Name					
Period	Date	/	/		

4 • Classifying Chemicals: Acids & Bases

VINEGAR TITRATION

I	n	t	r	റ	d	П	C	t	i	n	n	

The		a bottle of		negar will state, by law, th		
	-		$\cos HC_2H_3O_2$ per 100 ting is labeled as :	grams vinegar solution).	Some brands may be	as low as 3%.
Eq 50 1 Dis	uipme mL Erlen tilled wat	nt: meyer flasher bottle ghly test to	k Droppe Dropp see whether the label	er bottle with vinegar & per bottle with M I is correct. Perform four r. Fill in the Data Table Drops of NaOH(aq)	NaOH solution trials of a titration (as d	emonstrated in
•		_			•	
1.		e the conce	entration of the vinega uation: $V_a \underline{M}_a = V_b \underline{N}$	r solution in each of the follows: \underline{A}_{b} .	our trials. Fill in the Ca	lculation Table
2.	What is	the averag	ge of your four trials?	[Vinegar] =		
3.				here should be g He in 1000 g of vinegar so		negar solution.
4.	. How many <i>moles</i> of $HC_2H_3O_2$ would be in 1000 g of vinegar solution? Show your line equation (with units):					
5.			egar is 1.08 g/mL. Us (in Liters). Show wo	ing density as a conversionk:	on factor, calculate the v	volume of 1000 g
	1000 g v	vinegar x –	x	=		
6.	Using at Show w		m 4 & 5, calculate the	concentration (M) of a v	vinegar solution labeled	"5% acidity".
7.			data, is this vinegar <i>a</i> this experiment could	t least 5% acidity? be carried out more care	fully:	

Practice Problems:

In an experiment very much like the "Vinegar Titration," a student tests the concentration of another bottle of vinegar. This bottle says that it has been diluted with water to a strength of 4% (by mass).

- 1) What is the molarity (<u>M</u>) of acetic acid in this new vinegar? (Show your work.)
- 2) Using a standardized NaOH solution of 0.650 M, the student does the following dropwise titrations.

Trial #	Drops of Acid	Drops of Base
1	50	53
2	50	55
3	100	109
4	100	111

[Vinegar]	

Determine from this data:

a) the concentration of acid for each trial (show work for Trial 1)

b) the average concentration of the vinegar.	
Would your evidence suggest that this vinegar is "legal" according to the label?	

3) Now let's use some 1.00 <u>M</u> HCl and test the concentration of household ammonia (actually NH₄OH). In each of the following trials, we measure out about 10 mL of HCl and add our "ammonia" until we reach the endpoint.

UV.	ТΛ
	1

Trial #	Volume of HCI (mL)	Volume of NH₄OH (mL)
1	10.00	25.72
2	10.34	28.59
3	10.58	27.76

[1	NH4OH]	

Calculate the concentration of ammonium hydroxide in each of the three trials. (Show your work for trial 1.)