replaces: 12.95

mannesmann Rexroth

Variable Displacement Pump A10VG

for closed circuits

Sizes 18...63 Series 1 Nominal pressure 300 bar Peak pressure 350 bar

A10VG...HD

Index

Features	1
Ordering Code / Standard Program	23
Technical Data	45
Filtration	6
High Pressure Relief Valves	7
Pressure Cut-Off, D	7
DG - Hydraulic Control, Direct Operated	8
HD - Hydraulic Control, Pilot Pressure Related	8
HW - Hydraulic Control, Mechanical Servo	9
DA - Hydraulic Control, Speed Related	10
Function and Control of DA Valves	1011
EP - Electrical Control with Proportional Solenoid	12
EZ - Electrical Two-Position Control with Switching Solenoi	d 12
MD - Mechanical Pivot Control	13
Mechanical Stroke Limiter, M	13
Unit Dimensions, Size 18	1415
Unit Dimensions, Size 28	1617
Unit Dimensions, Size 45	1819
Unit Dimensions, Size 63	2021
Dimensions for Through Drives	22
Permissible Input and Through Drive Rotation Torques	23
Preferred Types	24
Installation Situation for Coupling Assembly	24
Installation Situation for Coupling Assembly	ź

Features

-	variable displacement axial piston pump of swashplate design for hydrostatic closed circuit transmissions
-	flow is proportional to drive speed and displacement and is infinitely variable
-	output flow increases with swivel angle from 0 to its maximum value
-	swivelling the pump over centre smoothly changes the direction of flow
-	a highly adaptable range of control and regulating devices is available
-	the pump is equipped with two pressure relief valves on the high pressure ports to protect the hydrostatic transmission (pump and motor) from overloads
_	these valves also function as boost inlet valves
-	an integral auxiliary pump serves as boost and pilot oil pump
-	the maximum boost pressure is limited by a built-in boost pressure relief valve

Ordering Code / Standard Program

Hydraulic fluid

Mineral oil (no code)

Axial piston unit

Variable swashplate design, nominal pressure 300 bar, peak pres	sure 3	850 ba	ır						A10V					
Operation														
Pump in closed circuits									G					
Size								L	-					
Size $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$							18	28	45	63				
							_ 10	20		00]			
Control device							18	28	45	63		4111		
Mechanical pivot control						MD	•	-	-	-	MD	4		
Hydraulic control, direct operated						DG	•	•	•	•	DG	4		
Electrical control with proportional solenoid						EP		•			EP			
Electrical two-position control with switching solenoid						EZ	•	•	•	•	EZ			
Hydraulic control, mechanical servo						HW	•				HW			
Hydraulic control, pilot pressure related						HD	•		•	•	HD			
Hydraulic control, speed related						DA	-				DA]		
Solenoid voltage (only for EP, EZ or DA)														
U = 12 V											1			
U = 24 V							•			•	2]		
Pressure cut-off														
without pressure cut-off (no code)												┱╝╽		
with pressure cut-off (standard for version with DA-control valve)							-	•	•	•	D	1		
Zero position quitch (only for HW)								1				-		
Zero position switch (only for Hw)												-		
with any position switch (no code)												4		
with zero position switch							•	•	•	•	L			
Mechanical stroke limiter							_		_					
without mechanical stroke limiter (no code)									•	•				
with mechanical stroke limiter, external adjustable							•	•			М			
Spring centering to neutral (only MD)												-		
without spring centering to neutral (no code)								-	_	_		1		
with spring centering to neutral							•	-	-	-	N	1		
DA control valve		EZ	DG	EP	HW	HD	DA	28	45	63		-		
without DA control valve		•	•	•	•	•	-	•	•	•		4		
with DA control valve, fixed setting		-	•	•	•	•	•		•		2	4		
with DA control valve, mech. adjustable with control lever	L	-	•	•	•	•	•	•	•	•	3L	4		
	R	-	•	•	•	•	•	•	•	•	3R	4		
with DA control valve, fixed setting and hydraulic inch valve built-on, control with breaking fluid		-	-	-	-	-	•	•	٠	•	4			
with DA control valve, mech. adjustable with control lever	L	-	-	-	-	-	•	•	•	•	5L			
and hydraulic inch valve built-on, control with breaking fluid	R	-	-	-	-	-	•	•	•	•	5R	4		
with DA control valve, fixed setting and connections for master controller		-	•	•	•	•	•	•	•	•	7	4		
with DA control valve, fixed setting and hydraulic inch valve built-on, control with mineral oil		-	-	-	-	-	-	•	•	•	8			
with DA control valve, mech. adjustable with control lever	L	-	-	-	-	-	_	•	•	•	9L			
and hydraulic inch valve built-on, control with mineral oil	R	-	-	-	-	-	-	•	•	•	9R			
DA control valve with control lever														
without control lever (no code)														
with control lever - anti-clockwise operation direction	L													
with control lever - clockwise operation direction	R	J												
Series														
											1			
Index												-		
											0	1		

			Δ	10V	G			1	1	0	_	Ν	(C			
Axial piston unit																	
Operation																_	
Size																	
Control device																	
Series																	
Index									-								
Direction of rotatio	n			18	28	45	63			1							
viewed on shaft end		clockwise		•	•	•	•		R	1							
		anti-clockw	vise	•	•	٠	•		L								
Seals					18	2	B 4	45	(63							
NBR, shaft seal in FF	PM (fluor-caoutchou	c)						•		•	Ν						
Shaft end (permissi	ble input torque s	see page 23)				18	2	8	45	;	63						
Splined shaft SAE	5	standard for single p	oump						٠		•	S	1				
	5	standard for combin	ation	pump		-	-	-	•		•	Т					
Mounting flange																	
SAE 2-hole													C				
Service line connect	tions							18	8	28	45	63					
Ports A/B SAE (metric	c fixing screws), at s	ide (same side)						-	·	•	•	•		0	_		
Ports A/B threads m	etric, at side (same	side)						•		-	-	-		0			
Auxiliary pump and	through drive									18	28	45	63	}		_	
auxiliary pump	througl flange	n drive															
_	_	_								•	•	•	•		N00		
•	-	-								•	•	٠	•		F00		
•	SAE A, 2-hole	SAEA (⁵ / ₈ " -	9T 16	/32 DF	<u>)</u>				•	•	٠	•	_	F01		
	SAEB, 2-hole	SAEB ('/ ₈ " - 1" - 1	1311 5T16	0/32 E חת כג/))				•	•		•		F02	-	
•	SAEC, 2-hole	SAEC (<u>11/4"</u>	- 14T 1	12/24	, DP)				_	-	-	•		F07	1	
	SAE A, 2-hole	SAE A (⁴ ⁵ / ₈ " -	9T 16/	32 DP)				•	•	•	•		K01		
-	SAE B, 2-hole	SAEB (7	7/8" -	13T 16	6/32 D	P)		_		•	•	•	•		K02]	
_	SAE B, 2-hole	SAE B-B (<u>1" - 1</u>	5T 16/	/32 DF)				-	•	•	•	\vdash	K04	4	
-	SAEC, 2-hole	SAEC (1 ¹ / ₄ "	- 14T 1	12/24	UP)				-	-	-	•		K07		
Valves (see page 7)											18	28	45		63		
with high pressure re	lief valve,	setting range 250	34	40 bar,		with	out b	ypa	ISS		•	•	•		•	3	
direct controlled, (fixe	ed setting)	adding server 100				with	bypa	ass			• ¹)	•	•		•	5	
		setting range 100	25	ou bar,		with	byne	ypa	ISS						•	4	
						vv ILII	oypa	.00			-	_ _			-	0	,
Filtration (see page 6) on line of the auditi-	nu (boot) num										18	28	45	5 (53	-
Filtration in the proce	ure line of the auxilia	ary (boost) pump										•	•			•	3
ports for external boo	ost circuit filter, (F_e a	and G (F_a)) ²)										-	•	•)	•	D
External supply (mode	el without integral a	uxiliary pump - NOC), K)									•	•	•)	•	Ε

¹) no preferred program at design with MD control (preferred: **3**, without bypass)

 $^{\rm 2})$ at size 28 and 45 not possible at design with DA control value

• = available

- = not available

= preferred program (preferred types see page 24)

_ _

L

╸┛

Technical Data

Fluid

We request that before starting a project detailed information about the choice of pressure fluids and application conditions are taken from our catalogue sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistance fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet). The operation with HFA-, HFB- and HFC- hydraulic fluids requires additional special measures.

Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating tem-perature) be selected from within the range:

 v_{opt} = operating viscosity 16...36 mm²/s

referred to the circuit temperature (closed circuit).

Viscosity limits

The limiting values for viscosity are as follows:

 $v_{min} = 5 \text{ mm}^2/\text{s},$

short term at a max. permissible temp. of $t_{max} = 115^{\circ}$ C.

Please note that the max. fluid temperature is also not exceeded in certain areas (for instance bearing area).

 $v_{max} = 1600 \text{ mm}^2/\text{s},$

short term on cold start ($t_{min} = -40^{\circ}C$).

At temperatures of -25 $^{\circ}\text{C}$ up to -40 $^{\circ}\text{C}$ special measures are required. Please contact us for further information.

Selection diagram

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the circuit (closed loop) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating

temperature range, the operating viscosity lies within the optimum range (v_{opt}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of X°C the operating temperature is 60°C. Within the operating viscosity range (v_{opt} ; shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and pump speed and is always higher than the circuit temperature. However, at no point in the circuit may the temperature exceed 115°C.

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult us.

Temperature range of the radial shaft seal

The FPM shaft seal is admissible for a housing temperature range from -25°C to +115°C.

Note:

For applications below -25° C a NBR shaft seal is necessary (admissible temperature range: -40° C to $+90^{\circ}$ C). When ordering, please state in clear text: with NBR shaft seal

Installation position

Optional. The housing must be filled prior to commissioning, and must remain full whenever it is operating.

For extensive information on the installation position, please read our data sheet RE 90270.

Operating pressure range - inlet

Variable pump (with external supply, E)	
boost pressure p_{sp} : control device DA, DG	25 bar
control device HD, HW, EP, EZ (n = 2000 rpm) 18 bar
Auxiliary pump suction pressure $p_{s min}$: $v \le 30 \text{ mm}^2/s$ \ge	0,8 bar abs.
for cold start ≥ 0	,5 bar abs.

Operating pressure range - outlet

Variable pump (pressure at ports A or B)

1 1 0	,	/	
nominal pressure p _N			300 bar
peak pressure p _{max}			350 bar
Auxiliary pump			
peak pressure p _{H max}	size 18 _		_ 25 bar
peak pressure p _{H max} sizes 2	8, 45, 63 _		_ 40 bar
(pressure data to DIN 2431	2)		

Case drain pressure

Permissible case drain pressure at ports T₁ or T₂

р _L	 4 bar abs.	
short term (at start)	 6 bar abs.	

Technical Data

Table of values (theoretical values, not considering η_{mh} and η_{v} ; values rounded)

Size						18	28	45	63
Displacement	t	variable pump		V _{g max}	cm ³	18	28	46	63
		auxiliary pump		V _{gH}	cm ³	5,5	6,1	8,4	14,9
Speed		maximum		n _{max}	rpm	5000	4250	3800	3500
		minimum		n _{min}	rpm	500	500	500	500
Flow	at n _{max}	variable pump		q _{V max}	L/min	90	119	175	221
Power	at n _{max}	variable pump	Δp = 300 bar	P _{max}	kW	45	59	87	110
Torque	at V _{g max}	variable pump	Δp = 300 bar	T _{max}	Nm	86	134	219	301
		(without aux. pump)	$\Delta p = 100 \text{ bar}$	Т	Nm	28,6	44,5	73	100
Moment of ir	nertia (about	drive axis)		J	kgm²	0,00093	0,0017	0,0033	
Weight (stan	dard model, v	without through dri	ive)	т	kg (approx.)) 14 (18) ¹)	25	27	39

¹) 14 kg: MD control, 18 kg: HD control

Calculation of size

How	q _v =	$\frac{V_g \bullet n \bullet \eta_v}{1000}$		in L/min	V _g T	 displacement per revolution in cm³ torque in Nm
Torque	T =	$\frac{V_{g} \bullet \Delta p}{20 \bullet \pi \bullet \eta_{mh}} =$	$\frac{1,59 \bullet V_g \bullet \Delta p}{100 \bullet \eta_{mh}}$	in Nm	Δp n η _v	 pressure differential in bar speed in rpm volumetric efficiency mechanical-bydraulic efficiency
Power	P =	$\frac{2\pi \cdot T \cdot n}{60\ 000} = \frac{1}{95}$	$\frac{\bullet n}{49} = \frac{q_v \bullet \Delta p}{600 \bullet \eta}$	– in kW	η _t	= overall efficiency ($\eta_t = \eta_v \bullet \eta_{mh}$)

Input drive (permissible axial and radial loadi	ng on drive shaft)
---	--------------------

Size				18	28	45	63
Distance of F _q	(Fq)↓ ⊓	а	mm	16,5	17,5	17,5	17,5
(from shaft collar)		b	mm	29	30	30	30
	a, b, c	С	mm	41,5	42,5	42,5	42,5
max. permissible radial load	а	F _{q max}	Ν	1300	2500	3600	5000
at distance	b	F _{q max}	Ν	1000	2000	2891	4046
	C	F _{q max}	Ν	880	1700	2416	3398
max. permissible axial load		$\pm F_{ax max}$	Ν	973	987	1500	2200

Filtration

The finer the filtration the better the achieved purity grade of the pressure fluid and the longer the life of the axial piston unit.

To ensure the functioning of the axial piston unit a minimum purity grade of:

9 to NAS 1638 6 to SAE 18/15 to ISO/DIS 4406 is necessary.

In this case we recommend, depending on system and application

filter element $\beta_{20} \ge 100$

for the A10VG. With the rising differential pressure at the filter element the β -value must **not** decrease.

At very high temperatures of the hydraulic fluid (90°C to max. 115°C) at least cleanless class

8 to NAS 1638 5 to SAE

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

Standard: Filtration in the suction line of the auxil. pump, S

Filter type:	Filter without bypass
Recommendation:	with contamination indicator
Through flow resistance at the filter	element:
at $v = 30 \text{ mm}^2/\text{s}$, $n = n_{\text{max}}$	$\Delta p \leq 0,1$ bar
at ν = 1000 mm²/s, n = 1000 rpm $_{\odot}$	$\Delta p \leq$ 0,3 bar
Pressure at port S of the auxiliary pu	imp:
at $v = 30 \text{ mm}^2/\text{s}$	p ≥ 0,8 bar
at cold start	p≥0,5 bar

Variation: Filtration in the pressure line of the auxil.pump, ports for external boost circuit filter, D

Filter inlet		port F
Filter outlet	(size 63)	port F
	(size 28, 45)	_ port G(F

Filter type: Filter with bypass are **not** recommended, when applying with bypass please consult supplier.

Recommendation: with contamination indicator

Resistance to flow at the filter element:

at	v = 30 r	nm²/s	 	∆p ≤ '	1	bar
at	cold star	t	 	$\Delta p_{max} = 3$	3	bar
,			``			

(valid for entire speed range $n_{min} - n_{max}$)

Please note:

- at size 28, 45 variation is not possible with DA control valve

- for type with DG control (with control pressure not from the supply circuit) the following filter type has to be used:

filter with bypass and with contamination indicator

Before finalising your design, please request a certified drawing.

Circuit diagram (pressure filtration)

D2

F--

Size	D1	D2	D3	D4	D5	$\mathbf{F}_{\mathbf{e}}, \mathbf{F}_{\mathbf{a}}, \mathbf{G}^1)$
28	164,9	169,9	65,5	23	80,5	M18x1,5
45	178,6	180,6	71,5	23	83,5	M18x1,5
63	189,8	19,5	82,5	_	_	M18x1,5

¹) For sizes 28 and 45 port G is used as the "Filter outlet F_a ". Pressure filtration is for sizes 28 and 45 not possible in conjunction with a DA control valve (see ordering code on page 3).

Variation: external supply, E

This variation is to be applied with models without integral auxiliary pump (N00 or K..).

Boost pressure is via:

size 18	port S
size 28, 45 (without DA control valve)	port G
size 28, 45 (with DA control valve)	port F_{e}
size 63	port F_{a}

Port S is plugged on sizes 28, 45 and 63.

Filter arrangement: separately

To ensure functioning the above mentioned purity grade for the boost pressure fluids at connection G has to be ensured.

High Pressure Relief Valves

Example (design without pressure cut-off):

Example (design *with* pressure cut-off):

operating pressure $p_{A,B}$ - boost pressure p_{sp} + safety margin = differential pressure Δp_{HD} 300 bar - 20 bar + 20 bar = 300 bar

High pressure relief valve, direct controlled	Differential pressure setting Δp_{HD}
Setting range $\Delta p = 250340$ bar (valve 3 and 5, see ordering code)	340 bar 270 bar 320 bar 300 bar ¹)
Setting range $\Delta p = 100250$ bar (valve 4 and 6, see ordering code)	250 bar 150 bar 230 bar 100 bar 200 bar ¹)

¹) Standard setting of differential pressure, valves set to this value if no details given on order.

Please state in clear text when ordering:

(possible are only the values Δp_{HD} shown in the table)

High pressure relief valve A			
Differential pressure setting:	Δp_{HD}	=	bar
Opening pressure of the HD-valve (at q _{V max}):	p _{max}	=	bar
$(p_{max} = \Delta p_{HD} + p_{Sp})$			
High pressure relief valve B			
Differential pressure setting:	Δp_{HD}	=	bar
Opening pressure of the HD-valve (at $q_{V max}$):	p _{max}	=	bar
$(p_{max} = \Delta p_{HD} + p_{Sp})$			

Please note:

- valve setting is done at through flow quantity $q_{v 1} = 6 10$ L/min
- simplification: the bypass function is not shown in the hydraulic schemes

Pressure Cut-Off, D

The pressure cut-off corresponds to a pressure regulation which, after reaching the set pressure, adjusts the pump volume of the pump to $V_q = 0$.

This valve prevents the operation of the high pressure relief valves when accelerating or decelerating quickly (quick pressure rise).

The pressure peaks occurring when the swashplate is swivelled rapidly and also the maximum pressure in the system are safeguarded by the high pressure limit valves.

The setting range of the pressure cut-off may be anywhere within the entire working pressure range. However, it must be set 20-30 bar lower than the setting of the high pressure safety relief valves (see diagram).

Please state the setting value of the pressure cut-off in clear text when ordering.

Circuit diagram

Hydraulic control, speed related, with pressure cut-off DA.D3

DG Hydraulic Control, Direct Operated

The pump swivels out to an oil flow between 0 and $V_{q max}$ by means of pressure load at the positioning chamber through control pressure at the ports X₁ or X₂. Each port determinate one direction of flow (see table below).

The oil flow value which results from a defined control pressure is under these conditions dependent from the speed and the operating pressure.

pilot pressure 0 bar \longrightarrow displacement V_g = 0 max. perm. control pressure: 40 bar

HD Hydraulic Control, Pilot Pressure Related

The positioning cylinder of the pump and therefore the swivel angle is varied in proportion to the difference in pilot pressure applied to the two control ports (Y_1 and Y_2). The pump displacement is therefore steplessly variable. One pilot line is assigned to each direction of flow.

HD control		size	18	28	45	63
Start of control $(V_{g 0})$	p _{st}	bar	6	6	6	6
End of control (V _{g max})	p _{st}	bar	15,7	16	16,7	16,7

pst: pilot pressure at ports Y1, Y2

MB	
anti- X_1 B, A	
clockwise	
X ₂ M _B , M _A	

Graph direction of rotation - Control - Direction of through flow

Direction of rotation		clocł	kwise	anti-clockwise		
trol	Control pressure	X ₁	X ₂	X ₁	X ₂	
80	Direction of flow	A to B	B to A	B to A	A to B	
00	Operating pressure	MB	M _A	M _A	MB	
HD control	Pilot pressure	Y ₁	Y ₂	Y ₁	Y ₂	
	Control pressure	Х ₁	X ₂	X ₁	X ₂	
	Direction of flow	A to B	B to A	B to A	A to B	
	Operating pressure	M _B	M _A	M _A	М _в	

Brueninghaus Hydromatik

The positioning cylinder of the pump and therefore the swivel angle is varied in proportion to the movement of the control lever. The pump control is steplessly variable.

Each direction of flow is assigned to one direction of lever movement.

Swivel angle of control lever for swivel from

0 to $\pm V_{a max}$:	±	β=	0 to 35°
uniax		-	

mechanical stop _____ at $\pm 40^{\circ}$

Torque necessary at control lever is between 85 and 210 Ncm

The limitation of the operating range of the HW control lever must be fixed in the external control mechanism (required value setting).

Dependant from the operation conditions of the pump (operation pressure, oil temperature) changes of the curve can occur.

R A

M_b, M_a

Graph direction of rotation - Control - Direction of through flow

Direction of rotation		clock	wise	anti-clockwise		
_	Lever direction	b	а	b	а	
ontro	Control pressure	X ₁	X ₂	X ₁	X ₂	
ö ≽	Direction of flow	A to B	B to A	B to A	A to B	
T	Operating pressure	М _в	M _A	M _A	М _в	

Variation: zero position switch, L

At zero position of the control lever the switch contact is closed. In case of start-on of the control lever from the center position the contact is interrupted.

The zero position switch assures a safety function for drives which necessiate the zero position under certain conditions (for example start of the diesel engine).

Technical data (switch):

load performance:	20 A (continuous)
switch performance:	15A / 32V (DC)
	4A / 32V (AC - inductive)

clockwise

X-

anticlockwise

DA Hydraulic Control, Speed Related

In relation to the drive speed, control pressure is applied to the positioning cylinder of the pump by means of the DA control valve via a 4/3 way directional valve. Pump displacement is steplessly variable in each direction of flow. Each direction of flow is assigned to one of the two solenoids on the directional valve.

Increasing drive speed generates a higher control pressure through the DA valve.

Increasing control pressure increases the pump displacement.

Dependent upon the pump operating curve, pressure in the high pressure lines causes the pump to swivel back towards a smaller displacement.

Increasing operating pressure gives reduced displacement.

A constant torque input to the pump is achieved by this combination of de-stroking of the pump as the operating pressure increases and in response to the "pull-down" of the prime mover (leading to a reduced control pressure).

The least possible pull down leads to optimum usage of the drive power. This is achieved by " partial inching". In this form of the control, the DA valve is mechanically coupled to the accelerator pedal. This means that on reaching a certain speed (movement of the accelerator pedal), the control curve is offset parallel to the engine speed curve.

Any additional power requirements, e.g. the service hydraulics, may lead to engine pull down occuring. This leads to a reduction in control pressure and therefore pump displacement. The power thus released is then available to supply that demanded. Automatic power division and full utilisation of power available is thus achieved for both the vehicle transmission and the service hydraulics.

In an automative transmission, the DA control valve is used in conjunction with the directly controlled hydraulic "DA control".

However, pumps with HD, HW, EP or DG controls can also be equipped with a DA control valve. In this way, the automatic transmission function (speed related high pressure/flow increase with load limiting control) may be overridden.

The maximum flow will then be determined by the setting of the relevant control module fitted.

Graph direction of rotation - Control - Direction of through flow

Direction of rotation	clockwise		anti-clockwise	
Solenoid	b	а	b	а
Control pressure	X ₁	X ₂	X ₁	X ₂
Direction of flow	A to B	B to A	B to A	A to B
Operating pressure	MB	M _A	M _A	MB

DA control valve, fixed setting, (DA..2)

Control pressure is generated in relation to drive speed. When ordering, please state in clear text: Start of control (set at factory)

DA control valve, mechanically adjustable with control lever (DA..3)

Control pressure is generated in relation to drive speed. When ordering, please state in clear text: Start of control (set at factory).

Control pressure may be reduced (independently of drive speed) as required by operation of the control lever (inch function).

Max. adm. operating torque at the control lever: ___ T_{max} = 4 Nm Max. angle of lever operation 70°. The position of the lever is optional.

Hydraulic inch valve (DA..4,5,8,9)

(only for pumps with DA control device)

- for inch function; for use in conjunction with DA control valve, fixed setting (4, 8) or mechanically adjustable (5, 9)

Permits the control pressure to be reduced independently of the drive speed via hydraulic control (port Z).

Variation 4, 5: The control at port Z by means of braking fluid from the vehicle braking system (hydraulically linked with the operation brake).

Variation 8, 9: The control at port Z by means of mineral oil.

DA control valve, fixed setting,

Inching is via a separately allocated master controller (DA..7)

Rotary inch valve

Permits the control pressure to be reduced independently of the drive speed controlled by the position of the inch lever. Maximum movement 90° . The lever my be fixed in any position.

The valve is mounted separately from the pump and connected with the pump by the hydraulic control line at port P_{S} (max. line length approximately 2 metres).

The rotary inch valve is to be ordered separately.

Ordering code: 438 553 / 470.05.31.01

Please state your requirements in clear text: Inching, clockwise or anti-clockwise operation of the lever. (This is determined on assembly).

Attention: The rotary inch valve can be use independently from the control device.

rotary inch valve (see ordering code)

Extensive information is available from our mobile sales department. Please make use of an opportunity to confirm your transmission design through our computer program in BRUENINGHAUS HYDROMATIK. A DA-control can only be approved by BRUENINGHAUS HYDROMATIK.

EP Electrical Control with Proportional Solenoid

In relation to the preselected current, control pressure is applied to the positioning cylinder of the pump via two proportional solenoids on control device EP. The displacement of the pump is thus steplessly variable. One solenoid is assigned to each direction of flow.

Operating curve EP2

EZ Electrical Two-Position Control with Switching Solenoid

By energizing either solenoid a or b the swashplate and thus the displacement is switchable from $V_{a} = 0$ to $V_{a max}$

Each direction of flow	is assigned to a solenoid.
solenoid de-energized	pump set to $V_g = 0$

enoid energized	pump set to $V_{g max}$
	0

EZ1 switching solenoid 12 V, 26 W

sol

EZ2 switching solenoid 24 V, 26W

For control of the proportional solenoids (EP-control) are available:

proportional amplifier PVR or PVRS	(see RE 95022)
chopper amplifier CV	(see RE 95029)
electronic control for reversing drives RVR	(see RE 95031)
electronic control for reversing drives CSD	(see RE 95075)
closed loop control electronics RVE	(see RE 95033)
universal closed loop control electronics RVU	(see RE 95048)
microcontroller MC	(see RE 95050)

Graph direction of rotation - Control - Direction of through flow

Dir	ection of rotation	clockwise		anti-clockwise		
_	Solenoid	а	b	а	b	E-3
ntro	Control pressure	X ₁	X ₂	X ₁	X ₂	
6	Direction of flow	A to B	B to A	B to A	A to B	
ш	Operating pressure	MB	M _A	M _A	MB	clockwise
	Solenoid	b	а	b	а	
ntrol	Control pressure	X ₁	X ₂	X ₁	X ₂	17
8	Direction of flow	A to B	B to A	B to A	A to B	clockwise
ш	Operating pressure	MB	M _A	M _A	MB	

The swashplate angle is varied directly by the rotary movement of the pivot. The pump displacement is steplessly variable. Each direction of flow is assigned to one direction of rotation of the pivot.

Swivel angle at the pivot for swivel from

0 to \pm V_{g max}: _____ \pm β = 0 to 18°12′ Max. adm. operating torque at the control lever: __ T_{max}= 30 Nm

Spring centering to neutral (MDN)

The spring centering device automatically returns the unit to zero swivel angle position as soon as there is no adjustment torque present on the swivel pin.

B,A M_e;M,

Graph direction of rotation - Control - Direction of through flow

Dir	ection of rotation	clockwise		anti-clockwise	
_	Lever direction	а	b	а	b
ontro	Control pressure	X ₂	X ₁	X ₂	X ₁
ы В С	Direction of flow	B to A	A to B	A to B	B to A
Σ	Operating pressure	M _A	M _B	M _B	M _A

Mechanical Stroke Limiter, M

The mechanical stroke limiter is an additional function that independently from the relevant control unit makes it possible to infinitely reduce the maximum displacement of the pump.

The stroke of the adjustment cylinder is limited by two adjustment screws which, thereby also limit the pump swivel angle.

Size	18	28	45	63
M 1		99	101,6	124
M2	42,1	35	35,5	43
М3	18	21,5	22,5	26,5

clockwise

anticlockwise

Unit Dimensions, Size 18

Hydraulic control, direct operated, DG

Before finalising your design, please request a certified drawing.

Connections

Α, Β	Service line ports	M27x2;16 deep
T ₁	Case drain or filling port	M18x1,5; 12 deep
T ₂	Case drain	M18x1,5; 12 deep
M_A , M_B	Pressure gauge - operating pressure A/B	M12x1,5; 12 deep
R	Air bleed	M12x1,5; 12 deep
S	Boost suction port	M26x1,5; 16 deep
X ₁ , X ₂	Control pressure ports (before the orifice)	M12x1,5; 12 deep
G	Pressure port for auxiliary circuit	M14x1,5; 12 deep
Ps	Control pressure supply	M12x1,5; 12 deep
Y ₁ , Y ₂	Remote control ports (only for HD control)	M14x1,5; 12 deep

Shaft end

S On line of the

Splined shaft SAE 7/8" (SAE B) pressure angle 30°, 13 tooth, 16/32 pitch, flat root side fit, tolerance class 5, ANSI B92.1a-1976

Hydraulic control, pilot pressure related, HD

Electrical control, with proportional solenoid, EP

Electrical two-position control with switching solenoid, EZ

Before finalising your design, please request a certified drawing.

Mechanical pivot control MD

Mechanical pivot control, spring centering to neutral, MDN

Unit Dimensions, Size 28

Hydraulic control, direct operated, DG

Before finalising your design, please request a certified drawing.

23.8 В M10; 17 deep LO I ത 37 œ4 ы. С Ð Ð ŝ 20. ഗ ē, 37. M10; 17 deep А ф 23.8

View Z

Connections

A,B	Service line ports SAE 3/4" 420 bar (6000 psi)	(high pressure series)
T ₁	Case drain or filling port	M 22x1,5; 14 deep
T ₂	Case drain	M 22x1,5; 14 deep
M _A	Pressure gauge - operating pressure A	M 12x1,5; 12 deep
М _в	Pressure gauge - operating pressure B	M 12x1,5; 12 deep
R	Air bleed	M 12x1,5; 12 deep
S	Boost suction port	M 33x2; 18 deep
X ₁ , X ₂	Control pressure ports (before the orifice)	M 12x1,5; 12 deep
Y_{1}, Y_{2}	Remote control ports (only for HD control)	M 14x1,5; 12 deep
Ps	Control pressure supply, boost pressure	M 14x1,5; 12 deep
G (F _a)	Pressure port for auxiliary circuit	M 18x1,5; 12 deep
Fe	Filter inlet	M 18x1,5; 12 deep

Shaft ends

S

Splined shaft SAE 1" (SAE B-B) pressure angle 30°, 15 tooth, 16/32 pitch, flat root side fit, tolerance class 5 ANSI B92.1a-1976

Hydraulic control, pilot pressure related, HD

Electrical control with proportional solenoid, EP

Electrical two-position control with switching solenoid, EZ

Before finalising your design, please request a certified drawing.

Hydraulic control, mechanical servo, HW

Hydraulic control, speed related, DA (dimensions of the DA control valve see page 10)

Note:

Unit Dimensions, Size 45

Hydraulic control, direct operated, DG

Connections

A,B	Service line ports SAE 3/4" 420 bar (6000 psi) (I	high pressure series)
T ₁	Case drain or filling port	M 22x1,5; 14 deep
T ₂	Case drain	M 22x1,5; 14 deep
M _A	Pressure gauge - operating pressure A	M 12x1,5; 12 deep
М _в	Pressure gauge - operating pressure B	M 12x1,5; 12 deep
R	Air bleed	M 12x1,5; 12 deep
S	Boost suction port	M 33x2; 18 deep
X ₁ , X ₂	Control pressure ports (before the orifice)	M 12x1,5; 12 deep
Y_1, Y_2	Remote control ports (only for HD control)	M 14x1,5; 12 deep
Ps	Control pressure supply, boost pressure	M 14x1,5; 12 deep
G (F _a)	Pressure port for auxiliary circuit	M 18x1,5; 12 deep
F _e	Filter inlet	M 18x1,5; 12 deep

Shaft ends

S Splined shaft SAE 1" (SAE B-B), pressure angle 30°, 15 tooth, 16/32 pitch, flat root side fit, tolerance class 5 ANSI B92.1a-1976

Т

Splined shaft SAE 1¹/₄" (SAE C), pressure angle 30°, 14 tooth, 12/24 pitch, flat root side fit, tolerance class 5 ANSI B92.1a-1976

ž

Hydraulic control, pilot pressure related, HD

Electrical control with proportional solenoid, EP

Electrical two-position control with switching solenoid, EZ

Before finalising your design, please request a certified drawing.

Hydraulic control, speed related, DA (dimensions of the DA control valve see page 10)

...... pressure cut-off, D

Unit Dimensions, Size 63

Hydraulic control, direct operated, DG

Before finalising your design, please request a certified drawing.

Connections

A,B	Service line ports SAE 3/4" 420 bar (6000 psi) (H	nigh pressure series)
T ₁	Case drain or filling port	M 22x1,5; 15 deep
T ₂	Case drain	M 22x1,5; 15 deep
M _A	Pressure gauge - operating pressure A	M 12x1,5; 12 deep
Мв	Pressure gauge - operating pressure B	M 12x1,5; 12 deep
R	Air bleed	M 12x1,5; 12 deep
S	Boost suction port	M 33x2; 18 deep
X ₁ , X ₂	Control pressure ports (before the orifice)	M 12x1,5; 12 deep
Y_1, Y_2	Remote control ports (only for HD control)	M 14x1,5; 12 deep
Ps	Control pressure supply, boost pressure	M 14x1,5; 12 deep
G	Pressure port for auxiliary circuit	M 18x1,5; 12 deep
Fa	Filter outlet	M 18x1,5; 12 deep
F	Filter inlet	M 18x1,5; 12 deep

Shaft ends

S

Splined shaft SAE1¹/₄" (SAEC), pressure angle 30°, 14 tooth, 12/24 pitch, flat root side fit, tolerance class 5 ANSI B92.1a-1976

Т

Splined shaft SAE $1^{3}/_{8}$ ", pressure angle 30°, 21 tooth, 16/32 pitch, flat root side fit, tolerance class 5 ANSI B92.1a-1976

Hydraulic control, pilot pressure related, HD

Electrical control with proportional solenoid, EP

Electrical two-position control with switching solenoid, EZ

Before finalising your design, please request a certified drawing.

Hydraulic control, mechanical servo, HW

Hydraulic control, speed related, DA (dimensions of the DA control valve see page 10)

..... pressure cut-off, D

Dimensions for Through Drives

Through drive SAE A; (F01/K01)

splined hub SAE B-B

Through drive SAE B; (F02/K02)

Through drive SAE B-B; (F04/K04)

Without auxiliary pump, without through drive, (N00)

Before finalising your design, please request a certified drawing.

Size	A1	A2	
18	178,4	9	
28	219,2	9	
45	234,4	9	
63	242,2	9	

suitable for connection of: gear pump G2 (RE 10030) variable pump A10VSO18 (RE 92712)

Size	A1	A2	
18	187,4	10	
28	220,2	10	
45	235,4	10	
63	243,2	10	

suitable for connection of: gear pump G3 (RE 10039) gear pump G4 (RE 10042) variable pump A10VO 28 (RE 92701) variable pump A10VG 18

Size	A1	A2
28	220,2	10
45	235,4	10
63	243,2	10

suitable for connection of: variable pump A4VG28 (RE 92003) variable pump A10VO45 (RE 92701) variable pump A11VO40 (RE 92500)

variable pump A10VG28, 45

With auxiliary pump, without through drive, (F00) (see unit dimensions pages 14 - 21)

Permissible Input and Through Drive Rotation Torques

Size			18	28	45	63	
Corner torque (when $V_{g max}$, $\Delta p = 300 \text{ bar})^{1}$) T_{max} Nm			86	134	219	301	
Max. perm. through drive rotation torque T _{D perm.} Nm			112	220	314	439	
Max. permissible input torque ²)							
at shaft end S	T _{E perm.}	Nm	192	314	314	602	
SAE (ANSI B92.1a-1976)			(⁷ / ₈ " -13T 16/32DP)	(1" -15T 16/32DP)	(1" -15T 16/32DP)	(1 ¹ / ₄ " -14T 12/24DP)	
at shaft end T	T _{E perm.}	Nm	_	_	602	970	
SAE (ANSI B92.1a-1976)				(1 ¹ / ₄ "-14T 12/24DP) (1 ³ / ₈ "-2 ⁻			

1) efficiency not taken into consideration

²) drive shafts without radial load

Combination pump T. Τ₂ **Code explanations** $T_{D \text{ perm}} = \text{max. permissible through drive torque}$ in Nm T_{E perm.} = max. permissible input torque at the drive shaft in Nm $= \frac{1,59 \cdot V_{g1} \cdot \Delta p_1}{100 \cdot \eta_{mh}}$ 1st pump 2nd pump T₁ = take off torque at the 1st pump in Nm T_D $= \frac{1,59 \cdot V_{g2} \cdot \Delta p_2}{100 \cdot \eta_{mb}}$ T_2 = take off torque at the 2nd pump in Nm Single pump T₁ V_{q1} pump displacement per rev. 1st pump in cm³ = V_{a2} pump displacement per rev. 2nd pump in cm³ = in bar differential pressure 1st pump Δp_1 = differential pressure 2nd pump in bar Δp_2 = ΤD mechanical-hydraulic efficiency η_{mh} =

Combination Pumps

Combination pumps offer the facility of independent circuits without the need to fit splitter boxes.

When ordering combination pumps the model descriptions have to be connected by a "+" sign:

order example:

Code 2nd pump (rear pump) + +

A10VG 45HW1/10R-PTC10F042S

Code 1st pump (front pump)

A10VG 45HW1/10R-PSC10F002S

The series connection of two single pumps of the same size is permissible without additional supports where the dynamic acceleration does not exceed 10 g (= 98,1m/s²).

Mounting flange - Shaft ends (of single and combination pumps)

						Single pump	Combination pump of the same size 1st pump		2nd pump
Size	mount. flange	A1	A2	A3	A 4	A5	A5	through drive	A5
18	SAE B, 2-hole	146	15	101,6	15	S (SAE ⁷ / ₈ ")	S (SAE ⁷ / ₈ ")	F02/K02	S (SAE ⁷ / ₈ ")
28	SAE B, 2-hole	146	15	101,6	15	S (SAE 1")	S(SAE1")	F04/K04	S (SAE 1")
45	SAE B, 2-hole	146	15	101,6	15	S (SAE 1")	T (SAE 1 ¹ / ₄ ")	F04/K04	S (SAE 1")
63	SAEC, 2-hole	181	18	127	18	S (SAE 1 ¹ / ₄ ")	T (SAE 1 ³ / ₈ ")	F07/K07	S (SAE 1 ¹ / ₄ ")

Preferred Types

Туре	ldent-No.
A10VG18MD/10R-NSC16F003S	2005230
A10VG18MD/10R-NSC16F013S	2010550
A10VG18EP11/10R-NSC16F005S	2025955
A10VG18EP11/10R-NSC16F015S	2025956
A10VG18HW1/10R-NSC16F005S	2025957
A10VG18HW1/10R-NSC16F015S	2025958
A10VG28EP11/10R-NSC10F005S	2020156
A10VG28EP11/10R-NSC10F015S	2020155
A10VG28EP11/10R-NSC10F045S	2020157
A10VG28HW1/10R-NSC10F005S	2020195
A10VG28HW1/10R-NSC10F015S	2020194
A10VG28HW1/10R-NSC10F045S	2020196
A10VG28DA1D2/10R-NSC10F005S	2020248
A10VG28DA1D2/10R-NSC10F015S	2020254
A10VG28DA1D2/10R-NSC10F045S	2020249
A10VG45EP1M1/10R-NSC10F005S	2017642
A10VG45EP1M1/10R-NSC10F015S	2017641
A10VG45EP1M1/10R-NSC10F045S	2017643
A10VG45HWM1/10R-NSC10F005S	2017720
A10VG45HWM1/10R-NSC10F015S	2017718
A10VG45HWM1/10R-NSC10F045S	2017721
A10VG45DA1DM2/10R-NSC10F005S	2017813
A10VG45DA1DM2/10R-NSC10F015S	2017812
A10VG45DA1DM2/10R-NSC10F045S	2017814

Please state type and ident-no. when ordering.

Installation Situation for Coupling Assembly

In order to assure that rotating parts (coupling hub) and fixed parts (housing, safety rings) do not contact each other the installation situations are described in this leaflet have to be observed. The installation situation depend upon the sizes and the spline.

Sizes 18...45 (with free turning):

Please observe diameter of the free turning.

Size 63 (without free turning):

The outer diameter of the coupling hub must be smaller than the inner diameter of the circlip at the zone of the drive shaft collar (measure $x_2 - x_4$).

Size	$\mathbf{Ød}_1$	$\boldsymbol{\textit{ød}}_{\scriptscriptstyle 2min}$	$\mathbf{Ød}_{3}$	$\mathbf{Ød}_{4}$	$\mathbf{ød}_{\mathfrak{s}}$	X ₁	X ₂	X ₃	\mathbf{X}_4
18	30	36,1	$49\pm$	101,6	65	5,9+0,2	9,5 _{-0,5}	7	$8^{\rm +0,9}_{\rm -0,6}$
28	35	43,4	55±0,1	101,6	72	3,9+0,2	9,5 _{-0,5}	7	$8^{\rm +0,9}_{\rm -0,6}$
45	40	51,4	63±0,1	101,6	80	4,3+0,2	9,5 _{-0,5}	7	$8^{+0,9}_{-0,6}$
63	40	54,4	68±0,1	127	-	7,0+0,2	12,7 _{-0,5}	-	8 ^{+0,9} _{-0,6}

SAE spline

Brueninghaus Hydromatik GmbH Plant Elchingen Glockeraustraße 2 • D-89275 Elchingen Phone +49 (0) 73 08 / 82-0 Telefax +49 (0) 73 08 / 72 74

The specified data is for product description purposes only and may not be deemed to be guaranteed unless expressly confirmed in the contract.