PHY 206 – FALL 2005

Prof. Massimiliano Galeazzi

Midterm #4 December 12, 2005

NAME:	Problem #1	
SIGNATURE: UM ID:	Problem #2	
	Problem #3	
	Total	

Some useful relations:

Pressure & depth:	$p = p_{top} + \rho g h$
Continuity:	$A_1 v_1 = A_2 v_2$
Bernoulli:	$p_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$
Specific heat capacity:	dQ = mcdT
Latent heat:	$Q = \pm mL$
Heat current:	$H = \frac{dQ}{dT} = kA\frac{T_H - T_C}{L}$
Average molecular energy per degree of freedom: $\frac{1}{2}$ k _B T	
1 st lat of thermodynamic:	arDelta U=Q - W
Heat in an isobaric process:	$Q = n C_P \Delta T$
Heat in an isochoric process:	$Q = n C_V \Delta T$
Work:	$dW = p \ dV$
Ideal gas equation of state:	p V = n R T

 $e = \frac{W}{O_{II}}$ Engine efficiency: $dS = \frac{dQ}{T}$ Entropy: $\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$ Wave equation: Speed of propagation of a wave on a string: $v = \sqrt{\frac{T}{r}}$ $f_L = \frac{v + v_L}{v + v_S} f_S$ Doppler shift: $I = \frac{Power}{Area}$ Intensity: $\theta_r = \theta_a$ Light reflection: $n_a \sin \theta_a = n_b \sin \theta_b$ Light refraction: Mirrors and thin lenses: $\frac{1}{s} + \frac{1}{s'} = \frac{1}{t}$, $m = \frac{y'}{y} = -\frac{s'}{s}$ with $f = \frac{R}{2}$ for mirrors and $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ for lenses $\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{R}, \ m = \frac{y'}{y} = -\frac{n_a s'}{n_b s}$ Diffractive interface: Phase difference in interference: $\phi = 2\pi\Delta N$, with ΔN =difference in # of wavelengths $\Delta N = \frac{r_1 - r_2}{\lambda}$ For path difference: $\phi = 2n\pi$; Destructive interference: $\phi = (2n+1)\pi$ Constructive interference: Time dilation: $T_{obs} = \gamma \cdot T_0$ with T_0 =proper time Length contraction: $L_{obs} = L_0 / \gamma$ with L_0 =proper length Relativistic Doppler Shift: $f_{obs} = \frac{\sqrt{1 + (u/c)}}{\sqrt{1 - (u/c)}} f_{source}$ (for approaching source) Lorentz transformations: $\begin{cases} x' = \gamma(x - ut) \\ y' = y \\ z' = z \\ t' = \gamma \left(t - \frac{ux}{2} \right) \end{cases}$ Lorentz velocity transformations: $\begin{cases} v'_x = \frac{v_x - u}{1 - (v_x u/c^2)} \\ v'_y = \frac{v_y}{\gamma [1 - (v_x u/c^2)]} \\ v'_z = \frac{v_z}{\gamma [1 - (v_x u/c^2)]} \end{cases}$

Problem #1

Sam is traveling from Earth to Mars on a spaceship that moves at speed u with respect to Earth. In his reference frame Sam measures the distance between the Earth and Mars to be equal to d, and the spaceship to be of length L.

- 1. What is the distance from Earth to Mars as measured by an observer on Earth?
- 2. What is the length of the spaceship as measured by an observer on Earth?
- 3. How long is Sam's trip from his point of view?
- 4. How long is his trip from the point of view of an observer on Mars?
- 5. Halfway through his journey Sam sends a rocket back to Earth with speed -v compared to the spaceship. How fast is the rocket moving in the Earth reference frame?
- 6. If v > u, how long will the rocket take to reach The Earth in the Earth's reference frame?

NOTE: you can leave your answers in terms of γ , as long as you first explicitly write the expression for γ .

Problem #2

Light with frequency f is emitted in air from a source S. Light can get reflected back to the source by mirror 1, a distance y from the source or by mirror 2, a distance x from the source (see figure).

a) What is the wavelength of the light in air?

- b) What is the phase difference ϕ between the light reaching the source back after reflection from mirror 1 and that reaching it after reflection from mirror 2?
- c) Using part b, write the condition for constructive interference between the two light beams.
- d) A block of glass, with length L and index of refraction n is placed between the source and mirror 1. What is the wavelength of the light in the glass?
- e) What is the additional phase shift ϕ' introduced by the glass?
- f) Write the condition for constructive interference in this case (i.e., when you have the path difference AND the glass).

Problem #3

A hot air balloon is filled with *n* moles air (density ρ_{air}). The initial pressure of the balloon is the atmospheric p_o , and the temperature is the room temperature T_o . Assume that the air can be considered as a diatomic ideal gas.

a) What is the initial volume of the balloon?

The gas inside the balloon is heated at constant pressure until the volume of the gas is doubled.

- b) What is the final temperature of the gas?
- c) What is the heat transfer to the gas?
- d) What is the change in Entropy of the gas?
- e) Because of the expansion, the density inside the gas is reduced and the balloon can float in air. What must be the mass *m* of the balloon so that its altitude does not change (i.e., the balloon is in equilibrium)?

STUDENT NAME: _____

STUDENT NAME: _____