
HOMEWORK 3

STAT640: DATA MINING AND STATISTICAL LEARNING

2015-2016, FALL SEMESTER

GENEVERA ALLEN

RICE UNIVERSITY

Michael Weylandt

2015-10-29

Problem 1 (Spam Data)

Please download the spam data from the course webpage to use for this problem.
K-Fold CV - Choose any classifier with one tuning parameter for parts (a-e)
(a) Write a function to perform K-fold cross-validation to select the tuning parameter for this

classifier. You must code this up yourself and cannot use built-in functions (using a built-in
function for the base classifier is fine).

(b) Select the optimal tuning parameter using
(i) the minimum CV error rule; and

(ii) the one SE rule
for K = 5-fold CV. Are the models selected different? Interpret these results and reflect on
this.

(c) Perform both K = 5 and K = 10 fold CV. Does this change the results? Is one of these
preferable for this problem?

(d) When reporting the CV error, try out different loss functions:
(i) misclassification error;

(ii) binomial deviance error; and
(iii) hinge loss error.

Which error function is best for CV and model selection? Why?
(e) Reflect on your results. What have you learned about CV? Which approach to model selec-

tion do you think is best for this spam classification example? Why?
Process of Statistical Learning - Decide which classifier is best for building a spam filter.
(f) Use a model selection procedure to select tuning parameters for each of the following classi-

fiers: Linear SVM, Gaussian Kernel SVM, and Polynomial Kernel SVM.
(g) Report the accuracy (model assessment) of each classifier for this spam data set. Which one

is best? Why? Interpret and reflect on your results.
(h) Discuss why your model selection and assessment procedures are correct and justify any

decisions you made.
Note: For parts (f-h), you may use any built-in functions. The question is purposefully vague as it is
up to you to design and implement a correct model selection and model assessment scheme to decide
which type of SVM classifier is best for building a spam filter.

I use Python and scikit-learn ([PVG+11]) for my implementation. The underlying SVM implementa-
tions are due to libsvm ([CL11], for the general case) and liblinear ([FCH+08], for the linear case).

(a) If perform_assessment=False, I use K−1 folds for training and 1 for testing. If perform_assessment=True,
I use K − 2 folds for training, 1 for testing, and 1 for assessment.
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from __future__ import division

from collections import defaultdict

import numpy as np

import pandas as pd

import sklearn as sk

import sklearn.svm as svm

import matplotlib.pyplot as plt

import matplotlib.style

matplotlib.style.use(’ggplot’)

class CrossValidator(object):

def __init__(self, classifier, K, param_name, param_min, param_max,

data, label_column="CLASS", perform_assessment=False,

loss_func=None, n_iter=None, param_steps=10,

*classifier_args, **classifier_kwargs):

self.classifier = classifier

self.K = K

self.param_name = param_name

self.param_min = param_min

self.param_max = param_max

self.param_steps = param_steps

self.data = data.copy()

if loss_func is None:

self.loss_func = self.misclassification_err

else:

self.loss_func = loss_func

self.n_iter = n_iter or K

self.perform_assessment = perform_assessment

self.classifier_args = classifier_args

self.classifier_kwargs = classifier_kwargs

self.label_column = label_column

self._test_results = None

self._assess_results = None

self._test_err = None

@property

def param_range(self):

return np.linspace(self.param_min,

self.param_max,

self.param_steps)

def run(self):

if self._test_results is not None:

return

self._test_results = defaultdict(list)

self._assess_results = defaultdict(list)

n_per_fold = int(self.data.shape[0] / self.K)

assert n_per_fold > 0

for param in self.param_range:

for n in range(self.n_iter):

## select random test set for this iteration

rand_ind = np.random.permutation(self.data.shape[0])
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TEST = self.data.iloc[rand_ind[:n_per_fold],:]

TEST_DATA = sk.preprocessing.scale(TEST.drop(self.label_column, axis=1))

TEST_LABELS = TEST[self.label_column]

if self.perform_assessment:

ASSESS = self.data.iloc[rand_ind[n_per_fold:(2*n_per_fold)],:]

ASSESS_DATA = sk.preprocessing.scale(ASSESS.drop(self.label_column, axis=1))

ASSESS_LABELS = ASSESS[self.label_column]

TRAIN = self.data.iloc[rand_ind[2*n_per_fold:],:]

TRAIN_DATA = sk.preprocessing.scale(TRAIN.drop(self.label_column, axis=1))

TRAIN_LABELS = TRAIN[self.label_column]

else:

TRAIN = self.data.iloc[rand_ind[n_per_fold:],:]

TRAIN_DATA = sk.preprocessing.scale(TRAIN.drop(self.label_column, axis=1))

TRAIN_LABELS = TRAIN[self.label_column]

ASSESS = ASSESS_DATA = ASSESS_LABELS = None

## run classifier

kwargs = self.classifier_kwargs.copy()

kwargs[self.param_name] = param

classifier = self.classifier(*self.classifier_args, **kwargs)

classifier.fit(TRAIN_DATA, TRAIN_LABELS)

test_predict = classifier.decision_function(TEST_DATA)

## calculuate loss and record

self._test_results[param].append(self.loss_func(predicted=test_predict,

truth=TEST_LABELS))

if self.perform_assessment:

assess_predict = classifier.decision_function(ASSESS_DATA)

self._assess_results[param].append(self.loss_func(predicted=assess_predict,

truth=ASSESS_LABELS))

self._test_err = {k:(sum(v)/len(v), np.std(v))

for k,v in self._test_results.items()}

if self.perform_assessment:

self._assess_err = {k:(sum(v)/len(v), np.std(v))

for k,v in self._assess_results.items()}

@property

def min_cv_err_param(self):

self.run()

## Ugly, but works

## return parameter with lowest error

return sorted(self._test_err.items(), key=lambda x: x[1])[0][0]

@property

def one_se_rule_param(self):

self.run()

## Get ’optimal’ param

optim = sorted(self._test_err.items(), key=lambda x: x[1])[0][0]

optim_err, optim_err_se = self._test_err[optim]

## Now ’simplify’ to a lower value of param

for par, (cv_err, cv_err_se) in sorted(self._test_err.items()):

if cv_err <= optim_err + optim_err_se:

return par

## Some built in loss functions for part (d)

@staticmethod

def misclassification_err(predicted, truth):
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return (np.sign(predicted) != truth).mean()

@staticmethod

def hinge_loss_err(predicted, truth):

return np.mean(np.maximum(0, 1 - predicted * truth))

@staticmethod

def binomial_deviance_err(predicted, truth):

return np.mean(np.log(1 + np.exp(-2*predicted * truth)))

def plot(self, title=None, filename=None):

plt.figure()

plt.errorbar(self._test_err.keys(),

[x[0] for x in self._test_err.values()],

[x[1] for x in self._test_err.values()],

fmt="o", ecolor="g", capthick=2,

label="Test Error + SE of Estimate");

if title is None:

title="Parameter (%s) Selection: $K=%s$-Fold CV" % (self.param_name, self.K)

plt.title(title)

plt.xlabel("Parameter (%s)" % self.param_name)

plt.ylabel("Test Error")

plt.legend(loc="best", frameon=True, prop={"size":"x-small"})

if filename:

plt.savefig(filename)

else:

plt.show()

def predicted_test_err(self, param):

self.run()

return self._assess_err[param]

(b) We use the spam data set and the ν-SVM characterization ([SSWB00]) as it provides a more intuitive
tuning parameter.1 We do not perform model assessment in the first part of this question.

feature_names = []

with open("spam_vars.txt") as f:

for l in f:

feature_names.append(l.split(":")[0])

feature_names.append("CLASS")

SPAM = pd.read_csv("spam_dat.csv", header=None, names=feature_names)

SPAM.loc[SPAM["CLASS"]==0, "CLASS"] = -1 ## Conventional for SVM

cv5 = CrossValidator(classifier=svm.NuSVC, K=5, param_name="nu",

param_min=0.1, param_max=0.7, data=SPAM,

kernel="linear")

cv5.run()

cv10 = CrossValidator(classifier=svm.NuSVC, K=10, param_name="nu",

param_min=0.1, param_max=0.7, data=SPAM,

kernel="linear")

cv10.run()

We find that, in this case, 5-fold cross validation gives slightly different results for the two decision
rules. The actual truth may lie somewhere between these two as we used a fairly coarse ν-grid.

1Note that, since ν is a lower bound on the number of support vectors (cf. Proposition 1(ii) of [SSWB00]), decreasing ν regularizes
the model. (Lower the lower bound =⇒ fewer support vectors =⇒ more regularization)
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cv5.min_cv_err_param

0.30000000000000004

and

cv5.one_se_rule_param

0.23333333333333334

(c) When we add 10-fold CV we note that we get one ν for both rules – this is likely because the error
bars used in the one-standard-error rule are smaller when we have less data ‘held out’ in each
iteration of CV.

cv10.min_cv_err_param

0.23333333333333334

and

cv10.one_se_rule_param

0.23333333333333334

(d) We can fit other loss functions, here we focus a narrower range of ν based on the results above:2

cv5_hl = CrossValidator(classifier=svm.NuSVC, K=5, param_name="nu",

param_min=0.1, param_max=0.3, data=SPAM,

kernel="linear",

loss_func=CrossValidator.hinge_loss_err)

cv5_hl.run()

cv5_bd = CrossValidator(classifier=svm.NuSVC, K=5, param_name="nu",

param_min=0.1, param_max=0.3, data=SPAM,

kernel="linear",

loss_func=CrossValidator.binomial_deviance_err)

cv5_bd.run()

Using these loss functions (and narrower ν), we find that our fitted parameter changed from above:

cv5_hl.min_cv_err_param

0.21111111111111111

and

cv5_hl.one_se_rule_param

0.21111111111111111

For binomial deviance,

cv5_bd.min_cv_err_param

0.23333333333333331

and

cv5_bd.one_se_rule_param

0.21111111111111111

We note here that the binomial deviance loss is the only loss function which leads to a different ν̂
under the two decision rules.

I would prefer the misclassification error here as it’s more intuitive, but use of a hinge loss or bino-
mial deviance likely have better statistical properties (since HL implicitly rewards a large margin
and BD is MLE). If misclassification is used, it may be better to use a weighted misclassification
which penalizes false positives more highly than false negatives; the cost of a missed email is typi-

2This is not kosher as a model selection step, but it is useful for comparing different forms of cross validation since we used a
very coarse grid for ν in previous sections.
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cally much higher than the cost of having to delete an email.

(e) The variety of answers above indicate that selecting parameters by CV is more of an art than a
science. We can get different (but not radically so) ‘optimal’ ν by varying our loss function, our
decision rule, or K.

Cross Validation works well here, but the data set is large enough that a data splitting approach
could also work well.

(f) We continue like before, but here we use different kernels. Since our CrossValidator is only set up
to search over one parameter (ν) we do not attempt to tune our kernels and use the default param-
eters.3 Here we do want to perform model assessment and we modify our call to CrossValidator

accordingly:

cv5_linear = CrossValidator(classifier=svm.NuSVC, K=5, param_name="nu",

param_min=0.1, param_max=0.3, data=SPAM,

kernel="linear", perform_assessment=True)

cv5_linear.run()

cv5_gaussian = CrossValidator(classifier=svm.NuSVC, K=5, param_name="nu",

param_min=0.1, param_max=0.3, data=SPAM,

kernel="rbf", perform_assessment=True) ## Radial basis = Gaussian

cv5_gaussian.run()

cv5_poly = CrossValidator(classifier=svm.NuSVC, K=5, param_name="nu",

param_min=0.1, param_max=0.3, data=SPAM,

kernel="poly", perform_assessment=True)

cv5_poly.run()

For these kernels, we find a different value of ν appears optimal than for the linear case; this is not
surprising, with a more flexible decision boundary, we need more regularization.

For the linear kernel:

cv5_linear.min_cv_err_param

0.21111111111111111

and

cv5_linear.one_se_rule_param

0.18888888888888888

For the Gaussian kernel:

cv5_gaussian.min_cv_err_param

0.16666666666666666

and

cv5_gaussian.one_se_rule_param

0.14444444444444443

For the Polynomial kernel:

cv5_poly.min_cv_err_param

3For the Gaussian (radial basis) kernel, the default kernel is

K(x, y) = exp

{

−
‖|x− y‖22

p

}

For the polynomial kernel, the default kernel is

K(x, y) =
1

p3
〈x, y〉3
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0.18888888888888888

and

cv5_poly.one_se_rule_param

0.10000000000000001

(g) Since our cross validation was done with an assessment set, we can recover estimated test error
(misclassification error) directly.4 For the linear kernel:

cv5_linear.predicted_test_err(cv5_linear.one_se_rule_param)

(0.080217391304347824, 0.011735103979361549)

and

cv5_gaussian.predicted_test_err(cv5_gaussian.one_se_rule_param)

(0.066956521739130442, 0.0059376088190207215)

and

cv5_poly.predicted_test_err(cv5_gaussian.one_se_rule_param)

(0.078043478260869562, 0.0070241280093058739)

The first number is the predicted test error – the second is the estimated standard deviation (not
standard error) of the test error.

Based on the above, the Gaussian kernel appears to perform the best (lowest error on the training
set).

(h) The analysis above doesn’t perform any tuning on the kernel parameters and this is a serious limi-
tation. The test error above is still unacceptably high and the kernel must be tuned to get acceptable
performance.

Considering only tuning ν: I chose to ‘re-fold’ our data for each CV iteration, rather than simply
using each fold as a test set once. This doesn’t guarantee us as much mixing as standard CV, but it
does allow us to use n > K iterations for each K which I think is a win.

Since this data set is relatively large (n = 4601), we probably could have used a simpler (data
splitting) approach rather than cross-validation.

4For ease of writing code, we calculated the predicted test error for all values of ν and trust the user not to look. In practice, we
should probably not calculate until requested since its hard to resist the temptation to look.
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Problem 2 (Handwritten digits)

Use PCA, NMF, and ICA to find patterns, reduce the dimension, and visualize the data. Please
download the Digits Data from the ESL webpage.
(a) Visualize results from the 3 methods. How would you visualize patterns among the sam-

ples? Among the features? Show these graphics, explain them, and interpret the results.
What do these reveal? Do you find anything interesting?

(b) How much variance is explained by each PC? What would be a good number of PC factors
to retain for this data? Explain.

(c) How do the results of ICA and NMF change when you take r = 10, 20, 50, 250 factors? Is
there a way that you could decide how many factors to retain in a data-driven manner?
Explain.

(d) Is there a quantitative and objective way to that you can determine which is the best pattern
recognition technique for this data set? How? Explain and implement your procedure.

As done in class, we restrict our attention to the 3’s in the data set; we use the test set data only (since
we are not making predictions).

import gzip

with gzip.open("zip.test.gz") as f:

test_set = pd.read_csv(f, sep=" ", header=None)

test_threes = test_set[test_set[0]==3].drop(0, axis=1)

from sklearn.decomposition import PCA, NMF

from sklearn.decomposition import FastICA as ICA

(a) PCA returns the most ‘evident’ threes: in this case (looking only at one digit), there’s really only one
main pattern (the 3 shape) with variants so the NMF- and ICA-identified independent sources are
as easy to see. (They look more like parts of a 3 than a different ‘style’ of a 3) The major patterns of
PCA, after the first, are ‘heaviness’ (indicative of weightier penmanship) and ‘wideness’ (compared
to the 1st PC which is sort of skinny).

For each method, we can visualize columns as either ‘average observations’ (n × k matrix) and
‘feature patterns’ (k × p matrix).

(b) Figure 2.1 is a graph of the variance explained by each principal component (a screeplot):

_, D, _ = np.linalg.svd(test_threes)

eigenvalues = D**2

n_pcs = 20

fig, axes = plt.subplots(nrows=2, ncols=1)

ax1, ax2 = axes.flat

ax1.plot(eigenvalues[:n_pcs]/np.sum(eigenvalues))

ax1.set_xlabel("Principal Component")

ax1.set_ylabel("Additional Variance Explained")

ax2.plot(np.cumsum(eigenvalues)[:n_pcs]/np.sum(eigenvalues))

ax2.set_xlabel("Principal Component")

ax2.set_ylabel("Total Variance Explained")

From the graph, it’s not clear what an acceptable number of principal components would be. The
‘elbow’ rule suggests either 1 or 5 PCs, but neither of these explain a large fraction of the variance.

For a more rigorous method to compare models (both choosing the number of principal and com-
paring different model classes) see part (d).

(c) We create an analogue to Figure 2.1 for both NMF and ICA. Instead of variance, however, we com-
pare the Frobenius norm of the difference between the original and the approximating matrix.

For NMF, see Figure 2.2:
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Figure 2.1: Screeplot for 2(b)

test_threes_nn = test_threes - np.min(test_threes) ## Make non-negative

scree_nmf = {}

for r in (10, 20, 50, 150, 250):

for _ in range(3):

n = NMF(n_components=r)

W = n.fit_transform(test_threes_nn.T)

H = n.components_

scree_nmf[r] = np.linalg.norm(test_threes_nn.T - np.dot(W, H))/3

plt.plot(scree_nmf.keys(),

scree_nmf.values(), "ro")

plt.ylabel("Frobenius Norm of Reconstruction Error")

plt.xlabel("Rank of NMF approximation")

plt.title("Scree-ish Plot: NMF (Problem 2(c))")

We note that, as expected, the reconstruction error is decreasing in the number of components used.
The large rise at r = 250 is surprising, but likely an artifact of the fact we are using only 166 training
images.

Similarly for ICA (omitting r = 250 because ICA can’t be performed in that case with our small data
set):

scree_ica = {}

for r in (10, 20, 50, 150):

for _ in range(3):
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Figure 2.2: NMF Scree-like plot for 2(b)

n = ICA(n_components=r)

W = n.fit_transform(test_threes)

H = n.mixing_.T

scree_ica[r] = np.linalg.norm(test_threes - np.dot(W, H))/3

plt.plot(scree_ica.keys(),

scree_ica.values(), "ro")

plt.ylabel("Frobenius Norm of Reconstruction Error")

plt.xlabel("Rank of ICA approximation")

plt.title("Scree-ish Plot: ICA (Problem 2(c))")

As before, we see the reconstruction error increasing with r.

For a more rigorous method to compare models (both choosing r and comparing different model
classes) see part (d).

(d) One method we could use to compare matrix factorization methods would be to compare their
effectiveness at imputation, effectively transforming them into a prediction problem by ‘masking’
some of the data and seeing how well each model reconstructs the original data given only the
masked data.5 We implement this technique for PCA below:

from scipy.stats import nanmean

def pca_impute(data, num_pc=10, pct_missing=0.02, tol=0.0001, n_iter=5):

TOTAL_ERR = 0

ORIGINAL_DATA = np.array(data).copy()

for _ in range(n_iter):

5This method is discribed in [HTS+99]. The algorithm here is described in Section 1.2.
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Figure 2.3: ICA Scree-like plot for 2(b)

## We make a copy of our data and NaN-out

## (mark as missing) some points at random

impute_data = ORIGINAL_DATA.copy()

num_missing = int(pct_missing * impute_data.size)

masking_ind = np.unravel_index(np.random.permuatation(impute_data.size)[:num_missing],

impute_data.shape)

## randomly mask some data

impute_data[masking_ind] = np.nan

this_iter = impute_data.copy()

## Initialize with a bad ’last_iter’

## so we don’t accidentally abort early

last_iter = np.zeros_like(impute_date)

while np.linalg.norm(this_iter - last_iter)/np.lingalg.norm(this_iter) > tol:

last_iter = this_iter

last_U, last_D, last_V = np.lingalg.svd(last_iter)

## Scipy broadcasting takes care of nanmean(impute_data) being px1 here

this_iter[masking_ind] = (nanmean(impute_data,axis=1) + np.dot(last_U, last_D, last_V))[masking_ind]

TOTAL_ERR = np.lingalg.norm(this_iter - ORIGINAL_DATA)

return TOTAL_ERR/n_iter

We mask certain points randomly and then use a SVD based approach to impute those data with a
regression like technique (note that here we use column means as an intercept for our ‘regression’
because PCA only picks up variance). We then take the SVD of our imputed data and use it to
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re-impute until convergence.
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Problem 3 (Non-Negative Matrix Factorization)

Derive an algorithm to find a local optimum of the non-negative matrix factorization problem
commonly employed for count valued data:

maximize
W,H

n
∑

i=1

p
∑

j=1

(

Xij log

(

K
∑

k=1

WikHkj

)

−

K
∑

k=1

WikHkj

)

subject to Wik ≥ 0 ∀i = 1, . . . , n; k = 1, . . . ,K

Hkj ≥ 0 ∀j = 1, . . . , p; k = 1, . . .K

Hint: There are several possible algorithmic strategies that can be used. If you employ an MM (majorize-
minimize) algorithm, you may find ESL problem 14.23 helpful.

As hinted, we use a MM algorithm as described in Problem 14.23 of [HTF09].6

We begin by noting that, because log(·) is a concave function, the following holds:7 for any convex

combination of {yi}
k
i=1 with weights {ci}

k
i=1 (ci ∈ [0, 1], ∀i;

∑k

i=1
ci = 1),

log

(

k
∑

i=1

yi

)

= log

(

k
∑

i=1

ci ∗ yi/ci

)

≥

k
∑

i=1

ci log(yi/ci)

We can then apply this to find that:

log

(

K
∑

k=1

wikhkj

)

≥
K
∑

k=1

asikj
bsij

log

(

bsij
asikj

wikhkj

)

where

asikj = ws
ikh

s
kj

bsij =

K
∑

k=1

asikj

=

K
∑

k=1

ws
ikh

s
kj

6This problem derives a MM algorithm (cf. [WL10], unpublished when [HTF09] was published and referred to as unpublished
in the bibliography) for NMF.

7A function φ is concave if −φ is convex. If φ is concave, then:

−φ (λx+ (1− λ)y) ≤ λ ∗ −φ(x) + (1− λ) ∗ −φ(y) (By convexity of −φ)

φ (λx+ (1− λ)y) ≥ λφ(x) + (1− λ)φ(y)

This extends to arbitrary convex combinations of points by induction: let c1, . . . , ck ∈ [0, 1] with
∑

i ci = 1: then,

φ

(
k∑

i=1

cixi

)

= φ










=λ
︷︸︸︷
c1 x1 +

=(1−λ)y
︷ ︸︸ ︷

k∑

i=2

ckxk










≥ c1φ(x1) + φ

(
k∑

i=2

ckxk

)

≥
k∑

i=1

ciφ(xi) inductively
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Since wik, hkj ≥ 0, we see that 0 ≤ asikj and
as
ikj

bij
are the coefficients of a convex combination for each

(i, j). (We can ignore s here – we will use it for an iteration counter later)

Now consider two functions:

L(W ,H) =

n
∑

i=1

p
∑

j=1

(

Xij log

(

K
∑

k=1

wikhkj

)

−

K
∑

k=1

wikhkj

)

g(W ,H|W s,Hs) =

n
∑

i=1

p
∑

j=1

K
∑

k=1

uij

asikj
bsij

(logwik + log hkj)− wikhkj

fro some U depending on X .

We note that g minorizes L.8 It is easier to look at Lij , gij which are the summands (fix i, j in the outer
sums):

Lij(W ,H) =

(

Xij log

(

K
∑

k=1

wikhkj

)

−

K
∑

k=1

wikhkj

)

gij(W ,H|W s,Hs) =

K
∑

k=1

uij

asikj
bsij

(logwik + log hkj)− wikhkj

We first show that gij(W ,H|W s,Hs) ≤ Lij(W ,H):

gij(W ,H|W s,Hs) =
K
∑

k=1

uij

asikj
bsij

(logwik + log hkj)− wikhkj

= uij

(

asikjbij
∑

k

k=1

wikhkj log(wikhkj)

)

−

K
∑

k=1

wikhkj

≤ uij

(

asikjbij
∑

k

k=1

wikhkj log(
bij
asikj

wikhkj)

)

−

K
∑

k=1

wikhkj

≤ uij log

(

k
∑

k=1

wikhkj

)

−

K
∑

k=1

wikhkj

≤ Lij(W ,H|W s,Hs)

if uij < Xij .

We next show that gij(W ,H|W ,H) = Lij(W ,H):

gij(W ,H|W ,H) =

K
∑

k=1

uij

aikj
bij

(logwik + log hkj)− wikhkj

=
uij

bij

(

K
∑

k=1

wikhkj log(wikhkj)

)

−

K
∑

k=1

wikhkj

= Lij(W ,H)

when

Xij log

(

K
∑

k=1

wikhkj

)

=
uij

bij

(

K
∑

k=1

wikhkj log(wijhkj)

)

=⇒ uij =
Xijbij log

(

∑k

k=1
wikhkj

)

(

∑K

k=1
wikhkj log(wijhkj)

)

= Xij

(

∑K

k=1
wikhkj

)

log
(

∑K

k=1
wikhkj

)

(

∑K

k=1
wikhkj log(wijhkj)

)

8Recall that a function g(x, y) minorizes f(x) if g(x, x) = f(x) and g(x, y) ≤ f(x), ∀x, y. Here x = (W ,H) and y = (W s,Hs).
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which is consistent with our requirement uij < Xij from above since x log(x) is a convex function.

We can then use an MM algorithm to derive updating steps for W
s,Hs.9 Since g is continuous in

W
s,Hs, maximization of g is direct:10

∂g

∂ws
ik

=

n
∑

i=1

p
∑

j=1

K
∑

k=1

uij log(wikhkj)
∂

∂ws
ik

(

asikj
bsij

)

=

n
∑

i=1

p
∑

j=1

K
∑

k=1

uijh
s
kj ∗

bsij − asikj
(bsij)

2

By setting this equal to zero and isolating ws
ik, we can derive our update step:

0 =
∂gik
∂ws

ik

=

p
∑

j=1

uijh
s
kj ∗

bsij − asikj
(bsij)

2

p
∑

j=1

uijh
s
kj

bsij
=

p
∑

j=1

asikj
(bsij)

2

=

p
∑

j=1

ws
ikh

s
kj

(bsij)
2

p
∑

j=1

uijh
s
kj =

p
∑

j=1

ws
ikh

s
kj

bsij

ws
ik =

∑p

j=1
uijh

s
kjb

s
ij

∑p

j=1
hs
kj

=

∑p

j=1
uijh

s
kjb

s
ij

∑p

j=1
hs
kj

= ws
ik

∑p

j=1
hkjxij/b

s
ij

∑p

j=1
hkj

giving update step: (using the relationship between u, x found above)

ws+1

ik → ws
ik

∑p

j=1
hkjxij/(W

s
H

s)ij
∑p

j=1
hkj

A parallel derivation gives

hs+1

kj → hs
kj

∑n

i=1
wikxij/(W

s
H

s)ij
∑n

i=1
wik

9In general, MM algorithms provide updating steps of the form

xs+1 = argmax
x

g(x, xs)

See Chapter 6 of [Lan04] for details.
10Recall that in general #+BEGINLATEX

∂

∂x

ax

ax+ by + cz
=

(ax+ by + cz) ∗ a− ax ∗ a

(ax+ by + cz)2

=
a2x+ aby + acz − a2x

(ax+ by + cz)2

=
aby + acz

(ax+ by + cz)2

= a
(ax+ by + cz)− ax

(ax+ by + cz)2
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Putting these together we find a workable algorithm:

ws+1

ik → ws
ik

∑p

j=1
hkjxij/(W

s
H

s)ij
∑p

j=1
hkj

hs+1

kj → hs
kj

∑n

i=1
wikxij/(W

s
H

s)ij
∑n

i=1
wik

(Cf. Equation 14.17 in [HTF09])
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