANK ERROR

On the contrary it should happen like the following:

 {Ω[⍋Ω]} Parallelized ⍬

gives the zero length numeric vector.

I like to baptize the Parallelized operator with the name "peach", that means
parallel each.

 peach←Parallelized

Building an array of different functions

We are now going to build an array of possibly different functions.

The procedure is similar to what seen beforehand.

A namespace-array is built:

 nsA←⎕NS peach 3Ρ⊂⍬ ⍝length 3 vector

and some assignments are made:

 nsA[1].f←+ ⋄ nsA[2].f←- ⋄ nsA[3].f←÷
 FA←nsA.f

Now the array-of-funtions FA can be exploited:

VECTOR Vol.21 No.4

43

 FA 5
5 ¯5 0.2

 FA 3 4 5
3 ¯4 0.2

You can see that there is a major duality tie between the array-of-data and the
array-of-functions; APL always tries to behave the parallel way:

 a) if FA is a (scalar) function and DA is an array-of-data, then FA DA gives an
array with the same shape as DA

 b) if FA is an array-of-functions and DA is a scalar datum, then FA DA gives an
array with the same shape as FA

 c) if FA is an array-of-functions and DA is an array-of-data, then FA and DA must
have the same shape and FA DA gives an array with the same shape as FA and
DA

In Vector Vol.20 No.1 Graeme D. Robertson illustrated a mathematical application
of a vector-of-functions related to the velocity of a fluid at a point in 3D space; in
traditional notation: V(x,y,z)=(xy, -xy2, yz2)

We define:

 fx←{⎕IO←1 ⋄ Ω[1]×Ω[3]} ⋄ fy←{⎕IO←1 ⋄ -Ω[1]×Ω[2]*2} ⋄
fz←{⎕IO←1 ⋄ Ω[2]×Ω[3]*2}
 nsA←⎕NS peach 3Ρ⊂⍬ ⍝length 3 namespace-vector

 nsA[1].f←fx ⋄ nsA[2].f←fy ⋄ nsA[3].f←fz

 FA←nsA.f

 and now can exploit the vector-of-functions FA:

 FA 1 2 3
3 ¯4 18

Tools for handling Arrays of Functions

The Dyalog 10.0 APL interpreter does not allow to handle arrays-of-functions in a
direct way.

You cannot use indices:

 FA[1]

VECTOR Vol.21 No.4

44

is a pitfall for the interpreter;

 1⊃FA
SYNTAX ERROR

 4ΡFA
SYNTAX ERROR

The structural functions need an effort to be promoted to operator level in order
to handle the arrays-of-functions.

But now the arrays-of-functions are a kind of black boxes after they were built.

We may look for some workarounds.

Transformation of a Vector of Functions into a Vector of
Namespaces

First of all, let us find a way to obtain an array-of-namespaces from an array-of-
functions.

We shall use the FA’s canonical representation, which is a class 2 object.

When FA is a vector of functions, its canonical representation is a (complicated)
nested array but it is possible extract the built-in functions.

I defined a traditional operator for executing that job; it was not possible to define
a function, because its arguments cannot be class 3 objects.

The syntax is

 nsArray←(dummyOperand FAtoNS FunctionVector)dummyArg

the result is a namespace-array (class 2) where every namespace contains only one
function.

The operator FAtoNS looks like complicated because of the complicated structure
of canonical representations inside operators. It could be transformed to a Defined
function, because the result is a class 2 object; the version here represented allows
to show and comment the logical structure.

VECTOR Vol.21 No.4

45

∇
 nsArray←(fdummy FAtoNS
funcArray)dummy;cr;peach;funcName;lasteach;last;true_cr;extract_cr;enlist
 ⍝ transform a single function or a vector of functions into a namespace
array
 ⍝ funcArray is a function(0 rank vector of functions) or a vector of
functions
 ⍝ nsArray is a namespace-Array(vector) where each ns contains 1 function
whose name is f
 cr←⎕CR'funcArray'
 :If 2=ΡΡcr ⍝operand is a single function
 :OrIf 2≥|≡cr ⍝ or a primitive function
 nsArray←{ ⍝returns a namespace with function ¨f¨ embedded
 ns←⎕NS ⍬ ⋄ ns.f←⍎Ω ⋄ ns
 }'funcArray'
 :Else ⍝operand is an array of functions
 peach←{ ⍝parallel each operator
 2≠⎕NC'Α':((ΡΩ)Ρ(⎕NS ⍬).##).ΑΑ Ω
 Α((ΡΩ)Ρ(⎕NS ⍬).##).ΑΑ Ω
 }
 enlist←{⎕ML←0 ⍝ List Α-leaves of nested array.
 Α←0 ⍝ default: list 0-leaves.
 Α≥¯1+|≡Ω:,Ω ⍝ all shallow leaves: finished.
 1↓↑,/(⊂⊂⊃⊃Ω),Α ∇¨,Ω ⍝ otherwise: concatenate sublists.
 }
 :If 3∊Ρcr ⍝ housekeeping:⎕CR contains a namespace reference
 :AndIf '.'≡⊃1↓cr
 cr←⊃¯1↑cr
 :EndIf
 extract_cr←{2>|≡Ω:Ω ⋄ ∇⊃¯1↑Ω}
 true_cr←extract_cr peach cr ⍝canon.rep of all functions
 nsArray←{ ⍝returns a namespace with function ¨f¨ embedded
 ns funcName←{ ⍝returns fname and ns where function was defined
 ~(,3)≡ΡΩ:⍬(⎕FX' ',Ω)
 (⊃Ω)(⎕FX' ',⊃¯1↑Ω)
 }Ω
 0=1↑0ΡfuncName:{ns←⎕NS ⍬ ⋄ ns.f←⍎,enlist Ω ⋄ ns}Ω ⍝without cr
 ns{ ⍝with cr
 0∊ΡΑ:{ns←⎕NS ⍬ ⋄ ns.f←⍎,enlist Ω ⋄ ns}Ω
 Α{ns←⎕NS ⍬ ⋄ ns.f←Α⍎,enlist Ω ⋄ ns}Ω
 }funcName
 }peach true_cr
 :EndIf
∇

Reshaping an Array of Functions

The following operator allows the return of the shape of an array-of-functions.

The syntax is

 shape←(dummyOperand FA_shape FunctionArray)dummyArray

VECTOR Vol.21 No.4

46

 the result is a vector (class 2) of the shape of the array-of-functions.

∇
 shape←(fdummy FA_shape funcArray)dummy
 ⍝ shape of a fn array: primitive"monadic Ρ"is promoted to function level
 ⍝ func is a function(0 rank vector of functions) or a vector of functions
 ⍝ try:
 ⍝ ⎕←('' FA_shape {2×Ω})''
 ⍝ FA2←(2 3 FA_reshape +)'' ⍝FA2 is an array-of-functions
 ⍝ ⎕←('' FA_shape FA2})''
 shape←Ρ(+FAtoNS func)⍬
 ⍝ ⎕NC'funcArray'←→3 ⎕NC'shape'←→2
∇

The following operator allows the reshaping of an array-of-functions.

The syntax is

 ArrayFunc←(shape FA_reshape funcArray)dummyArray

the result is an array-of-functions (class 3) obtained by reshaping another array-of-
functions (class 3).

∇
 ArrayFunc←(shape FA_reshape funcArray)dummy;ns
 ⍝reshape an array-of-fns: primitive"dyadic Ρ"is promoted to function level
 ⍝ funcArray is a function(0 rank vector of fns) or a vector of fns
 ⍝ ArrayFunc is an Array-of-Functions
 ⍝ try:
 ⍝ FA2←(2 3 FA_reshape +)0 ⍝FA2 is an array-of-functions
 ⍝ FA2←(4 FA_reshape {2×Ω})0 ⍝FA2 is a vector-of-functions
 ⍝ FA3←(1 3 FA_reshape FA2)0 ⍝FA3 is an array-of-functions
 ns←(+FAtoNS funcArray)⍬ ⍝the fn_array becomes a namespace_array;⎕NC'ns'←→2
 ArrayFunc←(shapeΡns).f
 ⍝ ⎕NC'funcArray'←→3 ⎕NC'ArrayFunc'←→3
∇

Indexing an Array of Functions

The following operator allows the return of a sub-Array from an array-of-
functions.

The syntax is

 ArrayFunc←(indicesArray FA_from funcArray)dummyArray

the result is an array-of-functions (class 3) obtained by means of another array-of-
functions (class 3).

VECTOR Vol.21 No.4

47

For the sake of simplicity let us impose that indicesArray is a vector with the same
length as the shape of funcArray operand.

∇
 ArrayFunc←(indicesArray FA_from funcArray)dummyArray;ns
 ⍝indexing of an array-of-fns: primitive "[]"is promoted to fn level
 ⍝ funcArray is a fn(0 rank vector of fns) or a vector of functions
 ⍝ ArrayFunc is an Array-of-Functions
 ⍝ try:
 ⍝ FA2←(2 4 FA_reshape {2×Ω})0 ⍝FA2 is a (2×4) array-of-functions
 ⍝ FA3←(1 1 FA_from FA2)0 ⍝FA3 is a (scalar) array-of-fns
 ⍝ FA4←((1 2) (2 3)FA_from FA2)0 ⍝FA4 is a (2×2) array-of-fns
 ns←(+FAtoNS funcArray)⍬ ⍝the fn_array becomes a namespace_array;⎕NC'ns'←→2
 :Select ΡΡns
 :Case ,0 ⋄ ∘ ⍝length error
 :Case ,1 ⋄ ArrayFunc←ns[indicesArray].f
 :Case ,2 ⋄ ArrayFunc←ns[⊃1↑indicesArray;⊃¯1↑indicesArray].f
 :Case ,3 ⋄ ∘ ⍝ et coetera
 ⍝ et coetera
 :EndSelect
 ⍝ ⎕NC'funcArray'←→3 ⎕NC'ArrayFunc'←→3
∇

Catenating two Vectors of Functions

By means of the last structural operator we can have arrays-of-functions with
different function-items.

The syntax is

 ArrayFunc←(LfuncVector FA_catenate RfuncVector)dummyArray

The result is a new vector-of-functions (class 3) obtained by means of two vector-
of-functions (class 3).

∇
 ArrayFunc←(Lfunc FA_catenate Rfunc)dummyArray;Lns;Rns
 ⍝ catenate 2 vectors of functions: primitive "," is promoted to fn level
 ⍝ Lfunc is a fn(0 rank vector of fns) or a vector of fns;same for Rfunc
 ⍝ ArrayFunc is an Array(vector) of Fns whose names are Lfunc and Rfunc
 ⍝ try:
 ⍝ FA←(+ FA_catenate -)0 ⍝FA is a vector of fns : FA 3 ←→ 3 ¯3
 ⍝ FA←({2×Ω} FA_catenate -)0 ⍝FA is a vector of fns : FA 3 ←→ 6 ¯3
 ⍝ FB←(× FA_catenate FA)0 ⍝FB is a vector of fns : FB 3 ←→ 1 6 3
 Lns←(''FAtoNS Lfunc)⍬ ⍝the left fn_array becomes a ns_array;⎕NC'Lns'←→2
 Rns←(''FAtoNS Rfunc)⍬ ⍝the right fn_array becomes a ns_array;⎕NC'Rns'←→2
 ArrayFunc←(Lns,Rns).f
 ⍝ ⎕NC'Lfunc'←→3 ⎕NC'Rfunc'←→3 ⎕NC'ArrayFunc'←→3
∇

VECTOR Vol.21 No.4

48

Some Examples

 ⎕←(''FA_shape +)'' ⍝the shape of a primitive function is ⍬

 ⎕←(''FA_shape {,Ω})'' ⍝the shape of a function is ⍬

 FA←(+ FA_catenate -)0 ⍝FA is a vector of functions : FA 3 ←→ 3 ¯3

 FA←({2×Ω} FA_catenate -)0 ⍝FA is a vector of functions : FA 3 ←→ 6 ¯3

 ⎕←(''FA_shape FA)''
2

 FA2←(2 4 FA_reshape FA)0 ⍝FA2 is a (2×4) array-of-functions

 ⎕←(''FA_shape FA2)''
2 4

 FB←(× FA_catenate FA)0 ⍝FB is a vector of functions : FB 3 ←→ 1 6
3

 FB2←(2 6 FA_reshape FB)0 ⍝FA2 is a (2×4) array-of-functions

 FB3←((1 2) (2 3 4) FA_from FB2)0 ⍝FB3 is an array-of-functions

References

 [1] G.D. Robertson, New Foundations, Vector 20.1(2003) 132-142

 [2] Dyalog APL/W version 10.0 Language Reference(2003)

VECTOR Vol.21 No.4

49

LEARN
A Suduko Solver in J

by Roger Hui

Fill the grid so that each row, column, and 3 by 3 box contains the digits
1 through 9.

 +-----+-----+-----+
2 0 0	6 7 0	0 0 0
0 0 6	0 0 0	2 0 1
4 0 0	0 0 0	8 0 0
+-----+-----+-----+		
5 0 0	0 0 9	3 0 0
0 3 0	0 0 0	0 5 0
0 0 2	8 0 0	0 0 7
+-----+-----+-----+		
0 0 1	0 0 0	0 0 4
7 0 8	0 0 0	6 0 0
0 0 0	0 5 3	0 0 8
 +-----+-----+-----+

Welcome to Sudoku.

Sudoku is a popular puzzle in Japan (su is number, doku is place), to where it was
imported from the U.S. It was popularized in the West by Wayne Gould, a New
Zealander living in Hong Kong. He maintains a website (http://www.sudoku.com)
where you can find descriptions, examples, tutorials, and download a puzzle
player. In a November 2004 article in the Times, (http://www.timesonline.co.uk/),
Gould was quoted as saying that some Sudoku puzzles are so difficult that you
can’t solve them if your life depended on it.

The following Sudoku solver uses a simple but effective strategy. Even puzzles
rated as “very hard” require no more than 15 milliseconds and 30 Kbytes on a 500
MHz Pentium 3 computer.

j =. (]/. i.@#) ,{;~3#i.3
r =. 9#i.9 9
c =. 81$|:i.9 9
b =. (,j{9#i.9) { j

VECTOR Vol.21 No.4

50

I =: ~."1 r,.c,.b
R =: j,(,|:)i.9 9

regions=: R"_ {"_ 1]
free =: 0&= > (1+i.9)"_ e."1 I&{
ok =: (27 9$1)"_ -:"2 (0&= +. ~:"1)@regions

ac =: +/ .*&(1+i.9) * 1: = +/"1

ar =: 3 : 0
 m=. 1=+/"2 R{y.
 j=. I. +./"1 m
 k=. 1 i."1~ j{m
 i=. ,(k{"_1 |:"2 (j{R){y.) #"1 j{R
 (1+k) i}81$0
)

assign =: (+ (ac >. ar)@free)^:_"1

guessa =: 3 : 0
 if. -. 0 e. y. do. ,:y. return. end.
 b=. free y.
 i=. (i.<./) (+/"1 b){10,}.i.10
 y. +"1 (1+I.i{b)*/i=i.81
)

guess =: ; @: (<@guessa"1)
sudoku =: guess @: (ok #]) @: assign ^:_ @ ,

see1 =: (;~9$1 0 0)&(<;.1) @ ({&'.123456789') @ (9 9&$) @ ,
see =: <@see1"1`see1@.(1:=#@$)
diff =: * 0&=@}:@(0&,)

A grid is the ravel of a 9 9 matrix of cells of i.10 . A box is a 9-element subset of a
grid, the ravel of one of the 3 3 regions.

A region is a row, column, or box. The object of Sudoku is to assign numbers to
the zero cells of a grid x while leaving unchanged the non-zero cells in x, so that
each region has exactly the elements 1+i.9 .

j are the indices in a ravelled grid for each box. r are the indices for each row. c
are the indices for each column. b are the indices for each box. Finally, I are the
indices in a ravelled grid for regions that contain a cell, for each cell of a grid.

regions x computes a 27 9 matrix of the 27 regions of grid x . free x computes a
81 9 boolean array y such that (<((9*i)+j),k){y is 1 iff 1+k can be assigned to

VECTOR Vol.21 No.4

51

cell i,j of grid x . ok applies to one or more grids and returns a 1 for each valid
grid.

ac and ar apply to the free list of a grid. ac assigns numbers to cells that have
only one candidate. ar looks for a number which occurs exactly once in the
candidates for a region, and assigns that to the cell for which it is a candidate. ac
and ar correspond to “forced moves”. (When ac or ar is applied to an
“impossible” grid, the result can be assignments that are obviously in error.)
assign repeatedly applies ac and ar to one or more grids until there are no more
changes.

guessa x applies to to grid x and returns one or more grids with cells fill in with
all possible candidates, for a cell that has the smallest set of candidates. guess
applies guessa to one or more grids and returns all the grids generated thereby.

sudoku x finds all solutions for grid x . An error is signalled if x has no solution.

x=: , 0 ".] ;._2 (0 : 0)
 2 0 0 6 7 0 0 0 0
 0 0 6 0 0 0 2 0 1
 4 0 0 0 0 0 8 0 0
 5 0 0 0 0 9 3 0 0
 0 3 0 0 0 0 0 5 0
 0 0 2 8 0 0 0 0 7
 0 0 1 0 0 0 0 0 4
 7 0 8 0 0 0 6 0 0
 0 0 0 0 5 3 0 0 8
)
 see x, sudoku x
+-------------+-------------+
+---+---+---+	+---+---+---+								
	2..	67.	...			283	671	945	
	..6	...	2.1			976	548	231	
	4..	...	8..			415	392	876	
+---+---+---+	+---+---+---+								
	5..	..9	3..			567	419	382	
	.3.5.			834	267	159	
	..2	8..	..7			192	835	467	
+---+---+---+	+---+---+---+								
	..14			321	786	594	
	7.8	...	6..			758	924	613	
53	..8			649	153	728	
+---+---+---+	+---+---+---+								
+-------------+-------------+

The following phrases show the intermediate steps leading to a solution.

f=: + (ac >. ar)@free one step of assign

VECTOR Vol.21 No.4

52

see t=: f^:a: x forced moves leading from grid x

see diff t differences from one grid to the next

see assign x same as the last grid above

see g=: guess (ok#]) assign x guesses after exhausting forced moves

see t0=: f^:a: 0{g forced moves leading from guess 0

see diff t0 differences from one grid to the next

see t1=: f^:a: 1{g forced moves leading from guess 1

see diff t1 differences from one grid to the next;
 note the obviously invalid assignments

VECTOR Vol.21 No.4

53

Sudoku with Dyalog APL

from John Clark & Ellis Morgan

Introduction
by Adrian Smith

This note summarises two approaches to the Sudoku puzzle which were posted
on the Dfns newgroup. Ellis Morgan has a recursive puzzle solver, and John Clark
has a backtracking solver and a simple puzzle-generator. The contrast in coding
styles is interesting in itself, as is the contrast with the J solution from Roger Hui.

Interestingly, John was also the producer of the marvellous panel discussion film
(circa 1974) with Ken Iverson, Adin Falkoff, Larry Breed and others discussing the
origins of APL.

John Clark’s Generator and Solver

SOLVE mat is the call. If you don’t have a matrix there are several in the
workspace. EASY, MEDIUM, HARD, and VERY_HARD were taken from the Times of
London. e.g. type SOLVE MEDIUM

PUZZLE nn will generate a Sudoku matrix with nn zeros to be replaced.

SOLVE PUZZLE 56 will solve a puzzle with 56 random placed open slots ...

 BACKTRACKS REQUIRED 44
 ÚÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ ÚÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ
 Û ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ Û Û ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ Û
 Û ÛŒ 3 4Û ÛŒ Œ 5Û ÛŒ Œ ŒÛ Û Û Û1 3 4Û Û8 7 5Û Û9 2 6Û Û
 Û ÛŒ 7 5Û ÛŒ 2 ŒÛ Û1 Œ ŒÛ Û Û Û8 7 5Û Û9 2 6Û Û1 3 4Û Û
 Û ÛŒ Œ ŒÛ ÛŒ Œ ŒÛ Û8 7 5Û Û Û Û6 2 9Û Û1 3 4Û Û8 7 5Û Û
 Û ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ Û Û ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ Û
 Û ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ Û Û ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ Û
 Û Û3 4 ŒÛ ÛŒ Œ ŒÛ ÛŒ Œ 9Û Û => Û Û3 4 8Û Û7 5 1Û Û2 6 9Û Û
 Û ÛŒ Œ ŒÛ Û2 6 ŒÛ Û3 4 ŒÛ Û Û Û7 5 1Û Û2 6 9Û Û3 4 8Û Û
 Û ÛŒ 6 ŒÛ Û3 4 ŒÛ ÛŒ Œ ŒÛ Û Û Û9 6 2Û Û3 4 8Û Û5 1 7Û Û
 Û ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ Û Û ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ Û
 Û ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ Û Û ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ ÚÎÎÎÎÎÌ Û
 Û ÛŒ Œ 3Û Û5 8 ŒÛ ÛŒ 9 ŒÛ Û Û Û4 1 3Û Û5 8 7Û Û6 9 2Û Û
 Û ÛŒ Œ ŒÛ ÛŒ Œ ŒÛ ÛŒ Œ 3Û Û Û Û5 9 6Û Û4 1 2Û Û7 8 3Û Û
 Û ÛŒ Œ ŒÛ ÛŒ Œ ŒÛ ÛŒ Œ ŒÛ Û Û Û2 8 7Û Û6 9 3Û Û4 5 1Û Û
 Û ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ Û Û ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÙ Û
 ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ
 SOURCE SOLUTION CHECKS OUT
 0.301 seconds

VECTOR Vol.21 No.4

54

ORDERUP is the main working function. It examines each open slot in a matrix
and returns an n-tuple of (row, col, value(s)) that may be place in that cell. The
CHERRYPICK function will place the value referenced by each 3-tuple. The puzzle
HARD may be solved by just looping CHERRYPICK.

SUDO is the function that either loops CHERRYPICK or goes to a backtracking
system if there are no 3 tuples generated by ORDERUP. Essentially the
backtracking is done by a push pop stack where the state is stored as an array of
arrays in BT.

I first saw APL in 1967 when you could only have 1 character names for functions
and variables. From then to now this is the first application that forced me to write
a backtracking system in APL. Here is the code:

 ’ Z„PUZZLE ZC;A;SOL
[1] SOL„BUILDONE © BUILD RAMDOM FILLED IN PUZZLE
[2] A„81½1 ª ZC„ZC?81 ª A[ZC]„0 © VECTOR TO SET ZEROS
[3] ZC„,SOL © RAVEL PERFECT SOLUTION
[4] Z„9 9½A\A/ZC © PUT IN THE ZEROS.
 ’

 ’ Z„BUILDONE;A;B;C;D;E
[1] A„3 3½B„9?9 © SET UP A RANDOM BOX
[2] Z„A,(1´A),2´A © SET UP A ROW
[3] A„1²A © GO FOR 2ND ROW
[4] Z„Z,[ŒIO]A,(1´A),2´A © BUILD 2ND ROW
[5] A„(3 3½B)[;3 1 2] © SET FOR 3RD ROW
[6] Z„Z,[ŒIO]A,(1´A),2´A © BUILD 3RD ROW AND EXIT
 ’

 ’ SOLVE MAT;A;B;J;M;B1;B2;B3;B4;B5;B6;B7;B8;B9;BKC;BT;BX;R;Tin
[1] TIMEIN ª SUDO MAT ª TIMEOUT
 ’

 ’ Z„SUDO MAT
[1] BKC„0 ª BT„« ª SM„MAT © INITIALIZE COUNTERS SAVE ARGUMENT
[2] LP0:CHERRYPICK © GET THE EASY ONES
[3] …(0¬½A)½LP0 © LOOP BACK FOR MORE EASY ONES
[4] …(0¹MAT)½DMN © CHECK IF MORE TO DO
[5] …0×½Z„PCHECK © EXIT IF COMPLETE
[6] DMN:…(3ˆ½B„1œJ)½NXT © GO TO BACKTRACKING
[7] °°° © IF YOU GET HERE IT IS TIME TO CATCH FIRE AND BLOW UP
[8] NXT:MARKIT © MARK STATUS TO START
[9] LP1:CHERRYPICK © WORK ON THE EASY ONES
[10] –(~0¹MAT)/'…0,½Z„PCHECK' © FINISH CHECK
[11] …(3=½1œJ)½LP1 © CHECK FOR MORE EASY ONES
[12] …(2‰½1œJ)½FAP © HAVE TO GO FOR BACKTRACKING
[13] …DMN © FORWARD ON NEXT STATE
[14] FAP:BACKTRACK © GO BACK TO LAST WORKING CONDITION
[15] …LP1
 ’

VECTOR Vol.21 No.4

55

 ’ CHERRYPICK
[1] J„ORDERUP MAT © GET LIST OF POSSIBLE CHOICES
[2] …(0=½A„(3=+/¨½¨J)/J)½0 © EXIT IF NO CHERRIES TO PICK
[3] SET¨A © PICK THE CHERRIES
 ’

 ’ Z„ORDERUP M;A;B;C
[1] Z„« © LOOK FOR ALL CHOICES FOR EACH CELL
[2] :For C :In ¼9 © CHECK EACH SUB MATRIX
[3] …(0=½A„M ZEROBOX C)½NXT © EMPTY CELL PRESENT
[4] Z„Z,(›M)PZERO¨A © CHOICES FOR EMPTY CELLS
[5] NXT: :End
[6] Z„Z[“+/¨½¨Z] © SORT TO PUT CHERRIES UP FRONT
 ’

 ’ Z„M ZEROBOX N;A;B
[1] A„M BOXOUT N © PULL SUB BOXES
[2] Z„(0=,A)/,R°.,C
[3] –'B',(•N),'„A'
[4] BX„A
 ’

 ’ Z„MAT BOXOUT N;A;B;ŒIO
[1] ŒIO„0 ª R C„,3 3‚N-1 © INITIALIZE
[2] R„Rœ(1 2 3)(4 5 6)(7 8 9) © GET THE ROW SET
[3] C„Cœ(1 2 3)(4 5 6)(7 8 9) © GET THE COLUMN SET
[4] ŒIO„1 © GO BACK TO THE REAL WORLD
[5] Z„MAT[R;C] © RETURN THE BOX VALUES
 ’

 ’ Z„M PZERO RC;A;B;C
[1] R C„RC © FIND POSSIBLE VALUES
[2] A„M[R;] ª A„(A¬0)/A © ROW VALUES
[3] B„M[;C] ª B„(B¬0)/B © COLUMN VALUES
[4] Z„(A,B),,BX ª Z„Z[“Z] ª Z„1‡(Z¬1²Z)/Z © COMBINE BOX
[5] Z„RC,(¼9)~Z © (ROW, COL, POSSIBLE VALUES)
 ’

 ’ SET LOC;R;C;X
[1] R C„2†LOC © GET THE ROW AND COLUMN
[2] X„+/¯1†LOC © GET THE VALUE TO SET
[3] …((X¹MAT[R;])ŸX¹MAT[;C])½0 © EXIT IF VALUE IS NOT USABLE
[4] MAT[R;C]„X © SET THE VALUE IN THE MATRIX
 ’

 ’ Z„PCHECK;A
[1] © FOR A PRETTY PRINT OUT OF SOURCE AND SOLUTION
[2] Z„(FRAME SQZERO ¯1 0‡CKMAT SM)MAB' SOURCE' © SET THE SOURCE
[3] Z„(Z(1´8 4†1 5½' => ')) © ADD IN A NICE ARROW
[4] B„¯1 35†A„CKMAT MAT © CHECK THE SOLUTION
[5] A„(FRAME ¯1 0‡A)MAB B © FRAME THE SOLUTION
[6] Z„(Z)(A) © RETURN FANCY PRINT OUT
[7] ' BACKTRACKS REQUIRED ',BKC © SHOW BACK COUNT ON TOP
 ’

 ’ Z„CKMAT MAT;A;B;C;D;I
[1] Z„^/45=+/MAT ª Z„Z^^/45=+šMAT © CHECK ROW AND COLUMN SUM

VECTOR Vol.21 No.4

56

[2] :For I :In A„¼9 © CHECK 1..9 IN EACH ROW
[3] Z„Z^^/A¹MAT[I;]
[4] :End
[5] :For I :In A
[6] Z„Z^^/A¹MAT[;I] © CHECK 1..9 IN EACH COLUMN
[7] :End
[8] I„ORDERUP MAT © BUILD THE SUB MATRICES
[9] D„•3 3½FRAME¨•¨B1 B2 B3 B4 B5 B6 B7 B8 B9 © FRAME EACH BOX
[10] Z„D MAB•1†Z‡' BAD ' ' SOLUTION CHECKS OUT' © ADD COMMENT
 ’

 ’ Z„FRAME M;ŒIO
[1] ŒIO„1 © ENCLOSE MATRIX IN A FRAME
[2] M„,Z„ŒAV[231],(ŒAV[226],[1]M,[1]ŒAV[226]),ŒAV[231]
[3] M[1,(1‡½Z),(½M)-(¯1+1‡½Z),0]„ŒAV[223 222 224 221]
[4] Z„(½Z)½M
 ’

 ’ Z„A MAB B
[1] –(2¬½½A)/'A„(1,½A)½A'
[2] …((¯1†½A)¬¯1†½B)½FX
[3] OU:Z„A,[ŒIO]B
[4] …0
[5] FX:…((¯1†½A)>¯1†½B)½WB
[6] A„((1†½A),¯1†½B)†A
[7] …OU
[8] WB:…(2=½½B)½MT
[9] B„(1‡½A)†B
[10] …OU
[11] MT:B„((1†½B),1‡½A)†B
[12] …OU
 ’

 ’ MARKIT
[1] SET 3†B © CHOOSE FIRST CHOICE
[2] BT„(›(MAT)((2†B),3‡B)),BT © PUSH CONDITIONS ON BACK TRACK STACK
[3] BKC„BKC+1 © INCREMENT BACK TRACKING COUNTER
 ’

 ’ SET LOC;R;C;X
[1] R C„2†LOC © GET THE ROW AND COLUMN
[2] X„+/¯1†LOC © GET THE VALUE TO SET
[3] …((X¹MAT[R;])ŸX¹MAT[;C])½0 © EXIT IF VALUE IS NOT USABLE
[4] MAT[R;C]„X © SET THE VALUE IN THE MATRIX
 ’

 ’ BACKTRACK;Y
[1] …(0¬½BT)½BKU
[2] °°°°° © YOU ARE DEAD IF YOU GET HERE.
[3] BKU:MAT„1œ1œBT © RESET TO PAST CONDITION
[4] SET 3†Y„2œ1œBT © SET THE NEXT VALUE
[5] (2œ1œBT)„Y„(2†Y),3‡Y © REBUILD POSSIBLE CHOICES
[6] …(3ˆ½Y)½0 © QUIT IF MORE CHOICES LEFT FOR THIS CELL
[7] BT„1‡BT © POP THE BACKTRACKING STACK
[8] BKC„BKC+1 © INCREMENT BACK TRACKING COUNTER
 ’

VECTOR Vol.21 No.4

57

Ellis Morgan’s Solver

grid „ start 5 Set up the problem in the London Times of 9 June 2005

2 show grid Check that you have got it right

pre„result pre_solve grid See how hard it could be

ans „ solve grid Solve the problem

2 show ans See the answer

case9„result pre_solve start 9 Easy probelms are solved by pre_solve

This workspace assumes you can read APL. Look at the comments in “solve”,
“start”, “show”, and the other functions to see what is going on.

The Code

 grid„{left}start style;index;data
© set grid for various starting points per style
© style is a valid style number supported by this function

© left is needed for style =0, when it is (index data) ...
© ... and the values in a ravelled grid are set as grid[index]„data

 grid„,9 9½›¼9

 :Select style
 :Case 0 © user specified
 grid[1œleft]„2œleft
 :Case 1 © medium in paper
 index„1 2 5 8 9,(9+2 8),(18+1 4 6 9),(27+4 6),(36+2 8)
 index,„(45+4 6),(54+1 4 6 9),(63+2 8),72+1 2 5 8 9
 data„5 7 1 4 8 2 6 9 6 2 7 4 9 4 2 1 5 7 3 4 1 3 5 6 1 9 3 4
 grid[index]„data

 lots more examples clipped

 :EndSelect

 grid„,¨grid
 grid„9 9½grid

 ’ text„{style}show grid;row;column;mask
[1] © display the grid
[2] © style = 0 means as 27 by 27 alpha matrix
[3] © style = 1 as a 9 by 9 matrix, showing "known" cells only
[4] © style = 2 as a 9 by 9 of known cells, with the squares bordered
[5] © style = 3 as a 27 by 27, with cells and squares bordered
[6]
[7] :If 0=ŒNC'style'
[8] style„0
[9] :EndIf

VECTOR Vol.21 No.4

58

[10]
[11]
[12] :Select style
[13] :CaseList 1 2 © 9 by 9 , blank if not known
[14] mask„1=œ°½¨,grid
[15] text„9 9½mask\(›'')½¨1 0•mask/œ¨,grid
[16]
[17] :Else © default or style = 0
[18] text„27 27½' '
[19] :For row :In ¼9
[20] :For column :In ¼9
[21] text[(3×row-1)+¼3;(3×column-1)+¼3]„displayœgrid[row;column]
[22] :EndFor
[23] :EndFor
[24] :EndSelect
[25]
[26] text„style showlines text
 ’

 ’ text„{style}show grid;row;column;mask
[1] © display the grid
[2] © style = 0 means as 27 by 27 alpha matrix
[3] © style = 1 as a 9 by 9 matrix, showing "known" cells only
[4] © style = 2 as a 9 by 9 of known cells, with the squares bordered
[5] © style = 3 as a 27 by 27, with cells and squares bordered
[6]
[7] :If 0=ŒNC'style'
[8] style„0
[9] :EndIf
[10]
[11]
[12] :Select style
[13] :CaseList 1 2 © 9 by 9 , blank if not known
[14] mask„1=œ°½¨,grid
[15] text„9 9½mask\(›'')½¨1 0•mask/œ¨,grid
[16]
[17] :Else © default or style = 0
[18] text„27 27½' '
[19] :For row :In ¼9
[20] :For column :In ¼9
[21] text[(3×row-1)+¼3;(3×column-1)+¼3]„displayœgrid[row;column]
[22] :EndFor
[23] :EndFor
[24] :EndSelect
[25]
[26] text„style showlines text
 ’

 ’ text„display cell;mask
[1] © display the possible cell values as 3 by 3 alphabetic block
[2] © eg "display œgrid[2;3]" to display the values that you ...
[3] © ... can validly put in the third column of the second ...
[4] © ... row of the current grid.
[5]

VECTOR Vol.21 No.4

59

[6] cell„,cell
[7] :If 1=œ½cell © cell has a single known value
[8] © mask„0 1 0 1 1 1 0 1 0 © as a cross
[9] mask„9†¯5†1 © in centre of 3 by 3 grid
[10] text„mask\œ1 0•œcell
[11] :Else © cell has many (or no) possible values
[12] mask„(¼9)¹cell
[13] text„mask\mask/1 0•¼9
[14] :EndIf
[15] text„3 3½text
 ’

 ’ text„style showlines text;lines;mask
[1] © horizontal and vertical lines between cells and squares
[2] © see comments in "show"
[3]
[4] …(style¹0 1)†0
[5]
[6] lines„'-=฀Œ' © 2 horizontal (cell,square) and 2 vertical characters
[7]
[8] :If style=2 © just the squares in a 9 by 9 grid
[9] mask„13½0 1 1 1
[10] text„mask™mask\text
[11] mask„(mask=0)/¼½mask
[12] text[;mask]„3œlines
[13] text[mask;]„1œlines
[14] :Else © cells and squares in a 27 by 27 display
[15] mask„37½0 1 1 1
[16] text„mask™mask\text
[17] mask„(mask=0)/¼½mask
[18] text[;mask]„3œlines
[19] text[mask;]„1œlines
[20] mask„((½mask)½3†1)/mask
[21] text[;mask]„4œlines
[22] text[mask;]„2œlines
[23] :EndIf
 ’

 ’ grid„pre_solve grid;found;old;row;column
[1] © "pre-solve" grid, by filling each cell with possible values
[2] © only change those cells that have more than one possible value
[3]
[4] © repeat until the number of cells whose value is known ...
[5] © fails to increase when you apply "valid"
[6]
[7] © stop if a cell has no valid values available ...
[8] © leaving that cell empty in the returned grid.
[9]
[10] © for easy problems "pre_solve" can be the solution ...
[11] © ... try "case9„result pre_solve start 9" ...
[12] © ... otherwise you will need "solve".
[13]
[14] found„+/1=œ°½¨,grid
[15] old„0
[16] :While found>old

VECTOR Vol.21 No.4

60

[17] old„found
[18] :For row :In ¼9
[19] :For column :In ¼9
[20] grid[row;column]„grid valid row column
[21] :If 0¹œ°½¨grid
[22] …0
[23] :EndIf
[24] :EndFor
[25] :EndFor
[26] found„+/1=œ°½¨,grid
[27] :EndWhile
 ’

 ’ grid„result grid;shapes;choice
[1] © examine grid to see what we have got
[2] © returns the original grid ...
[3] ©... after displaying information about the grid in the session
[4]
[5] shapes„,œ°½¨grid
[6]
[7] :If 81=+/shapes
[8] choice„'no'
[9] :Else
[10] :If 6<+/10µshapes
[11] choice„'10*',(2•+/10µshapes)~' '
[12] :Else
[13] choice„•×/shapes
[14] :EndIf
[15] :EndIf
[16]
[17] © cell wise
[18] (•+/1=shapes),' cells known, ',choice,' cell choices.'
 ’

 ’ answer„solve grid;log
[1] © solve a grid where known cells are a single number (vec of len one),
[2] © and unknown cells are (›¼9)
[3]
[4] © it is your business to make sure the grid is validly constructed ...
[5] © ... each cell is a non-empty vector of integers ...
[6] © ... only the integers 1 to 9 are allowed ...
[7] © ... integers can not be repeated within a call.
[8]
[9] © it is your business to make sure that the grid represents a valid ...
[10] © ... Su Doku problem. The program will stop in "recurse" ...
[11] © ... if it thinks there is no valid solution.
[12]
[13] © No check is made to see that the solution is unique ...
[14] © ... "solve" just returns the first one it finds.
[15]
[16] © While "solve" runs stuff will display in your session ...
[17] © ... see "recurse" for an explanation.
[18]
[19] answer log„(,›0 0 0)recurse,›pre_solve grid
 ’

VECTOR Vol.21 No.4

61

 ’ result„left recurse grids;grid;shapes;min;row;col;log;answer;which;from
[1] © Investigate all possible cell values until a solution emerges.
[2]
[3] © "grids" is the grids investigated so far, most recent recursion is last.
[4]
[5] © "left" is the cell values investigated, most recent recursion is last.
[6] © ... each entry is a vector of three numbers: row; column; "which" ...
[7] © ... where "which" is the index number of the chosen option ...
[8] © ... from the options available foer the cell.
[9]
[10] © "result" is the grid solution and the cell values that led to it.
[11]
[12] (½left),œ¯1†left © show the depth of recursion, latest cell setting.
[13] answer„œ¯1†grids © current grid
[14]
[15] next_:
[16] shapes„,œ°½¨answer
[17] result„answer left
[18] …(^/1=shapes)†0 © if the grid is all known cells, it is a solution
[19]
[20] :If 0¹shapes © have we come down a dead end with no solution?
[21] further_:
[22] :If 1<œ½left ©©© is this the first recursion?
[23] row col which„(½left)œleft
[24] left„¯1‡left
[25] grids„¯1‡grids
[26] answer„(½grids)œgrids © step back to the previous grid
[27] from„œanswer[row;col]
[28] :If which<œ½from © still some mileage in this path ...
[29] which+„1 © try the next available cell value
[30] © which,from © display for tough testing
[31] :Else
[32] …further_ © go back to the previous grid
[33] :EndIf
[34] :Else
[35] °°° ©©© stop here if no solution on the first recursion level
[36] :EndIf
[37]
[38] :Else © still on track for a possible solution
[39] min„shapes¼˜/shapes~1 © first cell with the fewest options
[40] row col„1+9 9‚min-1
[41] which„1 © say we are choosing the first option ...
[42] from„œanswer[row;col] © ... and get the options
[43] :EndIf
[44]
[45] answer[row;col]„›,whichœfrom © set the cell to its chosen value ...
[46] © ... and call "recurse" again to set another cell
[47] answer log„(left,›row col which)recurse grids,›pre_solve answer
[48] …next_
 ’

VECTOR Vol.21 No.4

62

APL+WebComponent (Part 2)
Deploy your APL+Win Application on the Web

by Eric Lescasse (eric@lescasse.com)

Introduction

This is the second part of a two-part article about the new APL2000
APL+WebComponent product which allows you to publish your APL+Win
applications on the Web. The first part introduced this new technology basics and
showed how to setup and port a very small APL+Win application to the Web. In
this article we will go further within the technology and port to the Web the
following APL+Win application:

This application displays the various tasks of a Project with a diagram in an OWC
(Microsoft Office Web Component) spreadsheet. One can click on the Add Task
button to add a new task to the Project:

VECTOR Vol.21 No.4

63

Clicking the Add button in the above screen will add the Project Step 10 task to
the project and clicking on the Display Project button computes and displays the
new Project diagram after sorting the tasks according to their start date:

To delete a task, one can click on the Delete Task button resulting in the following
frame being displayed:

Select a line by clicking on the line number and then click Delete to delete the
task. Clicking Display Project would compute and display the new Project
diagram with the task having been deleted.

Downloading and installing the Microsoft OWC Spreadsheet

For this application we will need to use the Microsoft OWC Spreadsheet. This
ActiveX object is just a simplified version of Excel especially made by Microsoft
for use in the browser, but since it is an ActiveX object, we can also use it within
any APL+Win application.

You can download the Microsoft Office Web Components v11 which work with
Office 2003 from the Microsoft Web Site. Be sure to select the right language

VECTOR Vol.21 No.4

64

corresponding to your Office language. To install it, just run the OWC11.EXE file
you have downloaded. (Note: if the link is hard to find, start Google and search
for: “owc11.exe” and “microsoft”.) Note that the Microsoft Office Web
Components do not only contain a Spreadsheet object, but also a Charting object
and a Database object for publishing graphics or data on the Web.

Finally, if you want to learn how to program the OWC Spreadsheet, there is
nothing better than downloading and installing the Microsoft Office Web
Components Toolpack.

Preparing the Workspace

This application will be called owc so we have created an
C:\INETPUB\WWWROOT\LC\WEBSERVICES\OWC.W3 workspace
containing all the application functions.

Then we have (p)copied the
C:\INETPUB\WWWROOT\LC\WEBSERVICES\APLWS.W3 workspace into
OWC.W3 and saved it again. Remember that APLWS.W3 contains the various
base functions necessary for APL+WebComponent to work.

Our OWC.W3 workspace is made of 2 functions which we will publish:

 • AutoStart (this will be the ŒLX function)

 • Main (this will be our Main application function responsible for creating and
displaying the interface)

and we will develop several other APL functions which will all run on the Server:

 • TieFile

 • FileExist

 • AddTask

 • Fread

 • DeleteTask

 • ComputeProject

 • DateBase

 • DATEBASE

 • DAYOFWK

 • DATEREP

 • UniqueFileName

We will soon explain why we decide to run all these functions on the Server rather
than publish them to run in the browser.

VECTOR Vol.21 No.4

65

Setting up the Web Services with APL+WebServicesController

Rather than going through all the steps (a bit cumbersome) necessary to set up our
APL application within the AWS Admin, we will use the new APL2000
APL+WebServicesController product to run all the setup steps.

APL+WebServicesController is a COM object and therefore we can use APL+Win
to pilot it as required. You can download the Alpha version of
APL+WebServicesController from the APL2000 Site (you need to be an APLDN
Subscriber, and a Login and Password is required).

Here is the APL+Win Script which sets up the Workspace and the Web Server for
our owc application:

 ’ CreateOwcServer;Z
[1] ©’ CreateOwcServer -- Uses the new APL+WebServicesController
[2] ©’ (c)2004 Eric Lescasse
[3]
[4] :if 0¹½'wsc'Œwi'self'
[5] Z„'wsc'Œwi'Create' 'APL2000.WSC'
[6] :end
[7] Z„'wsc'Œwi'serviceStop'
[8]
[9] © Delete Server & Workspace if already exist
[10] Z„'wsc'Œwi'DeleteWorkspace' 'owc'
[11] Z„'wsc'Œwi'DeleteServer' 'owc'
[12]
[13] © Setup new Server
[14] Z„'wsc'Œwi'newServer' 'owc'
[15] Z„'wsc'Œwi'setServerHost' 'owc' 'localhost'
[16] Z„'wsc'Œwi'setServerPort' 'owc' '4000'
[17] Z„'wsc'Œwi'setServerPublicHttpDir' 'owc' 'c:\...\webservices'
[18] Z„'wsc'Œwi'addServerDefaultFileName' 'owc' 'default.htm'
[19] Z„'wsc'Œwi'setEnableDefaultFile' 'owc' 1
[20]
[21] © Setup new Workspace
[22] Z„'wsc'Œwi'newWorkspace' 'owc'
[23] Z„'wsc'Œwi'modifyWorkspaceMaxpool' 'owc' '4'
[24] Z„'wsc'Œwi'modifyWorkspaceDebug' 'owc' '1'
[25] Z„'wsc'Œwi'modifyWorkspaceLocation' 'owc' 'c:\...\webservices\owc.w3'
[26]
[27] © Create and setup new Virtual Directory
[28] Z„'wsc'Œwi'newVirtualPath' 'owc' '/jsaveservice/service1.asmx'
[29] Z„'wsc'Œwi'modifyServerPathWsid' 'owc' '/jsaveservice/service1.asmx'
 'defaultworkspace' 'owc'
[30] Z„'wsc'Œwi'modifyServerPathFunction' 'owc'
 '/jsaveservice/service1.asmx' 'default' 'HTTP_SoapProcess'
[31] Z„'wsc'Œwi'addServerPathRargData' 'owc'
 '/jsaveservice/service1.asmx' 'header' 'header'
[32] Z„'wsc'Œwi'addServerPathLargData' 'owc'
 '/jsaveservice/service1.asmx' 'data' 'entity-body-utf8'
[33] Z„'wsc'Œwi'modifyServerPathResultData' 'owc'

VECTOR Vol.21 No.4

66

 '/jsaveservice/service1.asmx' 'r' 'r' 'content-type'
[34] Z„'wsc'Œwi'addServerPathResultData' 'owc' '/jsaveservice/service1.asmx'
 'r2' 'soap-envelop-start'
[35] Z„'wsc'Œwi'addServerPathResultData' 'owc' '/jsaveservice/service1.asmx'
 'r3' 'soap-body'
[36] Z„'wsc'Œwi'addServerPathResultData' 'owc' '/jsaveservice/service1.asmx'
 'r4' 'soap-envelop-end'
[37]
[38] © Create and setup new Virtual Directory
[39] Z„'wsc'Œwi'newVirtualPath' 'owc' '/owc/xmlfile'
[40] Z„'wsc'Œwi'modifyServerPathWsid' 'owc' '/owc/xmlfile'
 'defaultworkspace' 'owc'
[41] Z„'wsc'Œwi'modifyServerPathFunction' 'owc' '/owc/xmlfile' 'default'
 'GetXMLFile'
[42] Z„'wsc'Œwi'addServerPathRargData' 'owc' '/owc/xmlfile' 'filename'
 'entity-body'
[43] Z„'wsc'Œwi'modifyServerPathResultData' 'owc' '/owc/xmlfile' 'r' 'r'
 'document-filename'
[44] Z„'wsc'Œwi'addServerPathResultData' 'owc' '/owc/xmlfile' 'r2'
 'document-filename-delete'
[45]
[46] © Start Workspace and Server
[47] Z„'wsc'Œwi'serviceStart'
[48] Z„'wsc'Œwi'startWorkspace' 'owc'
[49] Z„'wsc'Œwi'startServer' 'owc'
 ’

After having properly installed the APL+WebServicesController (you just need to
run the APLWSCSetup.msi installer) run the CreateOwcServer function:

 CreateOwcServer

This will result in the following setup added to the AWS Admin console:

VECTOR Vol.21 No.4

67

and:

with the following parameters:

 Web Server Virtual Path Name Type

 owc

 /jsaveservice/service1.asmx

 wsid owc wsid

 function

 HTTP_SoapProcess

 function

 rarg hdr header

 larg data entity-body-utf8

 result r content-type

 r2 soap-envelop-start

 r3 soap-body

 r4 soap-envelop-end

VECTOR Vol.21 No.4

68

 /owc/xmlfile

 wsid owc wsid

 function GetXMLFile function

 rarg filename entity-body

 larg

 result r document-filename

 r2 document-filename-delete

Publishing the Necessary Functions with JSAVESDK

As done for the Demo application in APL+WebComponent (part 1):

 1. Start another APL

 2. Load the C:\INETPUB\WWWROOT\LC\WEBSERVICES\JSAVESDK.W3
workspace. The JSAVESDK window pops up

 3. Click Project/Import Workspace and select your
C:\INETPUB\WWWROOT\LC\WEBSERVICES\OWC.W3 application
workspace. The functions contained in this workspace get displayed

 4. Click on AutoStart and then Ctrl+Click on Main to select these 2 functions

Click the Publish button
What you should see so far is:

VECTOR Vol.21 No.4

69

The Select Dialog Mode window pops up
Check the Maintain SI Info check box in the following dialog then click OK:

 5. Then select File/Save and save the JSaveSDK Project as
C:\INETPUB\WWWROOT\LC\WEBSERVICES\OWC.WJS

VECTOR Vol.21 No.4

70

Finally click the Package All button, fill the next dialog as follows, then click OK:

And we are now ready to use the application in the browser!

Using the OWC application in the browser

Start an instance of IE and enter the URL - http://localhost:4000/owc.htm. Here is
how it looks:

This application is resizable and works exactly the same in the browser as when
you start it as a Windows application.

VECTOR Vol.21 No.4

71

Analysing the Application Code

First let’s display the 2 published functions: AutoStart and Main. Let’s analyse the
AutoStart function first.

 ’ AutoStart;dir;Z
[1] is‘browser„'APL+Js'Œsysid
[2] :if is‘browser
[3] Main''
[4] :else
[5] AutoStartServer
[6] :end
 ’

 ’ AutoStartServer;dir;Z
[1] :if 0'#'Œwi'server'
[2] Main''
[3] :else
[4] Œ„'I am running on the server!'
[5] © Change Œchdir from C:\Windows\System32 to the workspace dir
[6] dir„²Œwsid
[7] dir„²(~^\dir¬'\')/dir
[8] Z„Œchdir dir
[9] :endif
[10]
 ’

We have also displayed the AutoStartServer function which is called by
AutoStart.

Let’s comment first about AutoStart.

In AutoStart we first check Œsysid and compare it to ‘APL+Js’: as a matter of fact
Œsysid is a way to know if the workspace is run in the browser (Œsysid is
‘APL+Js’ in this case) or on the Server (Œsysid is ‘APL+Win’ in that case). We set
a variable is‘browser to 1 if we are running in the browser. We will need this
information in the Main function.

So, if the workspace is run in the browser (i.e. if it is the JScript translated version
of the APL code which runs), then we execute Main'''''''' which builds the
application interface and displays the Project form in the browser.

On the other hand, if is‘browser is 0, this means that we are not running in the
browser and this can occur in 2 cases:

 • either we have loaded the workspace with the standard APL+Win System in
which case '#'Œwi'server' is 0 and we can start the application (Main '')

VECTOR Vol.21 No.4

72

 • or the workspace has been loaded by an APL+Win ActiveX Server and in this
case '#'Œwi'server' returns a non 0 number (a pointer to the APL
IUnknown interface) and we know the application is running on the Server:
there is no need to display the application there; instead we change the current
directory which by default is always C:\Windows\System32 for a COM Server
to the application directory ...
(in our case C:\INETPUB\WWWROOT\LC\WEBSERVICES)

The most important part of this application is of course the Main function:

 ’ Main B;Z;height;width;off;M;H;arg;warg;bool;dir;file;colorsmat;tasks;
 spreadcols;lastcol;range;I;J;res;range2;tasks0;ttasks;list;lvwidth;E;F;
 taskid;row;colwidth;rok;data;name;start;end;progress;errmsg
[1]
[2] :if 1¬arg„B ª warg„B ª arg„†B ª :end
[3] :select arg
[4] :case''
[5] Z„RunAtServer TieFile 0
[6] (height width)„'#'Œwi'*size'
[7] © Build the interface
[8] Z„'fmProject' Œwi 'Create' 'Form' ('scale'1)
 ('caption' 'Project')'Hide'
[9] © Create an instance of OWC Spreadsheet (OWC11.SpreadSheet)
[10] Z„'fmProject.owc' Œwi 'Create'
 '{0002E551-0000-0000-C000-000000000046}' ('border'1)('DisplayGridlines'0)
[11] Z„'fmProject.owc' Œwi 'Sheets("1").Name' 'Project'
[12] © Create buttons
[13] Z„'fmProject.bnProj' Œwi 'Create' 'Button'~
 ('caption' 'Display Project')
[14] Z„'fmProject.bnProj' Œwi 'onClick' 'Main"bnProj.onClick"'
[15] Z„'fmProject.bnAdd' Œwi 'Create' 'Button' ('caption' 'Add Task')
[16] Z„'fmProject.bnAdd' Œwi 'onClick' 'Main"bnAdd.onClick"'
[17] Z„'fmProject.bnDel' Œwi 'Create' 'Button' ('caption' 'Delete Task')
[18] Z„'fmProject.bnDel' Œwi 'onClick' 'Main"bnDel.onClick"'
[19] © Create Frame for adding a Task
[20] Z„'fmProject.frAdd' Œwi 'Create' 'Frame' ('scale'1)
 ('caption' 'Add Task') ('visible'0)
[21] Z„'fmProject.frAdd' Œwi 'onResize' 'Main"frAdd.onResize"'
[22] Z„'fmProject.frAdd.lName' Œwi 'Create' 'Label' ('scale'1)
 ('caption' 'Task Name')
[23] Z„'fmProject.frAdd.edName' Œwi 'Create' 'Edit' ('scale'1)
[24] Z„'fmProject.frAdd.lStart' Œwi 'Create' 'Label' ('scale'1)
 ('caption' 'Start Date')
[25] Z„'fmProject.frAdd.edStart' Œwi 'Create' 'Edit' ('scale'1)
[26] Z„'fmProject.frAdd.lStart2' Œwi 'Create' 'Label' ('scale'1)
 ('caption' '(in MM/DD/YY format)')
[27] Z„'fmProject.frAdd.lEnd' Œwi 'Create' 'Label' ('scale'1)
 ('caption' 'End Date')
[28] Z„'fmProject.frAdd.edEnd' Œwi 'Create' 'Edit' ('scale'1)
[29] Z„'fmProject.frAdd.lEnd2' Œwi 'Create' 'Label' ('scale'1)
 ('caption' '(in MM/DD/YY format)')
[30] Z„'fmProject.frAdd.lProgress' Œwi 'Create' 'Label' ('scale'1)
 ('caption' '% Progress')

VECTOR Vol.21 No.4

73

[31] Z„'fmProject.frAdd.cbProgress' Œwi 'Create' 'Combo'('style'2 16)
 ('scale'1)('list'(•¨5×0,¼20))
[32] Z„'fmProject.frAdd.lStatus' Œwi 'Create' 'Label' ('scale'1)
 ('caption' '')
[33] Z„'fmProject.frAdd.bnAdd' Œwi 'Create' 'Button' ('scale'1)
 ('caption' 'Add')
[34] Z„'fmProject.frAdd.bnAdd' Œwi 'onClick' 'Main"frAdd.bnAdd.onClick"'
[35] © Create Frame for deleting a task
[36] Z„'fmProject.frDel' Œwi 'Create' 'Frame' ('scale'1)
 ('caption' 'Delete Task') ('visible'0)
[37] Z„'fmProject.frDel' Œwi 'onResize' 'Main"frDel.onResize"'
[38] Z„'fmProject.frDel.owc' Œwi 'Create'
 '{0002E551-0000-0000-C000-000000000046}' ('border'1)
 ('DisplayToolbar'0)('DisplayWorkbookTabs'0)
[39] Z„'fmProject.frDel.owc' Œwi 'TitleBar.Visible'1
[40] Z„'fmProject.frDel.owc' Œwi 'TitleBar.Caption'
 'Select a Task to Delete'
[41] Z„'fmProject.frDel.bnDel' Œwi 'Create' 'Button' ('scale'1)
 ('caption' 'Delete')
[42] Z„'fmProject.frDel.bnDel' Œwi 'onClick' 'Main"frDel.bnDel.onClick"'
[43] © Make main form the right size
[44] Z„'fmProject' Œwi 'onResize' 'Main"onResize"'
[45] Z„'fmProject' Œwi (›'size'),.5 .6×height width
[46] Z„'fmProject' Œwi 'limitwhere' (300÷16) (500÷8)
[47] © Display main form
[48] Main'DisplayProject'
[49] Z„'fmProject'Œwi'Show'
[50]
[51] :case'onResize'
[52] (height width)„((25×is‘browser)0)+16 8×Œwi'size'
[53] Z„'fmProject.bnProj'Œwi(›'where'),(5(width-130)21 120)÷16 8 16 8
[54] Z„'fmProject.bnAdd'Œwi(›'where'),
 ((5+21+5)(width-130)21 120)÷16 8 16 8
[55] Z„'fmProject.bnDel'Œwi(›'where'),
 ((5+21+5+21+5)(width-130)21 120)÷16 8 16 8
[56] Z„'fmProject.frAdd'Œwi(›'where'),(7 6 (0—height-12)
 (0—width-146))÷16 8 16 8
[57] Z„'fmProject.frDel'Œwi(›'where'),(7 6 (0—height-12)
 (0—width-146))÷16 8 16 8
[58] Z„'fmProject.owc'Œwi(›'where'),
 (5 5 (0—height-10),(0—width-140+10))÷16 8 16 8
[59]
[60] :case'frAdd.onResize'
[61] (height width)„('fmProject.frAdd' Œwi 'size')×16 8
[62] off„100
[63] Z„'fmProject.frAdd.lName' Œwi (›'where'), (17 5 15 off)÷16 8 16 8
[64] Z„'fmProject.frAdd.edName' Œwi
 (›'where'), (14 (5+off+5) 21 (120—width-5+off+5+5+100))÷16 8 16 8
[65] Z„'fmProject.frAdd.bnAdd' Œwi
 (›'where'), (14 (0—width-95) 21 85)÷16 8 16 8
[66] Z„'fmProject.frAdd.lStart' Œwi
 (›'where'), ((17+21+5)5 15 off)÷16 8 16 8
[67] Z„'fmProject.frAdd.edStart' Œwi (›'where'),
 ((14+21+5) (5+off+5) 21 (120—180˜width-5+off+5+5+100))÷16 8 16 8
[68] Z„'fmProject.frAdd.lStart2' Œwi (›'where'),

VECTOR Vol.21 No.4

74

 ((17+21+5) (5+off+5+(120—180˜width-5+off+5+5+100)+5) 21 150)÷16 8 16 8
[69] Z„'fmProject.frAdd.lEnd' Œwi (›'where'),
 ((17+21+5+21+5) 5 15 off)÷16 8 16 8
[70] Z„'fmProject.frAdd.edEnd' Œwi (›'where'),
 ((14+21+5+21+5) (5+off+5) 21 (120—180˜width-5+off+5+5+100))÷16 8 16 8
[71] Z„'fmProject.frAdd.lEnd2' Œwi (›'where'), ((17+21+5+21+5)
 (5+off+5+(120—180˜width-5+off+5+5+100)+5) 21 150)÷16 8 16 8
[72] Z„'fmProject.frAdd.lProgress' Œwi (›'where'),
 ((17+21+5+21+5+21+5) 5 15 off)÷16 8 16 8
[73] Z„'fmProject.frAdd.cbProgress' Œwi (›'where'),
 ((14+21+5+21+5+21+5) (5+off+5) 200 60)÷16 8 16 8
[74] Z„'fmProject.frAdd.lStatus' Œwi (›'where'),
 ((17+21+5+21+5+21+5+21+5) 5 15 (width-5+5))÷16 8 16 8
[75]
[76] :case'frDel.onResize'
[77] (height width)„('fmProject.frDel' Œwi 'size')×16 8
[78] off„100
[79] Z„'fmProject.frDel.owc' Œwi (›'where'),
 (14 7 (0—height-23) (lvwidth„120—width-5+5+100))÷16 8 16 8
[80] Z„'fmProject.frDel.bnDel' Œwi (›'where'),
 (14 (0—width-95) 21 85)÷16 8 16 8
[81] Z„'fmProject.frDel.owc' Œwi 'ActiveSheet.Range("a:a").ColumnWidth'3
[82] Z„'fmProject.frDel.owc' Œwi 'ActiveSheet.Range("c:c").ColumnWidth'8
[83] Z„'fmProject.frDel.owc' Œwi 'ActiveSheet.Range("d:d").ColumnWidth'8
[84] Z„'fmProject.frDel.owc' Œwi 'ActiveSheet.Range("e:e").ColumnWidth'5
[85] colwidth„lvwidth÷8
[86] colwidth„colwidth-(3+8+8+5)
[87] colwidth„0—colwidth
[88] colwidth„˜.5+colwidth
[89] :if colwidth¬0
[90] Z„'fmProject.frDel.owc' Œwi
 'ActiveSheet.Range("b:b").ColumnWidth' colwidth
[91] Z„'fmProject.frDel.owc' Œwi 'Refresh'
[92] :end
[93]
[94] :case'bnAdd.onClick'
[95] Z„'fmProject.owc' Œwi 'visible' 0
[96] Z„'fmProject.frDel' Œwi 'visible' 0
[97] Z„'fmProject.frAdd' Œwi 'visible' 1
[98]
[99] :case'bnDel.onClick'
[100] Z„'fmProject.owc' Œwi 'visible' 0
[101] Z„'fmProject.frAdd' Œwi 'visible' 0
[102] Main'FillTasks'
[103] Z„'fmProject.frDel' Œwi 'visible' 1
[104]
[105] :case'bnProj.onClick'
[106] Z„'fmProject'Œwi'pointer'11
[107] Z„'fmProject.frAdd' Œwi 'visible' 0
[108] Z„'fmProject.frDel' Œwi 'visible' 0
[109] Main'DisplayProject'
[110] Z„'fmProject.owc' Œwi 'visible' 1
[111] Z„'fmProject'Œwi'pointer'1
[112]
[113] :case'frAdd.bnAdd.onClick'

VECTOR Vol.21 No.4

75

[114] © Read screen data
[115] name„'fmProject.frAdd.edName' Œwi 'text'
[116] start„'fmProject.frAdd.edStart' Œwi 'text'
[117] start„(†¨Œfi¨(start¬'/')›start)[3 1 2]
[118] start[1]„2000+100|start[1]
[119] start„100ƒstart
[120] end„'fmProject.frAdd.edEnd' Œwi 'text'
[121] end„(†¨Œfi¨(end¬'/')›end)[3 1 2]
[122] end[1]„2000+100|end[1]
[123] end„100ƒend
[124] progress„†Œfi,'fmProject.frAdd.cbProgress' Œwi 'text'
[125] errmsg„RunAtServer AddTask name start end progress
[126] :if 0¹½errmsg
[127] 'fmProject.frAdd.edName' Œwi 'text' ''
[128] 'fmProject.frAdd.edStart' Œwi 'text' ''
[129] 'fmProject.frAdd.edEnd' Œwi 'text' ''
[130] 'fmProject.frAdd.cbProgress' Œwi 'text' ''
[131] 'fmProject.frAdd.lStatus' Œwi '‘style_color' '#00AA00'
[132] 'fmProject.frAdd.lStatus' Œwi 'caption'
 'Record added to the database!'
[133] :else
[134] 'fmProject.frAdd.lStatus' Œwi '‘style_color' '#FF0000'
[135] 'fmProject.frAdd.lStatus' Œwi 'caption' errmsg
[136] :end
[137]
[138] :case'frDel.bnDel.onClick'
[139] row„'fmProject.frDel.owc' Œwi 'ActiveCell.Row'
[140] tasks„RunAtServer Fread 1 11
[141] taskid„tasks[row;1]
[142] Z„RunAtServer DeleteTask taskid
[143] Main'FillTasks'
[144]
[145] :case'DisplayProject'
[146] Z„RunAtServer ComputeProject is‘browser
[147] (rok data)„Z
[148] :if rok = 0
[149] :if is‘browser
[150] 'fmProject.owc' Œwi 'xXMLUrl' data
[151] :else
[152] 'fmProject.owc' Œwi 'xXMLData' data
[153] :endif
[154] :endif
[155]
[156] :case'FillTasks'
[157] tasks„RunAtServer Fread 1 11
[158] :for I :in 1+1†½tasks
[159] :for J :in ¼¯1†½tasks
[160] range„(Jœ'ABCDE'),•I
[161] Z„'fmProject.frDel.owc' Œwi
 ('ActiveSheet.Range("',range,'").Value2') ('')
[162] :end
[163] :end
[164] :for I :in ¼1†½tasks
[165] :for J :in ¼¯1†½tasks
[166] range„(Jœ'ABCDE'),•I

VECTOR Vol.21 No.4

76

[167] Z„'fmProject.frDel.owc' Œwi
 ('ActiveSheet.Range("',range,'").Value2') (•tasks[I;J])
[168] :end
[169] :end
[170]
[171] :end
[172]
 ’

Let’s explain this function in detail.

First, it is built on a :select ... :case ... structure.

When the Main argument is an empty character vector, lines 5 to 46 are executed
and the application main form is built.

The interface is made of 3 frames and 3 buttons. Only one of the 3 frames may be
visible at any time: the other 2 are hidden. The 3 buttons help show the
appropriate frame and hide the other 2.

In 2 of the frames an OWC Spreadsheet object is instanciated. Note that in order
for the OWC Spreadsheet object (which is an ActiveX object) to get displayed in
the browser we need to instanciate it using its class id:

 'fmProject.owc' Œwi 'Create' '{0002E551-0000-0000-C000-000000000046}'

In order to keep all the code within the Main function, we embed all the necessary
handlers within it. For example when a user clicks on the bnProj button in the
main form, the following handler is run:

 Main"bnAdd.onClick"

so the Main function is called with an argument of bnAdd.onClick and the :select
control structure branches to line 94 and executes lines 95 to 97. This technique
makes the code very readable.

Events which we handle here are the onClick events on the various buttons, but
also the onResize events on the main form and on the Frame objects. This way our
form may be resized by the user (even in the browser) and all controls get nicely
resized or repositioned accordingly.

Another point to notice is that we needed to run a few subroutines to perform
specific tasks like FillTasks (to fill the OWC Spreadsheet in the Delete Task frame)
or DisplayProject (to compute and display the Project graph).

VECTOR Vol.21 No.4

77

Rather than making these subroutines, we have made them methods of the Main
function by encapsulating them as :case statements in the Main function: this way
Main contains all the logic necessary to its operation, except for the code sections
which need to run on the Server.

The Client Server Decisions and RunAtServer

One of the difficulties you’ll bump into when porting APL applications to the Web
will be to decide which lines of your code need to run on the Server and which
should run on the Client. But first let’s explain a little bit more what running on
the Client and running on the Server mean.

Every function you have published with JSaveSDK will run on the Client (after
having been translated by JSaveSDK to JScript): however your application is
installed on a Server and is loaded by APL+Win on the Server when someone
starts it in his browser. APL functions which are not published will run on the
Server.

In general you are publishing the APL functions which create your application
interface and are the main functions of your application: however these functions
may call subroutines which you want or need to run on the Server.

The way to do that is to call these functions through the following utility:

 ’ R„RunAtServer R
 ’

Here is an example: in our OWC application, we need to use an APL+Win file to
store the Project tasks information. Using the file system is not authorized on the
Client side for obvious security reasons, therefore we need to open the file on the
Server (in any case, most often, a file like the file containing the Project tasks
information has to be shared among Web users so it needs to reside on the
Server).

To open the file (which we called OWC.SF) we need to write a TieFile utility and
make it run on the Server.

Here is how we call it:

 Z„RunAtServer TieFile 0

VECTOR Vol.21 No.4

78

and here is the TieFile function which opens (or creates) the OWC.SF file:

 ’ R„TieFile dummy;M;H;bool;dir;file;Z;comp2
[1]
[2] R„0 0½''
[3]
[4] dir„Œchdir''
[5] file„dir,'\owc'
[6]
[7] © Create or tie the OWC file
[8] :if FileExist file,'.sf'
[9] file Œfstie 1
[10] :else
[11] comp2„'File Structure',Œtcnl
[12] comp2„comp2,Œtcnl,'Comp 1 -- File Description'
[13] comp2„comp2,Œtcnl,'Comp 2 -- File Structure'
[14] comp2„comp2,Œtcnl,'Comp 3-10 -- (reserved)'
[15] comp2„comp2,Œtcnl,'Comp 11 -- Tasks matrix'
[16] comp2„comp2,Œtcnl,' [;1] „… Task #'
[17] comp2„comp2,Œtcnl,' [;2] „… Task Name'
[18] comp2„comp2,Œtcnl,' [;3] „… Task Start Date'
[19] comp2„comp2,Œtcnl,' [;4] „… Task End Date'
[20] comp2„comp2,Œtcnl,' [;5] „… Task % Progress'
[21] file Œfcreate 1
[22] Z„'APL+Web Components Project Demo Application File'Œfappend 1
[23] Z„comp2 Œfappend 1
[24] Z„(›'')Œfappend¨8½1
[25] Z„(0 5½0''0 0 0)Œfappend 1
[26]
[27] :end
[28]
 ’

Note that the above function describes the file structure we are using for our very
simple OWC.SF application file.

The rules are the following:

 • any function called through RunAtServer should be monadic and return a
result.

In our case, the TieFile function did not need any argument or to return any
result, but we still had to add an argument and a result in its syntax; to
conform to the above rule.

 • The argument to a function called through RunAtServer may be a nested
vector and its result may also be a nested vector.

Look at the various lines in the Main function (displayed above) which call
RunAtServer to run subroutines on the Server. Line 125 shows an example of
passing a nested vector to a function called through RunAtServer.

VECTOR Vol.21 No.4

79

[113] Z„RunAtServer AddTask name start end progress

So, the big question is: “when do we need to use RunAtServer and when not?”

Here are a few hints to help you make these decisions:

 • you must use RunAtServer to perform any task which is forbidden on the
Client (among these are any file system operations)

 • you must use RunAtServer whenever your code uses primitives, operators or
more generally APL constructs which are not translatable to JScript, though an
alternative would be to rewrite these instructions, if possible, using exclusively
APL constructs which are supported by JSaveSDK (you can download the
precise description of JSaveSDK supported and unsupported APL features
from the APL2000 Web Site)

 • you should in general use RunAtServer to perform anything APL task which is
not User Interface related like calculations, database operations, etc.

 • you should sometimes use RunAtServer when using ActiveX objects because
the JSaveSDK support for these ActiveX properties and methods may be
limited: in our case, I tried to update and fill the OWC Spreadsheet object to
display the project Graph on the Client side, but several properties and
methods would not work, so I had to do all this stuff on the Server (see
function DisplayProject below)

 • finally, you should use RunAtServer as often as possible since APL is MUCH
faster than JScript, but remember that everything related to your interface
should be published, i.e. run on the Client

To better explain this last point, here is an example: we needed to write an
AddTask function and to run it on the Server to add a new task to our OWC.SF
since this operation uses a file. It would have been an error to try to read the data
input by the Web User within the AddTask function. This is easy to
understand: the Server does not know about what the Client has done in its
browser. Instead we needed to read the data input by the Web User within the
Main function (which runs on the Client) and to pass these information to the
AddTask function, hence the following code in the Main function:

[113] :case'frAdd.bnAdd.onClick'
[114] © Read screen data
[115] name„'fmProject.frAdd.edName' Œwi 'text'
[116] start„'fmProject.frAdd.edStart' Œwi 'text'
[117] start„(†¨Œfi¨(start¬'/')›start)[3 1 2]
[118] start[1]„2000+100|start[1]
[119] start„100ƒstart
[120] end„'fmProject.frAdd.edEnd' Œwi 'text'
[121] end„(†¨Œfi¨(end¬'/')›end)[3 1 2]

VECTOR Vol.21 No.4

80

[122] end[1]„2000+100|end[1]
[123] end„100ƒend
[124] progress„†Œfi,'fmProject.frAdd.cbProgress' Œwi 'text'
[125] errmsg„RunAtServer AddTask name start end progress
[126] :if 0¹½errmsg
[127] 'fmProject.frAdd.edName' Œwi 'text' ''
[128] 'fmProject.frAdd.edStart' Œwi 'text' ''
[129] 'fmProject.frAdd.edEnd' Œwi 'text' ''
[130] 'fmProject.frAdd.cbProgress' Œwi 'text' ''
[131] 'fmProject.frAdd.lStatus' Œwi '‘style_color' '#00AA00'
[132] 'fmProject.frAdd.lStatus' Œwi 'caption'
 'Record added to the database!'
[133] :else
[134] 'fmProject.frAdd.lStatus' Œwi '‘style_color' '#FF0000'
[135] 'fmProject.frAdd.lStatus' Œwi 'caption' errmsg
[136] :end

And here is the AddTask function which runs on the Server:

 ’ R„AddTask rarg;name;start;end;progress;tasks;startdate;enddate
[1] ©’ R„AddTask rarg -- Adds a task to the OWC file
[2]
[3] R„''
[4] (name start end progress)„rarg
[5] (startdate enddate)„Œsplit³10000 100 100‚start end
[6] :if~DATECHECK startdate ª R„'Invalid Start Date! ' ª :end
[7] :if~DATECHECK enddate ª R„R,'Invalid End Date! ' ª :end
[8] :if startdate[1]¬2004 ª R„R,'Start year must be 2004! ' ª :end
[9] :if enddate[1]¬2004 ª R„R,'End year must be 2004! ' ª :end
[10] :if start>end ª R„R,'Start date must be before end date! ' ª :end
[11] :if 0¹½R
[12] tasks„Œfread 1 11
[13] tasks„tasks®(1+—/0,tasks[;1])name start end progress
[14] tasks Œfreplace 1 11
[15] :end
 ’

In the AddTask function we check the Start date and End date entered on the
client and the AddTask function returns an appropriate error message if any of
these dates is not valid for our application. If the dates are valid, we can add the
task to the OWC.SF file: this is done on lines 12 to 14.

In the frAdd.bnAdd.onClick event handler, we capture the result of AddTask in
the errmsg variable and depending on its content we display an error message in
the Add Task frame or inform the user that the record has indeed be added to the
database, in which case we empty the Add Task frame fields.

One interesting point about the frAdd.bnAdd.onClick handler is that we have
used a DHTML style property to set the Status label colour:

 'fmProject.frAdd.lStatus' Œwi '‘style_color' '#FF0000'

VECTOR Vol.21 No.4

81

Note that you can use any style, DHTML or JScript property on interface objects
as long as you set them as APL User defined properties starting with the ‘style_
prefix, followed by the style name (example: ‘style_fontFamily , ‘style_fontSize ,
‘style_backgroundColor , etc.). Note that the value you pass to the property
should be a valid value for the DHTML or JScript property, hence the '#FF0000'
for the colour style here.

Using the OWC Spreadsheet on the Client and on the Server

As I said, not all OWC Spreadsheet properties and methods work on the Client
when translated to JScript. However a few of them work fine. In our OWC
application, we have used the OWC Spreadsheet both on the Client and on the
Server.

Using the OWC Spreadsheet on the Client

Let’s first talk about using it on the Client. Look at the FillTasks method which
role is to fill the OWC Spreadsheet in the Delete Task Frame with our tasks’
nested array so that the User may select a task to delete:

[133] :case'FillTasks'
[134] tasks„RunAtServer Fread 1 11
[135] :for I :in 1+1†½tasks
[136] :for J :in ¼¯1†½tasks
[137] range„(Jœ'ABCDE'),•I
[138] Z„'fmProject.frDel.owc' Œwi
 ('ActiveSheet.Range("',range,'").Value2') ('')
[139] :end
[140] :end
[141] :for I :in ¼1†½tasks
[142] :for J :in ¼¯1†½tasks
[143] range„(Jœ'ABCDE'),•I
[144] Z„'fmProject.frDel.owc' Œwi
 ('ActiveSheet.Range("',range,'").Value2') (•tasks[I;J])
[145] :end
[146] :end

We first need to read the tasks nested array from the OWC.SF file on the Server,
which is done through a small trivial Fread utility:

 ’ R„Fread A
[1] R„•¨Œfread A
 ’

(note that we are making each cell a string with the •¨ construct to avoid having
to do that on the Client side)

VECTOR Vol.21 No.4

82

Then we perform 2 double loops on the Client side:

 • the first one is to empty the OWC Srpeadsheet

 • the second one is to fill it with the tasks nested array

The reasons we have had to do these loops is that the OWC Spreadsheet Clear
method which was supposed to work on a range of cells did not work when
translated through JSaveSDK, and similarly the Value2 property which normally
accepts a nested array to fill a matrix range of cells at once, would not work either
when translated through JSaveSDK.

So here is a case where things were not working as expected when translated to
JSaveSDK, but where we still could find a workaround to make things work on
the Client side. Obviously these loops do not provide us with the best
performance possible, especially since JScript is rather slow.

Using the OWC Spreadsheet on the Server

Let’s talk now about using the OWC Spreadsheet on the Server side.

You will tell me: what? this is an interface problem and should be running on the
Client: how can you make this running on the Server side?

Well, this part is the trickiest in our example, but shows what you can do with
APL+WebComponent.

First look at the code which runs in the Main function when computing and
displaying a new Project graph:

[122] :case'DisplayProject'
[123] Z„RunAtServer ComputeProject is‘browser
[124] (rok data)„Z
[125] :if rok = 0
[126] :if is‘browser
[127] 'fmProject.owc' Œwi 'xXMLUrl' data
[128] :else
[129] 'fmProject.owc' Œwi 'xXMLData' data
[130] :endif
[131] :endif

Basically almost everything is done on the Server in a ComputeProject function
(displayed a little further below). We need a function to run on the Server for
several reasons here:

 • first, this function needs to access the OWC.SF file to read the tasks data

VECTOR Vol.21 No.4

83

 • second, this function needs to perform a bunch of APL calculations to
transform the tasks nested array in a Project graph

 • third, we wanted to use the OWC Spreadsheet on the Server to make full use of
its properties and methods

Here is the ComputeProject function:

 ’ R„ComputeProject is‘browser;tasks;mindate;maxdate;spandates;boolmat;
 totals;splitmat;daysmat;colorsmat;white;red;green;tasks0;boolmatdone;
 dayofwk;mondays;spreadcols;Z;lastcol;range;range2;I;J;data;filename
[1] ©’ R„ComputeProject is‘browser
[2] ©’ Comp 11 -- Tasks matrix
[3] ©’ [;1] „… Task #
[4] ©’ [;2] „… Task Name
[5] ©’ [;3] „… Task Start Date
[6] ©’ [;4] „… Task End Date
[7] ©’ [;5] „… Task % Progress
[8]
[9] tasks„Œfread 1 11
[10] tasks0„tasks„tasks[“tasks[;3];] © sort tasks by Start Date
[11] tasks[;3 4]„DateBase tasks[;3 4] © convert YYYYMMDD dates
[12] mindate„˜/tasks[;3] © earliest Start Date
[13] maxdate„—/tasks[;4] © latest End Date
[14] spandates„mindate+0,¼maxdate-mindate
[15] boolmat„(tasks[;3]°.ˆspandates)^tasks[;4]°.‰spandates
[16] boolmatdone„œ(›spandates)¹¨(tasks[;3]-1)+¼¨˜.5+.01×tasks[;5]×+/boolmat
[17] colorsmat„1+boolmat+boolmatdone
[18]
[19] © Compute per week
[20] dayofwk„DAYOFWK DATEREP spandates
[21] mondays„1,1‡dayofwk=3
[22] colorsmat„³œ—/¨mondays Œpenclose colorsmat
[23]
[24] (white red green)„256ƒ¨(192 255 255)255(0 255 0)
[25] colorsmat„(white green red)[colorsmat]
[26]
[27] spreadcols„256†,((›''),'ABCDEFGHI')°.,'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
[28]
[29] :if ~0¹½'ftmp.owc' Œwi 'self'
[30] Z„'ftmp' Œwi 'Delete'
[31] :endif
[32] Z„'ftmp' Œwi 'Create' 'Form' 'Hide'
[33] Z„'ftmp.owc' Œwi 'Create' '{0002E551-0000-0000-C000-000000000046}'
[34] Z„'ftmp.owc' Œwi 'Sheets("1").Name' 'Project'
[35]
[36] © Compute range
[37] lastcol„(¯1†½tasks)œspreadcols
[38] range„'A1:',lastcol,•†½tasks0
[39] range2„'A:',lastcol
[40] Z„'ftmp.owc'Œwi'xActiveSheet.xRange().xValue2'range(³tasks0)
[41] Z„'ftmp.owc'Œwi'xActiveSheet.xRange().XAutoFit'range2
[42] © Install Colors matrix
[43] range„((1+¯1†½tasks)œspreadcols),':',

VECTOR Vol.21 No.4

84

 ((¯1†½tasks)+¯1†½colorsmat)œspreadcols
[44] range2„(1+(¯1†½tasks)+¯1†½colorsmat)œspreadcols
[45] range2„range2,':',range2
[46] Z„'ftmp.owc'Œwi'ActiveSheet.Range().ColumnWidth'range 1.5
[47] Z„'ftmp.owc'Œwi'ActiveSheet.Range().ColumnWidth'range2 255
[48] :for I :in ¼†½colorsmat
[49] :for J :in ¼¯1†½colorsmat
[50] range„((J+¯1†½tasks)œspreadcols),•I
[51] Z„'ftmp.owc'Œwi'xActiveSheet.xRange().xInterior.xColor'range
 (colorsmat[I;J])
[52] :end
[53] :end
[54]
[55] data„'ftmp.owc' Œwi 'xXMLData'
[56]
[57] :if is‘browser
[58] © data„'/&/&'TEXTREPL data
[59] filename„UniqueFileName 'c:\inetpub\wwwroot\lc\webservices\'
[60] Œnuntie ¯1
[61] filename Œxntie ¯1
[62] 0 Œnresize ¯1
[63] filename„(¯3‡filename),'xml' © the extn is .tmp, change to .xml
[64] filename Œxnrename ¯1
[65] data Œnappend ¯1
[66] Œnuntie ¯1
[67] filename„(½'c:\inetpub\wwwroot\lc\webservices\')‡filename
[68] © R„0 ('http://www.lescasse.com:9000/owc/xmlfile?',filename)
[69] R„0 ('http://localhost:4000/owc/xmlfile?',filename)
[70] :else
[71] © data„'/&/&'TEXTREPL data
[72] R„0 data
[73] :end
[74]
[75] 'ftmp'Œwi'Delete'
[76]
[77]
 ’

The ComputeProject function contains 3 parts:

 • lines 9 to 25, the computation part, takes the tasks nested array and converts it
to a colours matrix for the Project graph: note that we are using subroutines
like DateBase, DATEBASE, DATEREP and DAYOFWK, the latter 3 ones
coming from the DATES workspace delivered with APL+Win. Since these
functions are called by a function running on the Server, they automatically
also run on the Server and we don’t need to use RunAtServer again to call
them.

On line 11 the YYYYMMDD dates in the tasks nested array are converted to
number of days since January 1 1900. The spandates variable is computed on
line 14 and contains all the dates from the start of the first task to the end of the
last task. The boolmat variable contains one line per task, one column per
spandates and a 1 for each day between the task start date and end date. The

VECTOR Vol.21 No.4

85

boolmatdone variable has the same dimensions as boolmat and is the same as
boolmat except that it contains 1s only for the dates corresponding to the task
% which is done.

Finally on line 20 to 22, we reduce the colours matrix to one cell per task and
per week, instead of one cell per task and per day, in order to reduce the
number of columns we will use in the OWC spreadsheet.

 • lines 21 to 53 are used to create a new instance of the OWC Spreadsheet object
on the Server in an invisible form and to fill it with the tasks data and with the
Graph, i.e. the colours matrix we have just computed: we do this on the Server
exactly as we would have liked to do it on the Client.

Now you have to understand that this OWC Server Spreadsheet has nothing to
do with the one displayed on the Client in the browser, but it is precisely the
same kind of object.

Once the OWC Server Spreadsheet is populated with data, we get its complete
content, including all its formatting, in an APL variable called data by invoking
its xXMLData property on line 55. The data variable now contains an XML
representation of our OWC Server Spreadsheet content.

 • lines 57 to 73 are used to transfer this XML content back to the Client.

One tricky aspect here is that we have to distinguish the 2 following cases: we
may be running the application from the browser, or we may be running in a
raw APL session just for tests purposes. The tricky thing is that we CANNOT
use Œsysid within the ComputeProject function to determine if we are
running from the browser or from a raw APL session. Guess why? This is
because in both cases Œsysid will return ‘APL+Win’. The reason is that when
you run a function on the Server through RunAtServer, you are running it in a
standard APL+Win session on the Server. How do we solve this problem? The
trick is simple: since Œsysid returns the right information when we are
running on the Client, we just need to pass its Client value to the
ComputeProject function as its argument. More precisely we are passing here
the is‘browser variable which reflects the Œsysid value, as an argument to
the ComputeProject function before calling it through RunAtServer.

When we are running on the Server, we need to create a native file and to
populate it with the data variable: this is done through lines 55 to 66. And we
return a return code of 0 and the following string to the client:

 'http://localhost:9000/owc/xmlfile?',filename

VECTOR Vol.21 No.4

86

where filename is the name of the XML file we just created.

Remember that we have created a virtual path called /owc/xmlfile as follows
in the APL Web Services Configuration Console:

 Web Server Virtual Path Name Type

 owc

 /owc/xmlfile

 wsid owc wsid

 function GetXMLFile function

 rarg filename entity-body

 larg

 result r document-filename

 r2 document-filename-delete

The role of this /owc/xmlfile Virtual Path is to send the right XML file from the
Server to the Client. The GetXMLFile function is very simple and just returns
the complete name of the file:

 ’ r„GetXMLFile filename
[1]
[2] r„('c:\inetpub\wwwroot\lc\webservices\',filename) 1
[3]
 ’

So let’s look at the DisplayProject method in the Main function:

[122] :case'DisplayProject'
[123] Z„RunAtServer ComputeProject is‘browser
[124] (rok data)„Z
[125] :if rok = 0
[126] :if is‘browser
[127] 'fmProject.owc' Œwi 'xXMLUrl' data
[128] :else
[129] 'fmProject.owc' Œwi 'xXMLData' data
[130] :endif
[131] :endif

VECTOR Vol.21 No.4

87

It runs ComputeProject on the Server with an argument of is‘browser (which
is 1). The ComputeProject function returns the following string to the client data
variable:

 'http://localhost:4000/owc/xmlfile?',filename

where filename is the name of the XML file created on the server.

Then if the ComputeProject return code is 0 and if we run on the Client, we pass
data as an argument to the Client OWC Spreadsheet xXMLUrl property. This
results in the Client OWC Spreadsheet downloading the right XML file from the
Server and instantaneously populating itself with its content.

As a summary, to use the OWC Spreadsheet on the Server rather than on the
client, we have:

 • called a function on the Server (ComputeProject)

 • created another instance of the OWC Spreadsheet in an invisible form on the
Server

 • done all the necessary work to populate it and format it on the Server

 • captured its xXMLData property

 • created a native file on the Server and filled it with the OWC Spreadsheet
xXMLData

 • returned to the Client the URL necessary for the Client to download this native
file

 • called the Client OWC Spreadsheet xXMLUrl property with this URL as an
argument to download the file and populate itself

Note that using a result of r2 document-filename-delete in the /owc/xmlfile
setup results in the native XML file being deleted as soon as it has been received
by the Client. This avoids the Server getting cluttered with the XML native files
created by people using our application. This is very important: we should never
forget that such an application runs on the Internet and that there may be
thousands of people using it every day (or more): this would quickly result in tens
of thousands of XML files cluttering the Server!

Yes I know: all this may seem a bit complicated at first, but it works and rather
efficiently!

VECTOR Vol.21 No.4

88

The APL+WebComponent Development Cycle

How do you proceed in practice to write an APL+WebComponent application?

Well this depends if you are writing a brand new application or trying to port an
existing APL+Win application to the Web. Assume first you are writing a brand
new APL+Win application to be published on the Web.

I recommend the following development cycle:

 1. design your application interface first, leaving aside as much code as possible
which will run on the Server, concentrate on the interface first.

 2. write your AutoStart function (the one shown in this example should do).

 3. write your Main function.

 4. go very slowly, i.e. write a couple of lines at a time.

 5. always check that you are using APL constructs which are supported by
JSaveSDK.

 6. test it within the APL+Win ActiveX Server workspace, in APL mode (example:
 Main''); correct any APL bug ;

 7. save the workspace.

 8. then go to JSaveSDK and Republish your application
(once you have selected the functions you want to publish, you need to click 2
buttons in JSaveSDK in this order each time: Republish and Package All).

 9. test your application in the local browser
(http://localhost:port/application.htm
 example: http://localhost:4000/owc.htm).

 10. if everything runs fine, come back to the workspace and write a couple more
lines of code and then loop at step 5 ...

 11. if a problem occured while testing in the browser, you need to debug the
APL+WebComponent version of your application (this is a little hard, see next
paragaph, and that’s the reason why you really need to write one or 2 lines of
code before testing again in APL and then in the browser).

 12. once the whole interface is running fine, i.e. all your published functions are
running fine in the Browser, you can start writing code running on the Server.

 13. remember to use RunAtServer to call any subroutine running on the Server.

 14. remember that these subroutines must be monadic and return a result.

VECTOR Vol.21 No.4

89

 15. remember that you should NOT do any interface stuff within the subroutines
running on the Server: this is reserved to the Client side (do this interface stuff
on the Client instead and pass the resulting necessary data as arguments to the
subroutines running on the Server).

 16. remember that Server subroutines’ arguments and results transfer from the
Client to the Server and vice versa: as much as possible keep these arguments
and result variables as small as possible.

 17. in all cases, go very slowly. Re-publish any time you change anything to a
published function and test in the browser.

If you are trying to port an existing APL application, things are more complicated,
because you’ll be inclined to try to use your existing code as is and to publish it as
is to go faster. It’s almost sure you’ll get some headaches doing that.

I would recommend rewriting the application (at least the code which needs to be
published) from scratch in the same workspace with different function names and
following the development cycle described above. It is almost certain you’ll go
faster this way.

Debugging an APL+WebComponent Application

This may be very tricky to do.

First let’s forget about debugging stuff on the Server side of your application.
Remember – the Server side is pure APL+Win and you know how to debug pure
APL programs.

On the Client side it is more complex. The reason is that you do not always get a
clear error message pointing you to the error. Sometimes you get no error
message, but things do not happen in the browser in the same way as they were
happening when testing in APL mode.

Sometimes you get an Internet error but it is not explicit enough to let you know
where something bumped. Here is an example:

VECTOR Vol.21 No.4

90

Sometimes you get an APL Error popping up in the browser, but the reported
error is further on in the program than the one that really occurred.

Sometimes things are due to your coding because you forgot about some of the
JSaveSDK limitations (always keep at hand the following document and always
refer to it: “Description of JSaveSDK supported and unsupported APL features”.

But sometimes things are due to bugs in the JSaveSDK translation system (i.e. you
do everything right and your application still does not run as expected).
Fortunately, there aren’t many of these, but as for any software, that may happen.

Let’s assume I have made an error in the frAdd.bnAdd.onClick handler, as
follows:

[113] :case'frAdd.bnAdd.onClick'
[114] © Read screen data
[115] name„'fmProject.frAdd.edName' Œwi 'text'
[116] start„'fmProject.frAdd.edStart' Œwi 'text'
[117] start„(†¨Œfi¨(start¬'/')›start)[3 1 2]
[118] start[1]„2000+100|start[1]
[119] © start„100ƒstart © correct line
[120] start„ƒstart © Error: left ƒ argument omitted
[121] end„'fmProject.frAdd.edEnd' Œwi 'text'
[122] end„(†¨Œfi¨(end¬'/')›end)[3 1 2]
[123] end[1]„2000+100|end[1]
[124] end„100ƒend
[125] progress„†Œfi,'fmProject.frAdd.cbProgress' Œwi 'text'
[126] errmsg„RunAtServer AddTask name start end progress
[127] :if 0¹½errmsg
[128] 'fmProject.frAdd.edName' Œwi 'text' ''
[129] 'fmProject.frAdd.edStart' Œwi 'text' ''
[130] 'fmProject.frAdd.edEnd' Œwi 'text' ''
[131] 'fmProject.frAdd.cbProgress' Œwi 'text' ''
[132] 'fmProject.frAdd.lStatus' Œwi '‘style_color' '#00AA00'
[133] 'fmProject.frAdd.lStatus' Œwi 'caption'
 'Record added to the database!'
[134] :else
[135] 'fmProject.frAdd.lStatus' Œwi '‘style_color' '#FF0000'
[136] 'fmProject.frAdd.lStatus' Œwi 'caption' errmsg
[137] :end

I have replaced line 119 by line 120 which contains an obvious error (no left
argument to the decode primitive).

If we republish and test/run the application in the browser we get the following
error:

VECTOR Vol.21 No.4

91

Conclusion

In this second article on APL+WebComponent we have showed a much more
sophisticated APL application ported to the Web. If you try this application,
please note that it has not been written to handle limit conditions like deleting all
tasks, or creating tasks with an end date so far away that it will go beyond the
number of columns contained in the OWC Spreadsheet object, etc. If you try the
owc application, don’t try to break it please.

We have explained how to use the APL+WebServicesController to automate
setting up your APL+Web Component application, how to develop such an
application, how to separate code which needs to run on the Client and code
which needs to run on the Server, how to make code run on the Server, how to
use the Microsoft OWC Spreadsheet, how to sometimes do interface work on the
Server and transfer it to the Client.

We hope you have a better understanding of how to develop
APL+WebComponent applications and we hope you will decide to try that soon.

VECTOR Vol.21 No.4

92

APL Idioms

by Ajay Askoolum

In this article, I raise ten APL problems; each problem has a simple one line
solution which does not involve the creation of any intermediate variable. The
objective in solving such problems, for novices and experts alike, is to acquire new
APL skills; if you can solve the problem without struggle, find an alternative to
the first solution. In short, the solution to the problems should be an idiom: these
idioms may be compiled into a Vector idiom dictionary. The solutions will be
posted on the Vector website (www.vector.org.uk) a week or so before the
publication of the next issue.

1. How many elements does a given variable have?

If the monadic function CE provides the solution, it should yield the following
answers:

Syntax Answer

CE 90 1

CE 0/8 9 9 0

CE 'ABC' 'DEF' 2

CE 2 1½'ABC' 'DEF' 2

CE '' 0

Restriction: assume that the keyboard does not have the comma (,) symbol.

2. Is a value within a given range?

For any numeric value and a given range, return a result corresponding to the
following table:

Result Description

2 Value is below the minimum value.

1 Value is equal to the minimum value.

0 Value is between the minimum and maximum value.

VECTOR Vol.21 No.4

93

¯1 Value is equal to the maximum value.

¯2 Value exceeds maximum value.

Restriction: assume that the keyboard does not have any relational operators.

3. Sort a numeric array of integers in ascending order of
the number of digits.

For a character array, the solution is simple.

 CA„œ'Sun' 'Mon' 'Tuesday' 'Wed' 'Thursday' 'Fri' 'Sat'
 CA[“CA+.=' ';]
Thursday
Tuesday
Sun
Mon
Wed
Fri
Sat

Note that the array is sorted in ascending order of the number of spaces in each
row and not in any particular alphabetical order. Is this a clue or a red herring?
For practice, devise a solution that ignores embedded spaces. For a numeric array,
the monadic function SN provides the solution as follows:

 SN 8 1½89 ¯78 1229 32 129 11 90232 1
 1
 89
 ¯78
 32
 11
 129
 1229
 90232

Restriction: assume that the keyboard does not have the format (•) or quad (Œ)
symbol.

4. Return the element(s) of a numeric array indexed by its
first dimension.

If the monadic function LD provides the solution, it should yield the following
answers:

VECTOR Vol.21 No.4

94

Syntax Answer

LD 6 6

LD 98 878 332 2.3 44 44

LD 2 3½9 3 4 0.98 22 3.4 0.98 22 3.4

LD 2 3 4½+\24/1 13 14 15 16
17 18 19 20
21 22 23 24

Restriction: assume that the keyboard does not have the shape of (½) symbol.

5. Return the sum of element(s) of a numeric array on its
first dimension.

If the monadic function LS provides the solution, it should yield the following
answers:

Syntax Answer

LS 6 6

LS 98 878 332 2.3 44 1354.3

LS 2 3½9 3 4 0.98 22 3.4 9.98 25 7.4

LS 2 3 4½+\24/1 14 16 18 20
22 24 26 28
30 32 34 36

Restriction: assume that the keyboard does not have the plus (+) symbol. I have
used +\24/1 in order to ensure that I get the first 24 numbers in index origin 1:
you can set Œio„1 and use ¼24 instead.

6. Convert the string representation of integers to numbers.

If the monadic function CN provides the solution, it should work as follows:

 CN '898'
898

 10×CN '898'
8980

 CN ¨'898' '34'
898 34

 10×CN ¨'898' '34'
8980 340

Restriction: assume that the keyboard does not have the execute (–) symbol.

VECTOR Vol.21 No.4

95

7. Return a numeric array as zeros, increasing the last dimension by 1

If the monadic function ZM provides the solution, it should work as follows:

 ZM 2 3 4

0 0 0 0

 ZM 2 3½¼6

 0 0 0 0

 0 0 0 0

 ZM 2 3 4½¼24

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

Restriction: assume that the keyboard does not have the times (×), take (†), minus
(-), or comma (,) symbols and it does not end with ½0.

8. Return the first ones from a Boolean vector.

If the monadic function FO provides the solution, it should work as follows:

 FO 2|88 68 45 67 77 90 100 13 27 0
0 0 1 0 0 0 0 1 0 0
 FO 1 0 1 1 1 0 1 1 0 1
1 0 1 0 0 0 1 0 0 1

Restriction: assume that the keyboard does not have the not (~) or rotate (²)
symbols.

9. Return the last ones from a Boolean vector.

If the monadic function LO provides the solution, it should work as follows:

 LO 2|88 68 45 67 77 90 100 13 27 0
0 0 0 0 1 0 0 0 1 0
 LO 1 0 1 1 1 0 1 1 0 1
1 0 0 0 1 0 0 1 0 1

Restriction: assume that the keyboard does not have the not (~) or rotate (²)
symbols.

VECTOR Vol.21 No.4

96

10. Return the elements of a numeric array found at
given coordinates.

If the dyadic function RE provides the solution, it should work as follows:

 Œ„A„3 4½78 90 22 2.3 43.9 92 12 67 23 33 88 9.34
 78 90 22 2.3
 43.9 92 12 67
 23 33 88 9.34
 Œ„B„2 2½1 3 2 4
 1 3
 2 4
 A RE B
22 67

 Œ„C„2 5 6½60?1000
 554 684 485 119 559 530
 193 631 783 1 838 366
 380 987 986 224 269 670
 572 312 314 779 160 285
 168 883 895 230 361 764

 763 891 592 47 51 589
 705 297 689 215 208 1000
 688 772 946 957 16 721
 172 822 982 379 781 163
 797 12 702 723 847 735
 D„œ(1 3 4) (1 5 5) (2 1 6)
 C RE D
224 361 589

Restrictions: assume that a looping solution is not allowed nor one involving
semi-colon and that index origin is 1.

If you are a developer working with APL, you should be able to propose at least
three solutions or idioms in respect of the problems above. The restrictions
imposed in formulating the solution should help in determining an idiom.

Subject to readers’ active participation – via correspondence with the editor – the
responses will be analysed in a regular feature in future editions of Vector.

VECTOR Vol.21 No.4

97

Students’ Smiles

book review by Cliff Reiter

Mathematical Computing in J, by Howard A. Peelle

Mathematical Computing in J [1] is a smart looking book that very gently introduces
mathematics and J to its readers. This book is another J book published by
Research Studies Press Ltd., Baldock, Hertfordshire, England; the first was
Norman Thomson’s J: the Natural Language for Analytic Computing [2,3].
Mathematical Computing in J is the size of ordinary paper with a soft cover, a wire
binding, and a large font. The book is very pleasant to read at the same time as
using a computer since it lies flat and is easy to read. The cover is attractive, see
below. It is almost 400 pages in length and as we will see, has a remarkably
comprehensive style.

The book is aimed at students and
teachers of mathematics or
computing at the secondary or early
college level. The author says his
motivation for writing the book was
sparked by students’ smiles at
understanding by doing. The editor
recognizes that being able to
implement fundamental
mathematical computations is an
essential job skill and Mathematical
Computing in J gives you those skills.
Both of their remarks ring true. While
the text is in many ways quite
straightforward, it is equally brilliant,
because the discussion is thorough,
careful and motivated.

The topics include those that might be
seen by high school: fractions,
arithmetic, algebra, equations,
exponentials, logarithms, and
averaging. Other topics are at a

similar level, but might only be seen in high school as enhancement material:
Pascal’s triangle, moving averages, tables and 3-D arrays, commutativity,

Mathematical Computing in J

VECTOR Vol.21 No.4

98

associativity, and the sieve of Eratosthenes. We are reviewing the first volume
which has 18 chapters; not surprisingly, the second volume will contain more
advanced topics including: logic, recursion, probability, statisitics, series, linear
algebra, and much more; it is designed to also have 18 chapters.

Each topic in Mathematical Computing in J is thoroughly covered. Each chapter is
divided into sections: Vocabulary, Worksheet, Explanation, Review and Problems.
That is: at the beginning of each chapter there is a vocabulary listing the J
introduced in the section and other J that should be reviewed. There is a
worksheet intended for interactive completion by the reader. Then there is
extensive discussion and explanation of the ideas that the reader should have
explored. Possible mistakes or misconceptions are explicitly discussed, important
concepts are highlighted, and advanced material is presented, but noted as such.

For example, Chapter 1 is titled: Arithmetic. Division and reciprocal using (%)
appear in the experiments that readers should do; in the discussion, the
mnemonic that it is similar to the grade school division symbol is mentioned, a
warning that it is not (/) is mentioned and consideration of division by zero
mentioned, referenced, but not extensively discussed. The reader has been given a
comprehensive explanation of the functions, the symbol for the functions and
suitable warnings and pointers regarding subtleties. The discussion is followed by
a review of J, and then the first problem at the end of the chapter is to calculate the
number of feet traveled by a car traveling 55 miles per hour for 3 seconds (1 mile =
5280 feet). While the problem isn’t deep, it illustrates an important basic
arithmetic computation and exercises the division or reciprocal function. And the
reader can’t be left behind: the problem solution appears in Appendix 3.

As a second illustration we consider the breadth of the discussion of averaging.
Chapter 11 is devoted to averaging and here we consider the worksheet exercises
from that section (although in the text, comments appear along with the
worksheet experiments, and further experiments are suggested with words;
moreover, we show the results of the worksheet, not just the experiments
requested).

The worksheet begins with a straightforward example of computing the average
of a list of numbers.

1. Averaging Numbers

 n =: 85 65 95 90 80

 #n
5

VECTOR Vol.21 No.4

99

 +/ n
415

 (+/n) % (#n)
83

In the next section of the worksheet, the average is computed using a fork, named
and unnamed.

2. Functional Averaging

 (+/ % #) n
83

 Average=: +/ % #

 Average
+-----+-+-+
|+-+-+|%|#| | | |
||+|/|| | |
|+-+-+| | |
+-----+-+-+

 Average n
83

 Average 2 4 6 8
5

Some weights are defined and used to compute weighted averages.

3. Weighted Average

 weights=: 1 0 3 1

 (+/ weights * 2 4 6 8) % (+/ weights)
5.6

 n
85 65 95 90 80

 weights=: 1 2 2 2 1

 (+/ weights * n) % (+/ weights)
83.125

Cumulative sums are given and readers are encouraged to experiment with
replacing the sum with averages.

VECTOR Vol.21 No.4

100

4. Cumulative Sums

 +/ \ n
85 150 245 335 415

 +/ \ 1 2 3 4 5
1 3 6 10 15

Moving averages are computed.

5. Moving Averages

 2 Average \ n
75 80 92.5 85

 2 Average \ 1 2 3 4 5
1.5 2.5 3.5 4.5

All the ideas explored in the worksheet are thoroughly discussed in the
explanation section. Indeed, the main discussion of forks in the book appears in
the discussion section of this chapter. Notice the coherence of the workshop
section: several types of averages are discussed. Different styles of computations
(direct and tacit) are discussed and monad/dyad cases of (\) are discussed.

Mathematical Computing in J gives a gentle introduction to J in the context of
actively doing mathematics. It is a useful, active resource for students learning the
mathematical topics being discussed, and is a very gentle introduction to J for
those who know the mathematics.

References

 [1] Howard A. Peelle, Mathematical Computing in J, Volume 1, Research Studies
Press, 2004.

 [2] Cliff Reiter, Review of J: the Natural Language for Analytic Computing, book by
Norman Thomson, Vector, 18 3 (2002) 31-37.

 [3] Norman Thomson, J: the Natural Language for Analytic Computing, J Dictionary
(electronic version), Jsoftware Inc., Toronto, 2001.

VECTOR Vol.21 No.4

101

J-ottings 44: So easy a Child of Ten ...

by Norman Thomson (ndt2@tutor.open.ac.uk)

Perfect shuffles just won’t go away! Following J-ottings 43 on this subject, Eugene
McDonnell, Roger Hui and Jeff Shallit made insightful comments which help cast
the problem in a broader context. I shall endeavour to summarise their thoughts
here, sauced with generous helpings of J!

To recap, a perfect or ripple shuffle of a deck of cards consists of dividing it into
two halves (or as nearly as possible if there is an odd number of cards) and taking
one card in turn from each half. A single shuffle of a given number of cards is
given by

 sh=./:@$&0 1 NB. ripple shuffle of i.y.

or for repeated shuffling, make the argument into a list (not necessarily numeric)

 rs=./:0 1&($~)@# NB. ripple shuffle of y.

Assume in what follows that both the word “number” and the letters m, n and k
denote “a positive integer”, while the letter p means “a prime number” (including
1). A result called Fermat’s Little Theorem, first formally proved by Euler in 1736,
states that if (n,p) are relatively prime, then np-1=1 in modulo p arithmetic.
“Relatively prime” says in words what GCD(m,n)=1 says in maths, or 1=m+.n
says in J, as in the verb:

 rps=.i.#~(e.&1(+.i.)) NB. relative primes of y.
 rps 15
1 2 4 7 8 11 13 14

Modulo n arithmetic is what primary school children are familiar with as ‘clock
arithmetic’, that is the arithmetic of a finite set of numbers i.n equally spaced
around the rim of a clock. A J session can be set up to perform modulo n
arithmetic by setting the modulus and defining an adverb such as mod :

 n=.7
 mod=.1 : 'n&|@x.'
 (6+mod 3),(*:mod 9) NB. (9 mod 7),(9^2 mod 7)
2 4

Advancing a little (but only a little!) beyond primary school, every number
possesses a ‘totient’, where tot(n) is the number of relatively prime numbers
which are less than n. Thus tot(2) is 1, tot(3) and tot(4) are both 2 (the relatively

VECTOR Vol.21 No.4

102

prime number lists being 1,2 and 1,3 respectively), tot(5)=4 (all lower numbers)
and so on. tot(n) is often written v(n), and called ‘Euler’s phi’, or in J, #@rps.
Were this mathematical function just a little more useful, it might well have found
a place on calculator keyboards, or indeed as a J primitive, along with factorial,
log, sin, etc., and the like. However, it is not necessary to enumerate relatively
prime numbers to find tot(n) since it is given by the closed formula

 tot(n) = n(1-1/p
1
)… (1-1/p

n
) where the p’s are the unique prime factors of n

Totient can thus be regarded as an extension of q: which gives the prime
factorisation of n:

 tot=.*/@,(-.@%)@(~.@q:) NB. totient (Euler s phi)
 (tot 10),(tot 51)
4 32

Neither set of parentheses is necessary in the above definition of tot, but they
help to clarify how it works. (-.@%)n is 1 - 1/n, (~.&.q:) is the prime factor
nub, and the comma makes the hook which multiplies in the factor n.

Euler generalised Fermat’s Little Theorem to non-primes by proving that,
provided m and n are relatively prime, mtot(n) = 1 (mod n). For primes, all
preceding numbers are relatively prime, so tot(p) = p-1 and Euler’s and Fermat’s
theorems are equivalent in this case. Some other properties of the totient are
simple to prove, viz.

tot(n) is even for all n>2 (this follows from the closed formula)

tot(2k) = 2 k-1 (because every odd number less than 2k is relatively prime)

tot(mn) = tot(m).tot(n) if m,n are relatively prime; and
 = n.tot(m) when the prime factors of n are a subset of those of m.

In particular tot(n2) = n.tot(n). The third of the above properties can be described
by saying that tot is a multiplicative function. Generalising the result to prime
factor products, if n=(p1

k1)(p2
k2)…(pv

kv) then

 tot (n) = */ tot (p1
 k1), tot (p2

k2), … ,tot (pv
kv)

As an aside, the functions tau(n) and sigma(n) as defined below are also
multiplicative functions.

 seldivs=.0&=@|~i. NB. select divisors of y.
 divs=.seldivs~#i. NB. divisors of y. excl y.
 divs 12
1 2 3 4 6

VECTOR Vol.21 No.4

103

 tau=.#@,divs NB. tau=no. of divisors incl y.
 sigma=.+/@,divs NB. sigma=sum of divisors incl y.
 (tau&>12 13 156);(sigma&>12 13 156)
+------+---------+
|6 2 12|28 14 392|
+------+---------+

To illustrate the sort of possible uses for tot(n) and modulo n arithmetic, suppose
that the last two digits of 3256 (which incidentally has 123 digits altogether) are
required. tot(100) = 40 so the problem reduces to that of finding the last two digits
of 316 by e.g.

(3
16

)= (81)
4
 = (-19)

4
 = (361)

2
 = 61

2
 = 3721 = 21

As a further aside, it is not hard to prove that tot(2n) = tot(n) if n is odd and
=2.tot(n) if n is even, a result which it is pleasing to have J confirm by comparing
matching columns in

 (5 6$tot&>>:i.30);5 6$tot&>2*>:i.30
+----------------+-----------------+
1 1 2 2 4 2	1 2 2 4 4 4
6 4 6 4 10 4	6 8 6 8 10 8
12 6 8 8 16 6	12 12 8 16 16 12
18 8 12 10 22 8	18 16 12 20 22 16
20 12 18 12 28 8	20 24 18 24 28 16
+----------------+-----------------+

As well as confirming results, J can also suggest results ahead of proof. For
example, the result that tot(3n) = 3tot(n) for multiples of 3, and = 2tot(n) otherwise
is forecast with clarity by

 (5 6$tot&>>:i.30);5 6$tot&>3*>:i.30
+----------------+-----------------+
1 1 2 2 4 2	2 2 6 4 8 6
6 4 6 4 10 4	12 8 18 8 20 12
12 6 8 8 16 6	24 12 24 16 32 18
18 8 12 10 22 8	36 16 36 20 44 24
20 12 18 12 28 8	40 24 54 24 56 24
+----------------+-----------------+

Returning to the ripple shuffle problem, the number of shuffles required to restore
an even numbered deck of n cards to its original order is the number of times 2
must be multiplied in modulo n-1 arithmetic in order to obtain 1. To obtain such a
value, one way is simply to carry on multiplying and reducing modulo (n-1) until
1 is reached, an event which Euler's theorem guarantees is bound to happen.
However there may be an earlier arrival at the target than that predicted by
Euler’s Theorem. For example tot(51) = 32, so that 32 shuffles will restore 52 cards
to their original order.

VECTOR Vol.21 No.4

104

However, if 2 is doubled repeatedly (note a good excuse for a gerund!) :

 n=.51 NB. set modulus
 mod=.1 : 'n&|@x.' NB. redefine mod
 p2=.,$:@(+:mod@{:)`}.@.(1&e.) NB. powers of 2
 p2 2
2 4 8 16 32 13 26 1

it transpires that a mere 8 steps are sufficient. 8 is called the multiplicative order of
2 (mo2 for short) in modulo 51 arithmetic, and Euler’s theorem guarantees that
mo2(n) is a divisor of tot(n), which is helpful in manual searches. mo2 is of course
just #p2 . As an alternative to redefining p2 every time the modulus is reset, write

mo2=.3 :0 NB. mult order of 2 for odd modulus y.
r=.2
while.(1~:y.|r)do.r=.x:2*r end. [2^.r
)
 (mo2 13),(mo2 51)
12 8

Now revisit the ripple shuffle with an even number of cards, for example

 sh 10
0 2 4 6 8 1 3 5 7 9

It takes only a moment to see that 0 and 9 will remain in place in repeated
shuffles, and that the second position will be occupied by successive powers of 2
in modulo 9 arithmetic. The number of shuffles to restore a pack with an even
number of cards n is thus mo2(n-1). Eugene pointed out that another way to
regard a shuffle such as sh 10 is as a permutation of i.10, which can be
expressed using C. as a combination of cycles:

 C. sh 10
+-+---+-----------+-+
|0|6 3|8 7 5 1 2 4|9|
+-+---+-----------+-+

and if shuffling is continued until the original order is restored, the cycles emerge
in the columns of these lists read as a matrix:

 rs^:(i.6)i.10 NB. all distinct shuffles of 10
0 1 2 3 4 5 6 7 8 9
0 2 4 6 8 1 3 5 7 9
0 4 8 3 7 2 6 1 5 9
0 8 7 6 5 4 3 2 1 9
0 7 5 3 1 8 6 4 2 9
0 5 1 6 2 7 3 8 4 9

VECTOR Vol.21 No.4

105

This demonstrates clearly that if 1 is restored to its original position all the other
numbers will obediently follow suit. Since all the cycles must return to the start
point, the LCM of the lengths of the individual cycles determines the number of
perfect shuffles to restore a deck of n cards :

 cyclecnt=.(#&>)@(C.@sh)
 cyclecnt 10
1 2 6 1
 ns=.*./@:cyclecnt NB. no. of restoring shuffles
 ns 52
8

If n is odd, C.sh n is the same as C.sh n+1 only without the final one-element
box:

 C. sh 9
+-+---+-----------+
|0|6 3|8 7 5 1 2 4|
+-+---+-----------+

Thus ns(n) and ns(n-1) are identical in value to mo2(n-1) so that ns(n) is defined
for all integers. The LCM of the cyclecnt of a product mn is the LCM of the
cyclecnts of m and n separately, subject to GCD(m,n)=1. For example:

 cyclecnt&.> 11 13 143
+----+----+-------------+
|1 10|1 12|1 10 12 60 60|
+----+----+-------------+
 ns&> 11 13 143 NB. LCM(10,12)=60
10 12 60

Generalising the LCM property, mo2(n) = *./ mo2(p1
k1),mo2(p2

k2), …,mo2(pv
kv)

which is identical in form to the analogous expression for tot above, only with *.
(that is LCM) replacing * (multiply). The relationship between the notions of
multiply and LCM is emphasised by the closeness of the notation in J. mo2 of
course is not a multiplicative function – perhaps it should be called an LCM-ic
function!

Multiplicative order is a property of all relatively prime numbers less than the
modulus. mo10(n), where mo10 is defined analogously to mo2, gives the period
length of the recurrence in the decimal representation of %n, for example:

 (mo10 13),%13
6 0.076923076923

For shuffles where every third card is picked ns3 counts the number of shuffles to
restore:

VECTOR Vol.21 No.4

106

 sh3=./:@$&0 1 2 NB. shuffle with every 3rd card
 sh3 10
0 3 6 9 1 4 7 2 5 8
 C.sh3 10
+-+-----+-----------+
|0|7 2 6|9 8 5 4 1 3|
+-+-----+-----------+
 cc3=.(#&>)@C.@sh3
 ns3=.*./@:cc3 NB. #shuffles to restore
 ns3&>10 11 12 NB. .. with 10,11 & 12 cards
6 5 5

Analogously with ns, ns3(3n) is identical in value to ns3(3n-1), as shown by :

 C.sh3 12
+-+---------+----------+--+
|0|9 5 4 1 3|10 8 2 6 7|11|
+-+---------+----------+--+
 C.sh3 11
+-+---------+----------+
|0|9 5 4 1 3|10 8 2 6 7|
+-+---------+----------+

although unlike ns, values of ns3(n) no longer coincide with those of mo3(n). The
above procedure can be extended to shuffles with picking at any regular interval,
and all the previous discussion on shuffles can be condensed into

 shn=./:@$ i. NB.x. cards, pick each y.th
 nsn=.*./@:(#&>)@C.@shn NB.#shuffles to restore
 (51 nsn 2),(10 nsn 3)
8 6

Multiplicative orders are a more general property than shuffle counts. Here is a
table of totients and the first three multiplicative orders of the first few integers:

 n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
tot 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8

mo2 2 _ 4 _ 3 _ 6 _ 10 _ 12 _ 4 _
mo3 2 4 _ 6 2 _ 4 5 _ 3 6 _ 4
mo5 _ 2 6 2 6 _ 5 2 4 6 _ 4

tot2 1 1 1 2 1 2 2* 2 2 4 2* 4 2 4* 4*

 n: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
tot 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16
__
mo2 8 _ 18 _ 6 _ 11 _ 20 _ 18 _ 28 _ 5 _
mo3 16 _ 18 4 _ 5 11 _ 20 3 _ 6 28 _ 30 8
mo5 16 6 9 _ 6 5 22 2 _ 4 18 6 14 _ 3 8
__
tot2 8 2 6 4* 4* 4 10 4* 8 4 6 4* 12 4* 8 8*

VECTOR Vol.21 No.4

107

If mo2(n) is equal in value to tot(n) it is called a “primitive root” of n. Roughly
speaking, powers of primitive roots exhaust the full gamut of modulo n integers
before repeating. Looking at the second and third rows in the table, 2 is a
primitive root of some numbers such as 9 and 13, but not of others such as 7 and
17. The table also shows that 3 and 5 are primitive roots of 7. The final row is the
totient of the totient which in the case of primes, is also the number of primitive
roots. This is also the case for those non-primes such as 9 which possess primitive
roots, other non-primes such as 15 have no primitive roots, and are marked with
an asterisk in the final row. There is no general formula for primitive roots, but for
small numbers such as those given in the table, they are not hard to find,
particularly if a computer with J is at hand. For example, 2 is a primitive root of
13 from the table, and the other three are to be found to be 6, 7 and 11 by
observing that

 6^mod divs tot n=.13 NB. powers of 6 modulo 13
6 10 8 9 12

does not contain 1, and similarly for 7 and 11. Alternatively use lists to test all the
candidate numbers simultaneously:

 (<>:i.12)^mod&>divs tot n=.13 NB. find pr. roots of 13
1 2 3 4 5 6 7 8 9 10 11 12
1 4 9 3 12 10 10 12 3 9 4 1
1 8 1 12 8 8 5 5 1 12 5 12
1 3 3 9 1 9 9 1 9 3 3 1
1 12 1 1 12 12 12 12 1 1 12 1

With a little more code all the primitive roots of primes can be extracted in one go:

 t#~-.1 e."1 |:(<t=.rps n)^mod&>divs tot n=.13
2 6 7 11
 t#~-.1 e."1 |:(<t=.rps n)^mod&>divs tot n=.15

(null list)

Although this discussion has led into the beginnings of number theory on the one
hand and combinatoric analysis on the other, nevertheless a primary school child
with outstanding numerical gifts could well appreciate all the notions in this
article, if not perhaps the notation, and could, with at most the aid of a hand
calculator, compute the above table of totients and multiplicative orders. Perhaps
it is not a coincidence that the abbreviated form is tot(n)!

VECTOR Vol.21 No.4

108

Zark Newsletter Extracts

edited by Jonathan Barman

Utility Corner: To E Or Not To E

(The purpose of this column is to make you more productive by introducing you
to utility functions. Think of utility functions as APL functions that have names
instead of symbols. By expanding your function vocabulary, you’ll be able to
write APL code that’s more concise, more efficient, and more readable.)

In last issue’s Limbering Up column, you were asked to define a monadic utility
function ENOFF (Exponential Notation OFF) that behaves exactly like monadic •
except it never returns its formatted numbers in exponential notation.

APL has a tendency to use exponential notation when the numbers it’s displaying
are very large or very small. For example:

 .0000012345
0.0000012345
 .00000012345
1.2345E¯7
 1234500000
1234500000
 12345000000
1.2345E10

While exponential notation does succeed at expressing number in fewer
characters, it does not necessarily improve the clarity of the numbers being
displayed.

Here’s and example (from Jim Weigang) that shows a display with and without
exponential notation

 M„(10*¯4+¼8)°.×1.234 1.235 0 ¯1.235

 ŒPP„3

 M
1.23E¯3 1.24E¯3 0 ¯1.24E¯3
1.23E¯2 1.24E¯2 0 ¯1.24E¯2
1.23E¯1 1.24E¯1 0 ¯1.24E¯1
1.23E0 1.24E0 0 ¯1.24E0
1.23E1 1.24E1 0 ¯1.24E1
1.23E2 1.24E2 0 ¯1.24E2
1.23E3 1.24E3 0 ¯1.24E3
1.23E4 1.24E4 0 ¯1.24E4

VECTOR Vol.21 No.4

109

 ENOFF M
 0.00123 0.00124 0 ¯0.00124
 0.0123 0.0124 0 ¯0.0124
 0.123 0.124 0 ¯0.124
 1.23 1.24 0 ¯1.24
 12.3 12.4 0 ¯12.4
 123 124 0 ¯124
 1234 1235 0 ¯1235
12340 12350 0 ¯12350

As you can see, the ENOFF function can make a numeric display more meaningful.

The ENOFF functions we received generally take one of two approaches. In the
first, logarithms (µ) are used to determine the relative magnitude of the numbers.
From the magnitude and the current setting of ŒPP (Print Precision), you can
determine the appropriate left argument of dyadic • that will give the desired
result.

The following function illustrates the approach for a scalar (single number)
argument.

 ’ R„ENOFF N;D;G;W
[1] © Returns •N for scalar N, but never
[2] © returns exponential notation.
[3] ©
[4] G„1+˜10µ|N+N=0
[5] © |G is the number of digits to the
[6] © left of the decimal (if G>0) or
[7] © the number of consecutive zeros to
[8] © the right of the decimal (Gˆ0).
[9] ©
[10] © Digits to right of decimal
[11] D„0—ŒPP-G
[12] ©
[13] © Required field widths...
[14] W„D+1—G © Total no. digits
[15] © Negative sign and decimal point:
[16] W„W+(N<0)+D¬0
[17] ©
[18] R„(W,D)•N © Format it
[19] …D‡0 © Done if no decimal point
[20] ©
[21] © Delete trailing 0s:
[22] G„+/^\'0'=²R
[23] R„(-G+G=D)‡R © And solitary point
 ’

For ŒPP„3, here are some intermediate values of this function’s local variables.
The values are shown for four different settings of the right argument N:

VECTOR Vol.21 No.4

110

 N 0.001234 12.34 ¯0.01234 0.1

[4] G ¯2 2 ¯1 0
[11] D 5 1 4 3
[14] W 6 3 5 4
[16] W 7 4 7 5
[18] R 0.00123 12.3 ¯0.0123 0.100
[22] G 0 0 0 2
[23] R 0.00123 12.3 ¯0.0123 0.1

Notice that lines [22] and [23] remove any trailing zeros to the right of the
decimal point. They remove the decimal point too if the result is an integer.

The submission from Jim Weigang utilises this approach, and has additional logic
to handle numeric arrays of any dimensions:

 ’ R„{P}ENOFF N;B;D;E;F;G;S;T;V;W;X;Z;ŒIO
[1] © Behaves like monadic • but never
[2] © returns exponential notation.
[3] © Like •, it is sensitive to ŒPP.
[4] © Optional left argument is ŒPP
[5] © surrogate
[6] ©
[7] ŒIO„1
[8] © Set P from ŒPP if no left arg:
[9] –(0=ŒNC'P')/'P„ŒPP'
[10] © Empty result for empty arg:
[11] …(0¹S„½N)‡L1
[12] R„S½''
[13] …0
[14] © Make numbers a matrix:
[15] L1:N„((×/¯1‡S),¯1†1,S)½N
[16] G„1+˜10µ|N+N=0
[17] © MG is the number of digits to the
[18] © left of the decimal (if G>0) or
[19] © the number of consecutive zeros to
[20] © the right of the decimal (Gˆ0)
[21] ©
[22] © Compute the appropriate Width and
[23] © Digits format for each number:
[24] D„0—P-G © Digits to rt. of decimal
[25] © Required field widths...
[26] © One blank to left plus all digits:
[27] W„1+D+1—G
[28] © Negative sign and decimal point:
[29] W„W+(N<0)+D¬0
[30] © Shift needed to alogn decimals:
[31] T„((½D)½—šD)-D
[32] © One more if decimal absent in
[33] © column that has some decimals:
[34] T„T+(D=0)^(½D)½ŸšD>0
[35] © Increase width for shift:
[36] W„W+T

VECTOR Vol.21 No.4

111

[37] © Make each col have uniform width:
[38] W„(½W)½—šW
[39] © Formatted Matrix shape
[40] G„(1†½N),+/W[1;]
[41] © Adjust field widths to slide the
[42] © decimal points into alignment:
[43] W„W-T-(½T)½¯1‡0,,T
[44] ©
[45] © Format each number:
[46] R„(,W,[2.5]D)•,N
[47] © Make it a matrix
[48] R„G½(×/G)†R
[49] ©
[50] © Remove trailing zeros to the
[51] © right of the decimal, and delete
[52] © excess blank columns:
[53] V„,²R © Work with reversed vector
[54] © A trick to avoid zero partitions:
[55] V„'. ',V
[56] © 1s mark first char of each number:
[57] F„B>¯1‡0,B„V¬' '
[58] © Ignore those without a decimal:
[59] © F„F\F pORRED V='.'
[60] X„V='.'
[61] Z„(XŸF)/F
[62] F„F\(Z/1²Z)ˆF/X
[63] © 1s mark leading (nee trailing) 0s:
[64] © T„F pANDSCAN V='0'
[65] X„V='0'
[66] Z„~(T„XˆF)/X
[67] T„~¬\T\Z¬¯1‡0,Z
[68] © Undo the trick:
[69] T„2‡T
[70] V„2‡V
[71] © 1s mark char just past each group
[72] © of 0s:
[73] D„T<¯1‡0,T
[74] © Delete adjacent decimal:
[75] T„TŸD\'.'=D/V
[76] T„TŸV=' ' © Delete blanks, too
[77] D„G½T„~T © 0s mark stuff to delete
[78] © When expanding, put 1 blank
[79] © between cols:
[80] E„(BŸ¯1‡0,B„ŸšD)/D
[81] © Delete 0s and blanks, insert
[82] © minimum blanks:
[83] V„(½E)½(,E)\T/V
[84] © Strip final blank, undo reversal:
[85] V„²0 ¯1‡V
[86] ©
[87] © Restore leading dimensions:
[88] R„((¯1‡S),¯1†½V)½V
 ’

VECTOR Vol.21 No.4

112

In the second approach, monadic format is immediately applied to the numeric
argument, in the hopes that APL may not have chosen to foil us with exponential
notation. If there is no exponential notation (no E’s), we’re done. If there is
exponential notation, only those numbers using it need to be reworked. Even
then, some useful information can be gleaned from the exponential format of the
number.

Again, the following function illustrates the approach for a scalar (single number)
argument.

 ’ R„ENOFF N;B;D;I;P;ŒIO
[1] © Returns •N for scalar N, but never
[2] © retuns exponential notation.
[3] ©
[4] …('E'¹R„•N)‡ŒIO„0
[5] I„R¼'E'
[6] P„–(I+1)‡R © Power
[7] B„I†R © Base
[8] © No. decimal places in base:
[9] D„(½B)-1+(+/'.¯'¹B)+'0'=¯1†B
[10] R„1‡(0—D-P)•N
 ’

Here are some intermediate values of the local variables when ŒPP„3, using the
same settings of the right argument N illustrated above:

 N 0.001234 12.34 ¯0.01234 0.1

[4] R 1.23E¯3 1.23E1 ¯1.23E¯2 1.0E¯1
[5] I 4 4 5 3
[6] P ¯3 1 ¯2 ¯1
[7] B 1.23 1.23 ¯1.23 1.0
[9] D 2 2 2 0
[10] R 0.00123 12.3 ¯0.0123 0.1

Notice that the base and power portions of the number (e.g. 1.23 and ¯3 from
1.23E¯3) are analysed to determine the appropriate left argument to dyadic •. In
this simple function, dyadic • is called with a single number left argument, which
always returns a leading blank in its result. In the function below, which was
submitted by Bruce Hitchcock, the more typical pairs-of-numbers left argument is
used.

 ’ R„ENOFF N;B;C;CD;CM;D;E;EX;I;L;M;P;S;SX;T;U;W;X;Y;ŒIO
[1] © Behaves like monadic • but never
[2] © returns exponential notation.
[3] © Like •, it is sensitive to ŒPP
[4] ©

VECTOR Vol.21 No.4

113

[5] …('E'¹R„•N)‡0
[6] ŒIO„1 © Origin 1 is fine
[7] R„,R © Make it a vector
[8] T„R¬' ' © Flag non blanks
[9] © Inds of starts of no.s:
[10] S„(T>¯1‡0,T)/¼½T
[11] E„(T>1‡T,0)/¼½T © ... and ends
[12] Y„½L„1+E-S © Lengths of the no.s
[13] © Which ones contain E_s:
[14] T„+\X„R='E'
[15] I„(T[E]¬T[S])/¼Y
[16] © Numbers to reformat:
[17] M„(,N)[I]
[18] © Indices of the E_s:
[19] X„X/¼½X
[20] © Starts/ends of these no.s:
[21] SX„S[I]
[22] EX„E[I]
[23] © Power portion of no. (e.g. ¯5 for
[24] © 1.234E¯5
[25] U„(EX-X)+EX<½R © Lengths
[26] © U„¹X+¼¨U:
[27] U„U/X-¯1‡0,+\U
[28] U„U+¼½U
[29] P„ŒFI R[U] © Use ŒFI or –
[30] © No. decimal places in base (e.g.
[31] © 3 for ¯1.234E5 or 0 for ¯1.0E5):
[32] T„0,+\R¹'.¯'
[33] D„X-SX+1+(T[X]-T[SX])+R[X-1]='0'
[34] © No. decimal places to show:
[35] D„0—D-P
[36] © Total width of number:
[37] W„(R[SX]='¯')+(1—P+1)+(D¬0)+D
[38] © Reformat these numbers
[39] M„(,W,[1.5]D)•M
[40] © Make room to insert them:
[41] T„(½R)½1
[42] U„EX-SX © Lengths
[43] © U„¹SX+¼¨U:
[44] U„U/SX-¯1‡0,+\U
[45] U„U+¼½U
[46] T[U]„0
[47] T[SX]„W
[48] R„T/R
[49] © Update lengths, starts, ends:
[50] L[I]„W
[51] E„(+\T)[E]
[52] S„1+E-L
[53] SX„S[I]
[54] EX„E[I]
[55] U„(EX-X)+EX<½R © Lengths
[56] © W„¹(SX-1)+¼¨W
[57] W„W/(SX-1)-¯1‡0,+\W
[58] W„W+¼½W
[59] R[W]„M © Insert the new numbers

VECTOR Vol.21 No.4

114

[60] …(1‰½½N)½0 © Exit if vector result
[61] ©
[62] © Need at least one blank before and
[63] © after each no. (before is fine):
[64] R„R,' '
[65] © Find index of decimal point within
[66] © each no. (or 1 beyound end):
[67] T„+\X„R='.'
[68] T„T[E]=T[S]
[69] P„(~T)\X/¼½X
[70] P[T/¼Y]„1+T/E
[71] © No. digits to left of point:
[72] M„P-S
[73] © ... and to right, including point:
[74] D„0—E-P
[75] D„D+×D
[76] © Largest of each by column:
[77] T„Y÷C„¯1†½N
[78] CM„1+—š(T,C)½M © Plus leading blank
[79] CD„—š(T,C)½D
[80] © Replication vector for expanding:
[81] T„R¬' '
[82] T[S-1]„(Y½CM)-M
[83] T[E+1]„T[E+1]+(Y½CD)-D
[84] R„((¯1‡½N),+/CM+CD)½T/R
 ’

From timings we performed on the two functions above, the second approach
seems to be quicker, running in 50% to 75% the time required by the first
approach. Since these timings depend on the rank and nature of the numbers, we
recommend you perform your own timings if speed is critical to your application.

Ed: There was a small problem verifying that the last two functions (which use monadic
format) worked correctly, as the formatting rules in different flavours of APL vary
slightly. The original article was evidently developed with APL*PLUS, but I used Dyalog
APL 8.2 to reproduce and test the functions. There is no leading space for the first column
of a formatted matrix in Dyalog APL, so line [7] in the fourth ENOFF function had to be
amended to R„,' ',R. Also, Dyalog is much less willing to display exponential format
for numbers in a simple vector, so extreme measures were necessary to reproduce the
intermediate variables when running the simplified (scalar) example function. I never
managed to get 0.1 to display as 1.0E¯1 and had to put up with 1E¯1 or 1.00E¯1
instead.

VECTOR Vol.21 No.4

115

Limbering Up:
Accumulations

(The purpose of this column is to work some flab off your APL midsection. Like
muscles, your APL skills can atrophy if not exercised with adequate frequency
and variety. This column presents a task for you to perform. Set aside a few
minutes from your busy schedule and work the task. Mail in your solution and
stay tuned for the results.)

A classic: suppose you have two numeric vectors whose elements are in one-to-
one correspondence. The first (ACCT) is a vector of account numbers; the second
(AMT) is a vector of dollar amounts. The account numbers in ACCT are not distinct;
they repeat. What are the distinct account numbers? How many times does each
account number occur? What is the sum of the numbers in AMT for each distinct
account number? What is the percent of each number in AMT relative to the total
for its account?

The efficient APL algorithms for these problems are well known and will be
discussed in the next issue. Your task is to design the syntax of one or more utility
functions that make the solutions to such problems convenient and intuitive.

Send your solution to:

Vector Production
Brook House
Gilling East
York YO62 4JJ
UK email apl385@compuserve.com

The notable functions and their authors’ names will be printed in the next issue of
Vector. Good luck and happy limbering.

Reprinted with kind permission from Zark APL Tutor News, a quarterly publication of Zark Incorporated,
23 Ketchbrook Lane, Ellington, CT06029, USA

VECTOR Vol.21 No.4

116

Crossword Solution

Solution to Crossword in 21.3

A

R

E

A

O

F

C

I

R

C

L

E

#

#

X

†

K

#

#

F

•

O

#

X

A

V

#

1

?

½

V

#

B

P

/

P

P

„

A

#

B

V

¼

1

#

Y

¼

O

L

Ÿ

D

V

#

1

2

‡

V

#

½

N

#

/

²

,

F

#

×

½

,

N

#

E

#

S

M

-

X

#

—

M

÷

L

#

N

V

º

B

V

#

0

/

A

B

#

C

T

|

C

T

#

-

—

N

T

#

1

~

I

S

I

#

^

/

K

V

#

S

¹

S

A

#

#

P

\

M

#

#

×

/

G

#

T

P

O

W

E

R

S

O

F

F

I

V

E

This will be the last in the series, unless there is a storm of protest from readers!

VECTOR Vol.21 No.4

117

PROFIT
Developer Productivity

with APLX version 3 and SQL

by Ajay Askoolum

MicroAPL have released version 3.0 of their APLX interpreter; this version offers
major (unique) enhancements in the way APL can handle data in the workspace
and manage its transfer and acquisition to and from other applications/resources
available in the host environment.

All the enhancements are exposed using new Œ functions and new objects for the
Œwi function. This may seem like pandering to the APL developer who does not
want to stray beyond the comfort zone of the workspace. However, APLX is a
cross-platform interpreter and Œ functions, where the interpreter transparently
manages the internal differences, are a clean way of providing consistent facilities.

Should the developer choose to build for a single platform, say, Windows, APLX
can also harness platform-specific features such as Win32 APIs. The deployment
of APIs not only makes an application robust (and endows APLX with behaviour
consistent with other applications that deploy the same APIs) but also saves the
overhead of writing, testing, and maintaining APL code for the same purpose.

Code re-use with ŒnaŒnaŒnaŒna

Consider the following task: programmatically verify the existence of an Access
database and if it does not exist, create it – bear in mind that an MDB file has a
custom internal structure. The application expects a database named
C:\MYLOC\QTR1\MYDB.MDB. The likely scenarios are as follows:

 • One or more levels in the path tree, and therefore the file, do not exist.

 • The path exists but the file does not.

 • Neither the path nor the file exists.

A pure APL solution will not only be verbose but also require the Access
application (used as a COM server) to create the file if it does not exist. A solution
based on APIs is simpler – in this instance, neither the path nor the file exists.

VECTOR Vol.21 No.4

118

 ’CreateMDB
[1] File„'C:\MYLOC\QTR1\MYDB.MDB' © File to create
[2] Path„(²Ÿ\'\'=²R)/R
[3] 'MakeSureDirectoryPathExists' Œna
 'I4 imagehlp|MakeSureDirectoryPathExists <CT[*]'
[4] 0 0½MakeSureDirectoryPathExists Path
[5] 'PathFileExists' Œna 'I4 shlwapi|PathFileExistsA <CT[*]'
[6] :If ~×PathFileExists File
[7] 'SQLConfigDataSource' Œna
 'odbccp32|SQLConfigDataSource U4 U2 <CT[*] <CT[*]'
[8] SQLConfigDataSource 0 4
 'Microsoft Access Driver (*.mdb)'('CREATE_DB=',File)
[9] :EndIf
 ’ 2005-05-07 9.12.09

The Internet and the APLX manuals, respectively, document and clarify the
deployment of Win32 APIs. After running this function, it would be possible to
verify the existence of the database using the PathFileExists function. A more
robust test is to verify whether Access can open the file.

 'AC' Œwi 'Create' 'Access.Application'
 'AC' Œwi 'XOpenCurrentDataBase' 'C:\MYLOC\QTR1\MYDB.MDB'
 'AC' Œwi 'XCurrentProject.FullName'
C:\MYLOC\QTR1\MYDB.MDB
 'AC' Œwi 'Quit'

Access does indeed recognise the new file. This demonstrates how close APL
comes to application development by the collation of existing building blocks.

Charts using ŒchartŒchartŒchartŒchart

In his book, Les APL Étendus (Masson, 1994, ISBN 2-225-84579-4), B. Legrand
discusses the area and perimeter of 2-D surfaces using a chart example. In a single
expression, APLX draws the surface, as shown in Figure 1.

'type=line' 'x=First' 'title=Les APL Étendus' Œchart œx y

This function provides a powerful tool for visualising data on demand: for
example, a menu option can read any highlighted data from any source – the grid
object, a text file, or an HTML page in the browser object – and provide a chart,
and allow the user complete control on its presentation via the standard menu.

VECTOR Vol.21 No.4

119

The x-y coordinates of the
surface are:

 x„0 2 2 1 ¯1 ¯1 ¯2 ¯1 0
 y„2 0 ¯2 ¯3 ¯1 0 1 2 2

The menu options allow further
dynamic refinements and the
saving of the chart as a free-
standing file. Even Excel
requires multiple steps and
programming to achieve the
same result!

Figure 1. Legrand’s Chart

This is a powerful demonstration of APLX’s ability to enhance programmer
productivity. Besides the system function Œchart there is a chart and a series
object, accessible via the standard Œwi function, for more sophisticated graphical
representation of workspace data.

Structured Query Language using ŒsqlŒsqlŒsqlŒsql

This system function provides a platform independent means of accessing any
ODBC-compliant data source (USER/SYSTEM Data Source Names (DSNs) or
DSN-less connections are supported but not provider connections.) It takes an
optional left-hand argument, and returns a 3-element nested result; the right-hand
argument varies depending on the first element of the right-hand argument.

It is not as flexible/powerful as raw ODBC API calls or as ActiveX Data Object
(ADO). However, Œsql is much simpler to use and fits with traditional APL
programmer expectations: all the code and data is in the workspace.

I would recommend that the optional-left-hand argument is always specified, and
that DSN-less connections be used for the following reasons:

The left-hand argument is an integer that represents the handle of an ODBC
connection. Should multiple concurrent connections be necessary, it is
advisable to specify the left-hand argument: it provides the context for Œsql
operations. The default tie number is 0 and both positive and negative numbers
may be used.

Both USER (accessible only by the user who creates it) and SYSTEM (accessible
by any user of the computer on which it exists) DSNs are stored in the
Windows Registry: besides the overhead of reading the Registry, such DSNs
are not easily distributable with an application. FILE DSNs (held in the filing
system and therefore easily distributable) are not supported.

VECTOR Vol.21 No.4

120

In order to be able to associate the left-hand argument with a data source, you
might consider using an implicit numbering convention such as the one listed in
Table 1.

Left-Hand Argument Data Source

16 Text files, including CSV files.

32 Excel workbooks

64 Access databases

128 Oracle databases

256 SQL Server databases

512 DB2 databases

Table 1. Making tie numbers intuitive

This numbering scheme bestows the tie numbers with clues as to their respective
data sources; should multiple tie numbers be required, increment the base tie
number by one (subject to not exceeding the base number for the next data
source). This may be especially helpful when an application supports several data
sources: given the tie number, the help desk will know what data source is
involved. If this convention is used, the following function will return the
association of tie number to data source (note: the function does not verify
whether the elements of its right-hand argument actually exist as tie numbers):

 ’Z„L Tie R
[1] (Z L)„R(R¬0)
[2] Z„L/Z
[3] Z„('Text' 'Excel' 'Access' 'Oracle' 'SQL Server' 'DB2' 'Unknown')
 [16 32 64 128 256 512¼2*˜2µ|Z]
[4] Z„L\Z
[5] ((~L)/Z)„›'Unknown'
[6] Z„(œ,¨R),œZ © TIP: ,¨ turns simple vectors into nested vectors
 ’ 2005-05-22 9.08.34

 Œsql 'Connections'
129 258 0 ¯512 513 512

 Tie (Œsql 'Connections'),8982
 129 Oracle
 258 SQL Server
 0 Unknown
¯512 DB2
 513 DB2
 512 DB2
8982 Unknown

VECTOR Vol.21 No.4

121

Typical DSN-less Connection Strings

Table 2 lists typical connection strings for the data sources considered:

Data Source Connection String

Text Driver={Microsoft Text Driver (*.txt; *.csv)};DBQ=C:\;

Excel Driver={Microsoft Excel Driver (*.xls)};DBQ=C:\APLX.XLS;

Access Driver={Microsoft Access Driver (*.mdb)};DBQ=C:\APLX.MDB;

Oracle Driver={Oracle in

OraHome9};Server=D2K1Z01J;Database=hr;UID=@;PWD=#;

SQL Server Driver={SQL Server};Server=D2K1Z01J;Database=pubs;UID=@;PWD=#;

DB2 Driver={IBM DB2 ODBC DRIVER};UID= @;PWD= #;DBALIAS=SAMPLE;

Table 2. Connection strings

Some aspects of the connection strings need clarification:

Parts of connection string will vary depending on your setup; @ denotes the
user ID, # denotes the password; if either or both of these parameters are blank,
they can be omitted, alternatively, use =; as their respective values.

For the Text driver, DBQ denotes the location but for the Excel and Access
drivers, it denotes a fully qualified file name.

For Oracle, HR is a supplied database as is PUBS for SQL Server.

For DB2, SAMPLE is an alias for the default TOOLSDB database created during
setup; DBALIAS= is a hybrid of the Microsoft DBQ= and Oracle Database=
parameters.

For Oracle, the driver name is likely to vary, depending on the version
installed.

For Oracle and SQL Server, the server name will vary.

For MSDE2000 (found on the Office 2000 Professional CD) and SQLExpress
(the beta version is freely downloadable subject to end user license agreement
from Microsoft) use the SQL Server connection string. These work with SQL
Server databases but have restrictions on size and the number of concurrent
users; they can be used for development and the databases can be upgraded to
SQL Server.

On the Windows platform, ODBC compliant data sources include:

Text files, including CSV files; fixed and ragged edge records are supported.

VECTOR Vol.21 No.4

122

Excel workbooks.

File based databases such as Access.

Server based databases such as Oracle, SQL Server, DB2, etc.

Œsql can enumerate the DB2 databases that are available: for DB2, the dedicated
syntax for connection does not rely on the specification of a driver.

 Œsql 'DataSources' 'aplxdb2'
 0 0 0 0 TOOLSDB
 SAMPLE

 Œsql 'DataSources' 'aplxodbc'
 0 0 0 0 MQIS SQL Server
 Visio Database Samples Microsoft Access Driver (*.MDB)
 MS Access Database Microsoft Access Driver (*.mdb)
 Excel Files Microsoft Excel Driver (*.xls)
 dBASE Files Microsoft dBase Driver (*.dbf)
 LocalServer SQL Server
 ORACLE9 Oracle in OraHome9
 Text Driver Microsoft Text Driver (*.txt; *.csv)
 MYACCESS Microsoft Access Driver (*.mdb)
 IBM IBM DB2 ODBC DRIVER

It can also enumerate the ODBC drivers installed on a computer. On Linux and
MacOS platforms, use unixODBC and iODBC drivers and data sources.

Connecting to the Data Source

Without a connection to an underlying data source, Œsql is not of much use.
Table 3 lists its parameters.

Parameters Value Notes

First 'Connect' Always the same string. This is not as senseless as it might

first appear.

Second 'aplxodbc' or

'aplxdb2'

MicroAPL use aplxodbc for ODBC data sources and aplxdb2

for DB2: Either may be used for DB2, depending on the third

argument.

Third Connection String

or DSN name

The connections string and DSN may include the additional

UID and PWD parameters.

[Fourth] Other value Optional. If necessary, specify UID.

[Fifth] Other value Optional. If necessary, specify PWD.

Table 3 Parameters

VECTOR Vol.21 No.4

123

Should the parameters specified be incomplete, Œsql invokes the ODBC
administrator dialogues to request additional information in order to establish a
successful connection.

DB2 can connect either way

Although MicroAPL have suggested the use of ‘aplxdb2’ for connection to DB2,
‘aplxodbc’ may also be used to access DB2 databases. This function demonstrates
that it is possible to connect to DB2 databases using either ‘aplxodbc’ or ‘aplxdb2’:

 ’IBM
[1] © Disconnect from all sources
[2] 0 0½¹(Œsql 'Connections')Œsql¨›'Disconnect'
[3] © Connect using aplxodbc
[4] 0 0½¹512 Œsql 'Connect' 'aplxodbc'
 'Driver={IBM DB2 ODBC DRIVER};UID= ;PWD= ;DBALIAS=SAMPLE;'
[5] © Connect using aplxdb2
[6] 0 0½¹513 Œsql 'Connect' 'aplxdb2' 'SAMPLE'
[7] (RC RM DataODBC)„512 Œsql 'Do'
 "SELECT * FROM EMP_ACT where PROJNO LIKE 'IF%' AND ACTNO<100;"
[8] (RC RM DataDB2)„513 Œsql 'Do'
 "SELECT * FROM EMP_ACT where PROJNO LIKE 'IF%' AND ACTNO<100;"
 ’ 2005-05-22 8.24.05

The two results – one based on ‘aplxodbc’ and the other on ‘aplxdb2’ – are
identical. The data is returned as a nested matrix as shown in Figure 2.

The variables RC and RM return debugging information; in this specific instance, I
know that there is nothing to debug as the expressions have worked.

Line [7] shows how to record the return values from Œsql.

The connection syntax is simpler, as seen in line [6], when using 'aplxdb2';
however, the syntax in line [4] is more generic.

All the records resulting from the SQL is returned to the workspace: runtime
workspace full errors are likely when processing a large number of records. On
the other hand, as the data is in the workspace, it can easily be presented in the
grid object. Moreover, if APLX is used to query databases interactively, it is
preferable to have all the data in the workspace.

VECTOR Vol.21 No.4

124

Ú…ÎÎÎÌ
‡ Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Û
Û Û000030Û ÛIF1000Û 10 0.5 Û1982-06-01Û Û1983-01-01Û Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ Û
Û Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Û
Û Û000030Û ÛIF2000Û 10 0.5 Û1982-01-01Û Û1983-01-01Û Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ Û
Û Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Û
Û Û000130Û ÛIF1000Û 90 1 Û1982-01-01Û Û1982-10-01Û Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ Û
Û Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Û
Û Û000140Û ÛIF1000Û 90 0.5 Û1982-10-01Û Û1983-01-01Û Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ Û
À¹ÎÎÎÙ

Figure 1 ŒsqlŒsqlŒsqlŒsql result

There is an

inconsistency: numeric

values are simple scalars

and strings are nested

vectors. This has the

potential of causing

unexpected runtime

errors.

Date values are returned

as string in ISO 8601

format, that is, YYYY-

MM-DD HH:MM:SS.

 ½œDataDB2[1;5]
© This is a Date
10
 DataDB2[1;5]
 1982-06-01

 DataODBC¦DataDB2
1
 ¦DataDB2 © I expected it to be 3!
2
 ¦DataDB2[1;1]
2
 ¦DataDB2[1;3]
0

 ¦¨DataODBC
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1

It is easy to cope with a consistent YYYY-MM-DD format: either use SQL or APL
code for the transformation into any other format. In order to provide consistency
between the representation of dates retrieved from a database and those acquired
from the user interface – which would be in the local regional format – some
transformation will be necessary.

In contrast, ActiveX Data Object (ADO) returns dates as scalars, which have to be
converted with code or SQL: it may be messy if the reference date is unknown or
variable as it would be when several data sources are used. The following
function extracts the same data as the function IBM above:

VECTOR Vol.21 No.4

125

 ’Z„ADO;Cns;Sql
[1] Cns„'Driver={IBM DB2 ODBC DRIVER};UID= ;PWD= ;DBALIAS=SAMPLE;'
[2] Sql„"SELECT * FROM EMP_ACT WHERE PROJNO LIKE 'IF%' AND ACTNO<100"
[3] 0 0½'ADORS' Œwi 'Create' 'ADODB.RecordSet'
[4] 0 0½'ADORS' Œwi 'XOpen' Sql Cns
[5] Z„'ADORS' Œwi 'XGetRows'
[6] 'ADORS' Œwi 'XClose'
[7] 'ADORS' Œwi 'Delete'
 ’ 2005-05-17 17.57.31

The result is shown in Figure 3.

Note the need for transformation (³)
to present the data in row-major
tabulation and, as stated, the dates are
scalars.

In order to present the dates in the
user interface and for data arithmetic,
it is necessary to convert the scalars to
a date format. The conversion must
use the same date reference as that
used by the tool used to retrieve the
records, in this case ADO.

Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ
‡ Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Û
Û Û000030Û ÛIF1000Û 10 0.5 30103 30317 Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ Û
Û Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Û
Û Û000030Û ÛIF2000Û 10 0.5 29952 30317 Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ Û
Û Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Û
Û Û000130Û ÛIF1000Û 90 1 29952 30225 Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ Û
Û Ú…ÎÎÎÎÎÌ Ú…ÎÎÎÎÎÌ Û
Û Û000140Û ÛIF1000Û 90 0.5 30225 30317 Û
Û ÀÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÙ Û
À¹ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ

Figure 3. ADO result

The Œsql dates correspond to the scalar dates upon conversion: this is seen by
sending the data to Excel and applying the date format:

 ’Z„ADO2;Cns;Sql
[1] Cns„'Driver={IBM DB2 ODBC DRIVER};UID= ;PWD= ;DBALIAS=SAMPLE;'
[2] Sql„"SELECT * FROM EMP_ACT WHERE PROJNO LIKE 'IF%' AND ACTNO<100"
[3] 0 0½'ADORS' Œwi 'Create' 'ADODB.RecordSet'
[4] 0 0½'ADORS' Œwi 'XOpen' Sql Cns
[5] 0 0½'xl' Œwi 'Create' 'Excel.Application'
[6] 0 0½'xl' Œwi 'XWorkbooks.Add'
[7] 'xl' Œwi 'Range().Value' 'A1:F4'(³'ADORS' Œwi 'GetRows')
[8] 'xl' Œwi 'Range().NumberFormat' 'E1:F4' "yyyy-mm-dd"
[9] 'xl' Œwi 'visible' 1
[10] 'ADORS' Œwi 'XClose'
[11] 'ADORS' Œwi 'Delete'
[12] 'xl' Œwi 'Delete'
 ’ 2005-05-21 13.14.29

VECTOR Vol.21 No.4

126

Figure 4. Results in Excel

Figures 2, 3 and 4 show the same set
of records.

Use the APLX built-in grid object to
present the results of Œsql in the
user interface, where necessary,
because:

Additional steps to re-format data
will not be necessary.

Data will remain as retrieved from
the data source – note that column
A is numeric in Excel but is
character in the data source.

Working with Tables

A database contains tables (a collection of records), which in turn, contain
columns. Although it is convenient to visualize tables as the ubiquitous Excel
worksheet, tables are different in several respects:

Tables contain raw data – there is no data formatting.

Records and columns do not have any relationships except those defined by
constraints.

The database manages the addition and deletion of records: the developer is
oblivious of the exact position or sequence of records.

The deletion of values in a column does not affect other values; for example,
values in adjacent columns do not shift.

The developer will need to query whether a particular table exists, or enumerate
the tables that exist, and the columns that each table has. Œsql provides intrinsic
facilities for such queries. The syntax is:

 [Tie] Œsql 'Tables' [Catalog] [Schema] [Table] [Types]

Beneath the surface, Œsql is managing a very complex SQL statement that is
database vendor specific.

The first two optional arguments, Catalog and Schema respectively define the
owner and the table space: from the point of view of the developer, these can
be ignored, usually. Different vendors have different names for the terms
adopted by MicroAPL.

VECTOR Vol.21 No.4

127

The third argument, Table, is the placeholder for a specific table name or, if
omitted, for all table names.

The fourth optional argument, Types, allows the developer to enumerate
subsets of tables that exist within the database.

During the maintenance cycle of an application, that is, when the application has
acquired a legacy in the field, it is may be necessary to add new tables to existing
databases. The application needs to check for the existence of a table before it
creates it.

Does the table

EMPLOYEES exist in

the HR database in

ORACLE?

 Œdisplay 128 Œsql 'Tables' '' '' 'Employees' ''
Ú…ÎÎÎÌ
Û Ú…ÎÎÎÎÎÎÌ Ú´Ì Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Û
Û Û0 0 0 0Û Û Û ‡ Ú´Ì Ú…ÎÌ Ú…ÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÌ Ú´Ì Û Û
Û À~ÎÎÎÎÎÎÙ ÀÎÙ Û Û0Û ÛOEÛ ÛEMPLOYEESÛ ÛSYNONYMÛ Û0Û Û Û
Û Û À~Ù ÀÎÎÙ ÀÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÙ À~Ù Û Û
Û Û Ú´Ì Ú…ÎÌ Ú…ÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÌ Ú´Ì Û Û
Û Û Û0Û ÛHRÛ ÛEMPLOYEESÛ ÛTABLEÛ Û0Û Û Û
Û Û À~Ù ÀÎÎÙ ÀÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÙ À~Ù Û Û
Û À¹ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ Û
À¹ÎÎÎÙ

Yes, there are two tables, one each in the OE and HR schemas of the ORACLE
connection.

Does a table

EMPLOYEES of type

TABLE exist?

 Œdisplay 128 Œsql 'Tables' '' '' 'Employees'
'TABLE'
Ú…ÎÎÎÌ
Û Ú…ÎÎÎÎÎÎÌ Ú´Ì Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Û
Û Û0 0 0 0Û Û Û ‡ Ú´Ì Ú…ÎÌ Ú…ÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÌ Ú´Ì Û Û
Û À~ÎÎÎÎÎÎÙ ÀÎÙ Û Û0Û ÛHRÛ ÛEMPLOYEESÛ ÛTABLEÛ Û0Û Û Û
Û Û À~Ù ÀÎÎÙ ÀÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÙ À~Ù Û Û
Û À¹ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ Û
À¹ÎÎÎÙ

The previous two examples use the SQL tie number 128, defined using the
connection string given above. In the latter example, if the first dimension of the
third element is zero, the table does not exist.

It may also be necessary to add new columns to existing tables. APLX provides a
means of doing so:

 [Tie] ŒSQL 'Columns' [Catalog] [Schema] [Table] [Column]

What columns exist in the AUTHORS table in the SQL SERVER PUBS database?
This is using a different SQL tie number – 256.

VECTOR Vol.21 No.4

128

 2‡256 Œsql 'Columns' '' '' 'AUTHORS' ''
 pubs dbo authors au_id 12 id 11 11 0 12 11 1 NO 39
 pubs dbo authors au_lname 12 varchar 40 40 0 12 40 2 NO 39
 pubs dbo authors au_fname 12 varchar 20 20 0 12 20 3 NO 39
 pubs dbo authors phone 1 char 12 12 0 ('UNKNOWN') 1 12 4 NO 47
 pubs dbo authors address 12 varchar 40 40 1 12 40 5 YES 39
 pubs dbo authors city 12 varchar 20 20 1 12 20 6 YES 39
 pubs dbo authors state 1 char 2 2 1 1 2 7 YES 39
 pubs dbo authors zip 1 char 5 5 1 1 5 8 YES 39
 pubs dbo authors contract ¯7 bit 1 1 0 0 ¯7 9 NO 50

Note that all the details relating to the definition of the table is returned. This is
just short of creating the actual SQL script for the creation of the table:

CREATE TABLE [authors] (
 [au_id] [id] NOT NULL ,
 [au_lname] [varchar] (40) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
 [au_fname] [varchar] (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
 [phone] [char] (12) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL CONSTRAINT
[DF__authors__phone__78B3EFCA] DEFAULT ('UNKNOWN'),
 [address] [varchar] (40) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
 [city] [varchar] (20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
 [state] [char] (2) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
 [zip] [char] (5) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
 [contract] [bit] NOT NULL ,
 CONSTRAINT [UPKCL_auidind] PRIMARY KEY CLUSTERED
 (
 [au_id]
) ON [PRIMARY] ,
 CHECK ([au_id] like '[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]'),
 CHECK ([zip] like '[0-9][0-9][0-9][0-9][0-9]')
) ON [PRIMARY]
GO

This script was created by SQLDMO; it contains default details that are normally
omitted from an SQL statement – note the correspondence between the script and
what Œsql returns. The provision of the scripts for tables must be on the wish list
of the next release: scripts would enable a hassle free distribution of applications
during the maintenance cycle.

Does a column STATE exist in the table AUTHORS in the PUBS database?

 256 Œsql 'Columns' '' '' 'AUTHORS' 'STATE'
 0 0 0 0 pubs dbo authors state 1 char 2 2 1 1 2 7 YES 39

Yes, it does. Does a column named APLX exist in the same table?

 ½3œ256 Œsql 'Columns' '' '' 'AUTHORS' 'aplx'
0 19

 ½3œ256 Œsql 'Columns' '' '' 'AUTHORS' 'STATE'
1 19

The first dimension of the third element of the result is zero if the column does not
exist.

VECTOR Vol.21 No.4

129

Working with SQL

SQL is an acronym for Structured Query Language, not Standard Query
Language: that means that each driver exposes its own SQL engine. Although all
SQL engines comply with most of the SQL92 standard, they also have vendor
specific enhancements that are exclusive, inconsistent, or completely different,
that is, elusive.

 • The Microsoft drivers allow a number of Visual Basic/Visual Basic for
Applications keywords as standard.

 • The Microsoft T-SQL (SQL Server) and Oracle drivers allow the replacement of
null values within the SQL statement but they use different keywords, ISNULL
and NVL, respectively.

 • Remember to use algebraic rather than APL relational operators within SQL
statements; that is use <> instead of ¬ ‘not equal to’, etc.

 • SQL has a null data type (a null value is not equal to any other value, not even
another null value) that has no corresponding equivalent in APL. Use IS NULL
or IS NOT NULL instead of = NULL or <> NULL.

 • SQL has its own conventions: use uppercase, enclose embedded strings in
single quotes, and end with a semi-colon. However, SQL statements are not
case-sensitive.

Although SQL presents exciting opportunities for APL software development, it
presents new challenges especially for applications designed to support several
data sources – for example, one client may choose SQL Server while another opts
for Oracle.

A generic SQL reference, preferably one that compares SQL dialects is a new
requirement for APLX developers, that is, in addition to the APLX documentation.
The reference should cover the following:

 • The Data Query Language (DQL) component of SQL deals with the retrieval of
data from a database – it is based on a single command SELECT. This is the
most widely-used component of SQL. Although there is a single command, it is
probably the most complex of all SQL commands that developers would
deploy routinely.

 • The Data Manipulation Language (DML) component of SQL deals with the
modification of existing data in a database. The primary commands include
INSERT, UPDATE, and DELETE.

VECTOR Vol.21 No.4

130

 • The Data Definition Language (DDL) component of SQL deals with the
modification of the structure of existing databases and the creation of new
databases. The primary commands include CREATE TABLE, CREATE
DATABASE, ALTER TABLE, DROP TABLE, CREATE INDEX, and DROP
INDEX.

 • The Data Control Language (DCL) deals with database access permissions and
used by database administrators who have unrestricted access. The commands
in this component of SQL are ALTER PASSWORD, GRANT, REVOKE, and
CREATE SYNONYM.

In addition to the SQL reference, database vendor specific references are required
for working with databases. In essence, some aspects of data management are
held in the data-tier (database) itself rather than in the business-tier (application
code). Such references should include the following:

 • Constraints: These define the relationship of columns in a table and among
tables. For example, there may be such constraints as a column requiring a
value (cannot be null) or being unique etc. Constraints reinforce data integrity
and affect the way SQL acts on the data source.

 • Triggers: These define event driven code that is run, triggered, under some
circumstances. For example, a trigger may add a timestamp to a record
whenever it is altered.

 • Stored Procedures: In simplistic terms, these are complex SQL statements that
are stored in and run from the database itself. Stored procedures are efficient
because they are optimised by the SQL engine before being stored but SQL
statements are optimised on demand.

 • Indexes: These are metrics that are calculated and held in the database in order
to speed up data access.

Usually, file based databases do not support triggers and stored procedures.

For a robust deployment of a relational database as the data-tier, a third reference
is required – one on transaction processing, record locking and multi-user
concurrent access management. This is likely to be vendor specific.

Text Files as Relational Tables

A large number of APL applications rely on text files for incoming data. With the
Microsoft text driver, Œsql can treat text files as relational tables – strictly
speaking, they are not relational tables. This means that text file data can be
manipulated without APL code, usually with recourse to native file functions, and
data conversion routines are not necessary as the text driver returns data in the

VECTOR Vol.21 No.4

131

type that is appropriate. In order to promote robust handling of text files, the
following is highly recommended:

Include column headers in the first row of data.

As the driver scans a default number of rows in order to determine the data
type for the column, the initial rows should contain representative data as far
as type is concerned.

Learn to create the file SCHEMA.INI: this provides a greater degree of control
on how the data is handled.

Consider the example shown in Figure 5:

Figure 5. Text data source

The file contains the types of data routinely

encountered in an APL application.

There are placeholders for missing values: see

the last row in Figure 5.

For a robust understanding of how to work

with text data files and setup their DSNs,

research SCHEMA.INI on the Internet.

Let us connect to the data source; note that the DBQ parameter specifies the
location of the actual data source and not the name of the data source itself.

 16 Œsql 'Connect' 'aplxodbc'
 'Driver={Microsoft Text Driver (*.txt; *.csv)};DBQ=C:\;'

Some examples illustrating the power of SQL statements are shown below.
Although APL coding can achieve the results of the SQL statements, SQL is far
more efficient and has the least overhead.

a. Select the records where the column SEX contains missing values:

 16 Œsql 'Do' 'Select * FROM APLX.TXT WHERE SEX IS NULL;'
 0 0 0 0 2005-04-06 00:00:00 Start_of_tax_year 2005
 2005-06-21 00:00:00 Summer_Solstice 4

This query finds two records.

b. Select the records where ID is in the range 100 to 300:

VECTOR Vol.21 No.4

132

 Œdisplay 16 Œsql 'Do' 'SELECT * FROM APLX.TXT WHERE ID BETWEEN 100 AND
300;'
Ú…ÎÎÌ
Û Ú…ÎÎÎÎÎÎÌ Ú´Ì Ú…ÎÎÌ Û
Û Û0 0 0 0Û Û Û ‡ Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Ú…Ì Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Û Û
Û À~ÎÎÎÎÎÎÙ ÀÎÙ Û Û1809-02-12 00:00:00Û ÛMÛ ÛAbraham LincolnÛ 189 Û Û
Û Û ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÙ ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ Û Û
Û Û Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Ú…Ì Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Û Û
Û Û Û1869-10-02 00:00:00Û ÛMÛ ÛMahatma GandhiÛ 203 Û Û
Û Û ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÙ ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ Û Û
Û À¹ÎÎÙ Û
À¹ÎÎÙ

c. Refine the previous query by sorting the records in descending order of NAME.

This illustrates the power of SQL statements and indicates the scope that exists for
avoiding APL coding to manipulate source data.

 Œdisplay 16 Œsql 'Do' 'SELECT * FROM APLX.TXT WHERE ID BETWEEN 100 AND
300 ORDER BY NAME DESC;'
Ú…ÎÎÌ
Û Ú…ÎÎÎÎÎÎÌ Ú´Ì Ú…ÎÎÌ Û
Û Û0 0 0 0Û Û Û ‡ Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Ú…Ì Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Û Û
Û À~ÎÎÎÎÎÎÙ ÀÎÙ Û Û1869-10-02 00:00:00Û ÛMÛ ÛMahatma GandhiÛ 203 Û Û
Û Û ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÙ ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ Û Û
Û Û Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Ú…Ì Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Û Û
Û Û Û1809-02-12 00:00:00Û ÛMÛ ÛAbraham LincolnÛ 189 Û Û
Û Û ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÙ ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ Û Û
Û À¹ÎÎÙ Û
À¹ÎÎÙ

Data retain their expected type in the workspace:

 (RC RM Data)„16 Œsql 'Do' 'SELECT * FROM APLX.TXT WHERE ID BETWEEN 100
AND 300;'
 Data[1;4]×100
18900

d. Add an arbitrary column and make NAME uppercase:

 16 Œsql 'Do' "Select 'APLX_Demo' as MYVAR,UCASE(NAME) FROM APLX.TXT
WHERE ID NOT BETWEEN 100 AND 300 ORDER BY NAME DESC;"
 0 0 0 0 APLX_Demo SUMMER_SOLSTICE
 APLX_Demo START_OF_TAX_YEAR
 APLX_Demo MICHAEL FARADAY
 APLX_Demo MARTIN LUTHER KING

SQL is far more efficient than the traditional approach of using native file
functions. However, be wary of the vagaries of SQL dialects: a thorough
understanding of SQL dialects will determine the databases that an application
decides to support. It is acceptable that an application will contain database
specific code: the more numerous the data sources supported, the bigger the
overhead.

VECTOR Vol.21 No.4

133

Excel Workbooks as Relational Data Sources

I’ll use C:\APL.TXT as the source for an XLS file: Start Excel, File | Open, select
the file, highlight the range A1:D2 and name it MYTAB, and, finally, File |
SaveAs an XLS file named APLX.XLS.

 32 Œsql 'Connect' 'aplxodbc' 'Driver={Microsoft Excel Driver
(*.xls)};DBQ=C:\APLX.XLS;'
 32 Œsql 'Tables' '' '' '' ''
 0 0 0 0 C:\APLX aplx$ SYSTEM TABLE
 C:\APLX MYTAB TABLE

There are two tables: aplx$ is the sheet name and MYTAB is the named range we
defined. Select each table in turn, as follows:

 32 Œsql 'Do' 'SELECT * FROM MYTAB;'
 0 0 0 0 12/02/1809 M Abraham Lincoln 189
 32 Œsql 'Do' 'SELECT * FROM [aplx$];'
 0 0 0 0 M Abraham Lincoln 189
 M Mahatma Gandhi 203
 M Michael Faraday 876
 2005-04-06 00:00:00 Start_of_tax_year 2005
 1929-01-15 00:00:00 M Martin Luther King 987
 2005-06-21 00:00:00 Summer_Solstice 4

Note that a sheet name has $ as a suffix and it must be enclosed in square
brackets: a name relating to a range is specified as it is.

What happened to the DOB field in the first three records? Null values are
returned because the date range handled by the Excel driver (not Excel) starts
01/01/1900 and those dates were earlier than the start date. This is another quirk
of SQL engines.

 • Oracle supports dates in the year range ¯4713 to 9999.

 • SQL Server has two date data types. The DATETIME type has the range
01/01/1753 to 31/12/9999 and the SMALLDATETIME type has the
operational range 01/01/1900 to 06/06/2079.

 • Access has a date range between year 100 and 9999.

 • Excel uses 01/01/1900 as the default reference date. Optionally, this can be set
to 01/01/1904. Dates later than 2078 may not be recognised.

 • For text data sources, the Excel ranges apply.

 • DB2 has a date range of 1 to 9999.

VECTOR Vol.21 No.4

134

Let us select all individuals born after 01/01/1900 and create a flag to indicate
whether an underscore exists in their names. The following function returns the
SQL statement:

 ’Z„GetSQL
[1] Z„''
[2] Z„Z," SELECT NAME, "
[3] Z„Z," FORMAT(DOB) AS DOBIRTH,"
[4] Z„Z," SEX,"
[5] Z„Z," Format(ID,'0####'),"
[6] Z„Z," IIF(INSTR(NAME,'_'),'','REAL NAME') AS FLAG "
[7] Z„Z," FROM [APLX$] "
[8] Z„Z," WHERE DOB > #01 JAN 1900#;"
 ’ 2005-05-15 13.34.33

The result is shown below:

 Œdisplay 32 Œsql 'Do' GetSQL
Ú…ÎÎÌ
Û Ú…ÎÎÎÎÎÎÌ Ú´Ì Ú…ÎÎÌ Û
Û Û0 0 0 0Û Û Û ‡ Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Ú´Ì Ú…ÎÎÎÎÌ Ú´Ì Û Û
Û À~ÎÎÎÎÎÎÙ ÀÎÙ Û ÛStart_of_tax_yearÛ Û06/04/2005Û Û0Û Û02005Û Û Û Û Û
Û Û ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ À~Ù ÀÎÎÎÎÎÙ ÀÎÙ Û Û
Û Û Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Ú…Ì Ú…ÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÌ Û Û
Û Û ÛMartin Luther KingÛ Û15/01/1929Û ÛMÛ Û00987Û ÛREAL NAMEÛ Û Û
Û Û ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ ÀÎÙ ÀÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÙ Û Û
Û Û Ú…ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÌ Ú…ÎÎÎÎÎÎÎÎÎÌ Ú´Ì Ú…ÎÎÎÎÌ Ú´Ì Û Û
Û Û ÛSummer_SolsticeÛ Û21/06/2005Û Û0Û Û00004Û Û Û Û Û
Û Û ÀÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÙ ÀÎÎÎÎÎÎÎÎÎÎÙ À~Ù ÀÎÎÎÎÎÙ ÀÎÙ Û Û
Û À¹ÎÎÙ Û
À¹ÎÎÙ

 • Always construct SQL statements relating to DML as above to keep it readable:
there is a vertical column of spaces separating SQL keywords from other text.
Use double quotes within APL and reserve single quotes for embedded quotes.

 • Note that the embedded INSTR (like º) uses single quotes: in VBA, double
quotes would be used.

 • Literal dates are specified unambiguously.

 • The date field DOB is transformed to UK short date regional format and has
been renamed.

 • ID is formatted with leading zeros.

 • A number of VBA keywords (FORMAT, IIF, INSTR) are used within the SQL
statement.

VECTOR Vol.21 No.4

135

The Browser Object

The new browser object enables any text file created by APLX and other
applications to be viewed within the APL GUI session. This includes some custom
format files such as XLS, see Figure 6.

Figure 6. Workbook in
browser object

The code is:

 ’Browser
[1] 'BR' Œwi 'Create'
'Window'('scale' 5)('size' 470 800)
[2] 'BR.Web' Œwi 'New'
'Browser'('align' ¯1)
[3] 'BR.Web' Œwi 'onReady' "'BR' Œwi
'title' ('BR.Web' Œwi 'title')"
[4] 'BR.Web' Œwi 'Load' 'C:\APLX.XLS'
[5] 0 0½ŒWE 'BR'
 ’ 2005-05-15 14.05.20

Ideally, an application should construct HTML output and show it in the browser:
further enhancements, such as printing and searching, are required as children of
the browser object to make this type of facility useful.

Of course, the browser object can show/read web pages: refer to APLX
documentation.

Navigating SQL Results

As the result of the ‘Do’ directive causes the result of SQL statements to be
returned to the workspace, the result can be assigned to an APL variable: an
application can loop through the result by reference to the first dimension, which
is also a count of the number of records returned.

Should the number of records be likely to cause a workspace-full error, Œsql
offers another means of retrieving SQL results that mitigates this likelihood.
Assume that the number of records returned is 5 million thereby guaranteeing
workspace full errors. How will Œsql cope?

 ’RecordLoop;Cns;Sql;RecordCount
[1] Cns„'Driver={SQL Server};Server=D2K1Z01J;Database=pubs;UID=sa;PWD=;'
[2] Sql„"SELECT COUNT(*) FROM AUTHORS WHERE STATE IN('UT','MI');"
[3] © TIP: use 0 0½¹ to absorb nested return values
[4] 0 0½¹256 Œsql 'Disconnect' © Can disconnect arbitrary tie
[5] 0 0½¹256 Œsql 'Connect' 'aplxodbc' Cns © I know it will work
[6] (RC RM Debug)„256 Œsql 'Describe'
[7] (RC RM RecordCount)„256 Œsql 'Do' Sql

VECTOR Vol.21 No.4

136

[8] Sql„"SELECT AU_FNAME,AU_LNAME,STATE FROM AUTHORS WHERE STATE IN('UT','MI');"
[9] 0 0½¹256 Œsql 'Close' 'ThisSet' © Can Close arbitrarily
[10] 0 0½¹256 Œsql 'Prepare' 'ThisSet' Sql
[11] 0 0½¹256 Œsql 'Execute' 'ThisSet'
[12] (RC RM Fields)„256 Œsql 'Describe' 'ThisSet'
[13] :While 0¬,RecordCount
[14] (RC RM Data)„256 Œsql 'Fetch' 'ThisSet' 1
[15] Fields[1;]Fix Data
[16] © Call function to process variables here
[17] RecordCount„RecordCount-1
[18] :EndWhile
[19] Z„256 Œsql 'Close' 'ThisSet'
[20] 0 0½ŒexœFields[1;] © Clear workspace
 ’ 2005-05-22 11.14.58

This function uses two more functions:

 ’L Fix R
[1] L„EnsureName¨L
[2] –'(',(�L),')„,R'
[3] ©TIP � simpify nested vector using space
 ’ 2005-05-22 13.06.31

 ’R„EnsureName R
[1] ((R¹' ')/R)„'‘'
 ’ 2005-05-22 11.12.37

The function Fix initialises global variables in the workspace: the variables are the
column names extracted by the SQL statement. Since some column names may
contain spaces in their names, the function EnsureName replaces embedded
spaces by ‘. Databases allow column names with embedded spaces and such
names are enclosed in square bracket within SQL statements. However, APL does
not allow embedded spaces in variable names – the replacement of spaces by ‘
makes the column names valid APL variable names, in most cases.

In line [6], details of the

driver in use is captured in

the variable Debug. œDebug

contains the information

shown in the second column

of Table 4.

This information is vital

when debugging unexpected

behaviour.

 Description Value
Data source name
Driver ODBC version 03.52
DBMS name Microsoft SQL Server
DBMS version 08.00.0194
Driver name SQLSRV32.DLL
Driver version 03.85.1117
Database name Pubs
User name Dbo
SQL conformance Core SQL Grammar

Table 4. Connection details

In line [12] the names of the columns returned by the SQL statement are captured
in the variable Fields whose first dimension is four: the rows contain names,
descriptions, types, and whether the values can be null. The SQL statements in
lines [2] and [8] are identical in terms of the conditions for the selection of records:

VECTOR Vol.21 No.4

137

the SQL statement in line [2] returns a count of the number of records. This is used
to loop through the available records: this happens in lines [13] to [18]. The
variables are fixed globally in line [15], and in line [16] the application can call any
function that will process the variables as required, using global variable names.
These names are overwritten at each iteration.

APLX’s documentation suggests the use of the return code, RC, in line [14] for
managing the loop: if the last element is true, there are more records.

A function such as RecordLoop enables any number of records to be processed
without the risk of encountering workspace full errors.

On ‘Do’ and ‘Fetch’

The ‘Fetch’ predicate behaves exactly like ‘Do’ when the named result is not
followed by an integer, which indicates the number of records to return.

 ’DoFetch;Cns;Sql
[1] Cns„'Driver={SQL Server};Server=D2K1Z01J;Database=pubs;UID=sa;PWD=;'
[2] Sql„"SELECT AU_FNAME,AU_LNAME,STATE FROM AUTHORS WHERE STATE
IN('UT','MI');"
[3] 0 0½¹256 Œsql 'Disconnect' © Can disconnect arbitrary tie
[4] 0 0½¹256 Œsql 'Connect' 'aplxodbc' Cns © I know it will work
[5] (RC RM DO)„256 Œsql 'Do' Sql
[6] 0 0½¹256 Œsql 'Close' 'ThisSet' © Can Close arbitrarily
[7] 0 0½¹256 Œsql 'Prepare' 'ThisSet' Sql
[8] 0 0½¹256 Œsql 'Execute' 'ThisSet'
[9] (RC RM FETCH)„256 Œsql 'Fetch' 'ThisSet'
[10] Z„256 Œsql 'Close' 'ThisSet'
 ’ 2005-05-22 13.27.16

In line [5], the records are retrieved using the ‘Do’ predicate and the same records
are retrieved using the ‘Fetch’ predicate in line [9]. The two sets of results are
identical:

 DO¦FETCH
1

The reason for providing two pathways is mysterious: I would prefer to use ‘Do’
for SQL statements that do not return records and ‘Fetch’ when the SQL
statements do return records.

The ‘Fetch’ predicate moves the record pointer to the next available record. If it is
necessary to move to a previous record, it is necessary to re-execute the named
result set and to use code to move to the required record. I hope that a future
enhancement will provide a less arduous mechanism for moving to the first
record or to an absolute position.

VECTOR Vol.21 No.4

138

What is the Purpose of Named Result Sets?

There are several reasons:

A single connection may have multiple named SQL result sets. The need for
multiple result sets is quite common. Consider an application that produces
invoices: it may create one named set for the list of customers and another for
their orders.

When named result sets are ‘Prepare’(d), the SQL engine tokenises the SQL
statement: this makes the execution of the SQL more efficient than the
execution of SQL statements using ‘Do’. This may make a significant difference
in the responsiveness of an application.

The SQL statement for a named result set may contain placeholders for
parameters that will be substituted at run time, with ’Execute’. Placeholders are
denoted by a question mark (?).

Multiple Named Result Sets

Depending on the driver, it may not be possible to create more than one named
set. There is no mechanism to establish which driver supports multiple named
sets and which do not using Œsql: the only clue is the driver’s SQL conformance
level – see Table 4.

The SQL Server driver does not appear to support multiple sets:

 ’RecordLoop2;Cns
[1] Cns„'Driver={SQL Server};Server=D2K1Z01J;Database=pubs;UID=sa;PWD=;'
[2] 0 0½¹256 Œsql 'Disconnect' © Can disconnect arbitrary tie
[3] 0 0½¹256 Œsql 'Connect' 'aplxodbc' Cns © I know it will work
[4] 0 0½¹256 Œsql 'Close' 'A1'
[5] 0 0½¹Z„256 Œsql 'Close' 'A2'
[6] 0 0½¹256 Œsql 'Prepare' 'A1' 'SELECT * FROM AUTHORS;'
[7] 0 0½¹256 Œsql 'Execute' 'A1'
[8] 0 0½¹256 Œsql 'Prepare' 'A2' 'SELECT * FROM STORES;'
[9] 0 0½¹256 Œsql 'Execute' 'A2'
[10] 'At A1'
[11] 256 Œsql 'Fetch' 'A1' 1
[12] 'At A2'
[13] 256 Œsql 'Fetch' 'A2' 1
[14] 'At A1'
[15] 256 Œsql 'Fetch' 'A1' 1
[16] 'At A2'
[17] 256 Œsql 'Fetch' 'A2' 1
 ’ 2005-05-22 14.04.19

This function creates two named sets.

VECTOR Vol.21 No.4

139

 RecordLoop2
At A1
 0 0 0 1 172-32-1176 White Johnson 408 496-7223 10932 Bigge Rd. Menlo
Park CA 94025 1
At A2
 3 0 0 0 [Microsoft][ODBC SQL Server Driver]Connection is busy with results
for another hstmt
At A1
 0 0 0 1 213-46-8915 Green Marjorie 415 986-7020 309 63rd St. #411
Oakland CA 94618 1
At A2
 3 0 0 0 [Microsoft][ODBC SQL Server Driver]Connection is busy with results
for another hstmt

As shown above, the second named set, A2, is not accessible.

The Oracle driver does support multiple sets. Using RecordLoop2 with an Oracle
driver and reading from the EMPLOYEES and JOBS table, the result is:

 RecordLoop3
At A1
 0 0 0 1 100 Steven King SKING 515.123.4567 1987-06-17 00:00:00 AD_PRES
24000 90
At A2
 0 0 0 1 AD_PRES President 20000 40000
At A1
 0 0 0 1 101 Neena Kochhar NKOCHHAR 515.123.4568 1989-09-21 00:00:00
AD_VP 17000 100 90
At A2
 0 0 0 1 AD_VP Administration Vice President 15000 30000

If it is necessary to have multiple named sets with a data source that does not
support them, create different connections for each named set. Obviously, this will
use additional resources and is probably less efficient but it does enable an
application requiring multiple named sets to support a data source whose driver
does not support them. However, there is an interesting twist. Here is the adapted
function:

 ’RecordLoop2A;Cns
[1] Cns„'Driver={SQL Server};Server=D2K1Z01J;Database=pubs;UID=sa;PWD=;'
[2] Œwa
[3] 0 0½¹256 Œsql 'Disconnect' © Can disconnect arbitrary tie
[4] 0 0½¹257 Œsql 'Disconnect'
[5] 0 0½¹256 Œsql 'Connect' 'aplxodbc' Cns © I know it will work
[6] 0 0½¹257 Œsql 'Connect' 'aplxodbc' Cns © I know it will work
[7] Œwa
[8] 0 0½¹256 Œsql 'Close' 'A1'
[9] 0 0½¹Z„257 Œsql 'Close' 'A2'
[10] 0 0½¹256 Œsql 'Prepare' 'A1' 'SELECT * FROM AUTHORS;'
[11] 0 0½¹256 Œsql 'Execute' 'A1'
[12] 0 0½¹257 Œsql 'Prepare' 'A2' 'SELECT * FROM STORES;'

VECTOR Vol.21 No.4

140

[13] 0 0½¹257 Œsql 'Execute' 'A2'
[14] 'At A1'
[15] 256 Œsql 'Fetch' 'A1' 1
[16] 'At A2'
[17] 257 Œsql 'Fetch' 'A2' 1
[18] 'At A1'
[19] 256 Œsql 'Fetch' 'A1' 1
[20] 'At A2'
[21] 257 Œsql 'Fetch' 'A2' 1
 ’ 2005-05-22 14.33.56

 RecordLoop2A
20928230
20928230
At A1
 0 0 0 1 172-32-1176 White Johnson 408 496-7223 10932 Bigge Rd. Menlo
Park CA 94025 1
At A2
 0 0 0 1 6380 Eric the Read Books 788 Catamaugus Ave. Seattle WA 98056
At A1
 0 0 0 1 213-46-8915 Green Marjorie 415 986-7020 309 63rd St. #411
Oakland CA 94618 1
At A2
 0 0 0 1 7066 Barnum's 567 Pasadena Ave. Tustin CA 92789

It works!

Note the size of the available workspace returned before and after the two
connections: they are identical – that’s the twist. Connections appear to use
Windows rather than workspace resources.

Dynamic Parameter Substitution

At the start, I created a new Access database; I’ll use it to illustrate dynamic
parameter substitution. The function is:

 ’Access R
[1] 0 0½¹64 Œsql 'Disconnect'
[2] 0 0½¹64 Œsql 'Connect' 'aplxodbc' 'Driver={Microsoft Access Driver
(*.mdb)};DBQ=C:\MYLOC\QTR1\MYDB.MDB;'
[3] :If 0¹½3œ64 Œsql 'Tables' '' '' 'OBJECTS'
[4] 0 0½¹64 Œsql 'Do' 'CREATE TABLE OBJECTS(KEYID TEXT (255),NAME TEXT
(50), DOB DATE,CONSTRAINT OBJECTS_PK PRIMARY KEY (KEYID));'
[5] :EndIf
[6] 0 0½¹64 Œsql 'Prepare' 'Expunge' 'DELETE FROM OBJECTS WHERE KEYID=?;'
[7] 0 0½¹64 Œsql 'Prepare' 'Insert'
 'INSERT INTO OBJECTS (KEYID) VALUES(?);'
[8] 0 0½¹64 Œsql 'Prepare' 'Update'
 'UPDATE OBJECTS SET NAME=?, DOB=? WHERE KEYID=?;'
[9] 0 0½¹64 Œsql 'Execute' 'Expunge'(1œR)
[10] 0 0½¹64 Œsql 'Close' 'Expunge'

VECTOR Vol.21 No.4

141

[11] 0 0½¹64 Œsql 'Execute' 'Insert'(1œR)
[12] 0 0½¹64 Œsql 'Close' 'Insert'
[13] 0 0½¹64 Œsql 'Execute' 'Update'(2œR)(3œR)(1œR)
[14] 0 0½¹64 Œsql 'Close' 'Update'
[15] 0 0½¹64 Œsql 'Prepare' 'Select' 'SELECT * FROM OBJECTS WHERE KEYID=?;'
[16] 0 0½¹64 Œsql 'Execute' 'Select'(1œR)
[17] (RC RM Data)„64 Œsql 'Fetch' 'Select'
[18] 0 0½¹64 Œsql 'Close' 'Select'
[19] 0 0½¹64 Œsql 'Disconnect'
 ’ 2005-05-22 17.51.31

 Access '4122' 'APLXv3' '01/06/2005'

In line [17], the values inserted in the database are retrieved in the variable Data:

 Data
 4122 APLXv3 2005-06-01 00:00:00

Note that the date is returned in the standard ISO 8601 format although it was
passed in DD/MM/YYYY format.

Dynamic parameters are consumed in the order the placeholders are specified in
the original SQL statement: refer to line [13] and compare it to the way the
function is called.

The obvious dividend is that workspace variables can be easily written to
database tables. In other words, APL can share data with other applications using
databases.

Email Management

The new SendMail and GetMail objects enable the management of emails from
within the workspace. It is time to download a free trial copy of version 3.0 from
MicroAPL’s web site and to experiment! Incidentally, MicroAPL are the only
vendor who have this automated facility and offer the cheapest industry-strength
APL. The documentation for APLX can be downloaded freely.

Finally

The example code in this article is for illustrative purposes only, and does not
fully use the return code and message from Œsql in order to make the code
robust and assumes index origin 1. In practice, the information returned by the
function must be used and, ideally, the code should be index origin independent.

I invite you to start exploring APLX version 3.0 as it adds powerful features to the
developer’s arsenal of tools.

VECTOR Vol.21 No.4

142

My wish list for future enhancements is as follows:

 • I would like to see sample workspaces that demonstrate and guide users and
developers. At present, there are no sample workspaces. This will address the
needs of knowledgeable developers and address some minor shortcomings (the
lack of examples in places) in the product documentation.

 • I would also like to be able to use provider connections. For text, Excel, and
Access data sources, the JET provider is far more powerful than ODBC drivers.
Such an enhancement should include support for UDL files (as well as file
DSNs for ODBC drivers).

 • A means of returning all the name result sets belonging to a given Œsql
handle is required.

 • I would like the Œsql system function extended so that it produces SQL
compliant statements for the creation of tables.

 • An omission in the APL documentation is a table providing data types, names,
and correspondence among the popular data sources – this is bound to be an
onerous task, not least because there are too many data sources.

 • A property of the grid object that would allow it to receive data from Œsql
directly would be very welcome; alternatively, a means of coercing Œsql to
send its data to the grid object would be very effective.

In this article, I have demonstrated how APLX can work with server and file
databases using the new facilities: in this respect, APLX is currently unique.

I have used the Windows platform as the basis of my exploration: APLX is
platform independent. My investigation includes five data sources but not any
open source ones: perhaps someone could investigate APLX with such data
sources and write up their findings.

VECTOR Vol.21 No.4

143

Index to Advertisers

Vector Back Numbers 3

All queries regarding advertising in VECTOR should be made to Gill Smith,
at 01439-788385, Email: apl385@compuserve.com.

Submitting Material to Vector

The Vector working group meets towards the end of the month in which Vector
appears; we review material for issue n+1 and discuss themes for issues n+2
onwards. Please send the text of submitted articles (hardcopy with diskette as
appropriate) to the Vector Working Group via:

Vector Administration, c/o Gill Smith
Brook House
Gilling East
YORK, YO62 4JJ
Tel: +44 (0) 1439-788385
Email: apl385@compuserve.com

Authors wishing to use Word for Windows should contact Vector Production for
a copy of the APL2741 TrueType font, and a suitable Winword template. These
may also be downloaded from the Vector web site at www.vector.org.uk

Camera-ready artwork (e.g. advertisements) and diskettes of ‘standard’ material
(e.g. sustaining members’ news) should be sent to Vector Production, Brook
House, Gilling East, YORK YO62 4JJ. Please also copy us with all electronically
submitted material so that we have early warning of possible problems.

VECTOR Vol.21 No.4

144

Subscribing to Vector
Your Vector subscription includes membership of the British APL Association,
which is open to anyone interested in APL or related languages. The membership
year runs from 1st May to 30th April. The British APL Association is a special
interest group of the British Computer Society, Reg. Charity No. 292,786

Name: ___
Address: ___

Postcode / Country: ___
Telephone Number: ___
Email Address: ___

UK private membership ..£20 ❑
Overseas private membership ..£22 ❑
 Airmail supplement (not needed for Europe)£4 ❑
UK Corporate membership ...£100 ❑
Corporate membership overseas ..£110 ❑
Sustaining membership ...£500 ❑
Non-voting UK member (student/OAP/unemployed)£10 ❑

PAYMENT – in Sterling or by Visa/Mastercard only
Payment should be enclosed with membership applications in the form of a UK
Sterling cheque to “The British APL Association”, or you may quote your
Mastercard or Visa number.

I authorise you to debit my Visa/Mastercard account

 Number: ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ ÀÎÁÎÁÎÁÎÙ Expiry date: ÀÎÁÎÙÀÎÁÎÙÀÎÁÎÙÀÎÁÎÙÛÀÎÁÎÙÀÎÁÎÙÀÎÁÎÙÀÎÁÎÙ

for the membership category indicated above,

 ❑ annually, at the prevailing rate, until further notice
 ❑ one year’s subscription only

 Signature: __________________________________

Send the completed form to:
BAA, c/o Rowena Small, 12 Cambridge Road, Waterbeach, CAMBRIDGE CB5 9NJ, UK

Fax: +44 (0) 1653 697719

Data Protection Act:

The information supplied may be

stored on computer and processed in

accordance with the registration of

the British Computer Society.

